

PACKET ARCHITECTS AB

Ethernet Switch/Router Enterprise 9x10G + 2x25G User Guide

Core Revision unknown
Datasheet Revision unknown
March 29, 2024© Packet Architects AB.

Contents

1	Over	view							19
	1.1 1.2		Overview						
2	Pack	et Decode	er						25
	2.1	Decoding	Sequence						 . 25
3	Pack	et Process	sing						31
	3.1		acket Processing						
	3.2	_	acket Processing						
4	Later	ncy and Ji	itter						35
	4.1	-							
	4.2								
_	\/I A I	N. D.,,							37
5	VLA I 5.1	V Process	ing ent of Ingress VID						
	5.1	5.1.1	VID Assignment from Packet Fields						
		5.1.2	Force Ingress VID from Ingress Configurable ACL						
	5.2	•	embership						
	5.3		erations						
		5.3.1	Default VLAN Header						
		5.3.2	Source Port VLAN Operation						
		5.3.3	Operation Based On Incoming Packets Number of VLANs .						
		5.3.4	Configurable ACL VLAN Swap Operation						
		5.3.5	VLAN Table Operation						
		5.3.6	VLAN Table VID Operation Based On the Packets Number of	of	VL	.Al	٧s		. 40
		5.3.7	Egress Port VLAN Operation						. 40
		5.3.8	Egress Port VID Operation						. 40
		5.3.9	Egress Vlan Translation						. 40
		5.3.10	Priority Tagged Packets						41
		5.3.11	Router VLAN Operations						41
		5.3.12	VLAN Operation Order						 . 41
		5.3.13	VLAN Operation Examples						. 41
		5.3.14	VLAN Reassembly						. 42
6	Swite	ching							45
	6.1	L2 Destin	nation Lookup						 45
	6.2	Software	Interaction						 46
	6.3	L2 Action	Table						46
		6.3.1	Learning Unicast and Learning Multicast						. 47
		6.3.2	Drop and Learning						. 47
		6.3.3	Priorities Between Actions						
		6.3.4	Using L2 Action Table for 802.1X						 . 48
7	Rout	ing							49
-	7.1	_	Operation						
			•						-

8	Tunn	0	53
	8.1	Packet Decoder For Tunnel Exit	53
	8.2	Tunnel Exit	54
		8.2.1 To Not To Use Second Lookup	55
		8.2.2 Use Second Lookup With Packet Data	55
		8.2.3 How To Remove Data From Packet In A Tunnel Exit	55
			56
			56
		· ·	56
	8.3		56
	0.3		
			57
			58
			58
		8.3.4 Tunnel Entry and Routing with MTU check	59
9	MPL		51
	9.1	MPLS Header Operations	51
	9.2	MPLS Penultimate Pop	51
	9.3	MPLS Header Insertion To Reach Next Hop	51
10	NAT	Network Address Translation	53
	10.1	Ingress Packet Processing Option	53
	10.2	NAT Action Table Check	53
11	Mirro	ring 6	55
	11.1		55
	11.2		55
			56
		TI.2.1 Requesting Fit O	,0
12	Link	Aggregation	57
			57
	12.1	•	57
	12.1	•	59
	12.2	Masii Calculation)9
12	IEEE	1588/PTP Support 7	71
13		· · · · · · · · · · · · · · · · · · ·	71
	13.1	·	
	10.0		71
	13.2		71
			72
			72
	13.3	Software Control of TX MAC PTP Actions	72
		13.3.1 Packet Updates by the Transmit MAC	73
	13.4	Support for Ordinary Clock	73
		13.4.1 Master sending Sync	73
			73
			74
			74
			74
			74
	12 E		74
	13.5		
			74
		0	74
			74
		13.5.4 Initiator receiving PDelayResp	74
	_		
14	Classi		75
	14.1		75
	14.2	Configurable Ingress ACL Engine	75

		14.2.1	Field Selection	75
		14.2.2	Example Of Selecting Fields For Configurable Ingress ACL Table 0	79
		14.2.3	Example Of Selecting Fields For Configurable Ingress ACL Table 1	82
		14.2.4	Example Of Selecting Fields For Configurable Ingress ACL Table 2	86
		14.2.5	Example Of Selecting Fields For Configurable Ingress ACL Table 3	89
		14.2.6		89
		14.2.7		89
	14.3			89
	11.0	14.3.1	·	90
		14.3.2	·	91
	14.4			91
	17.7	14.4.1	Field Selection	92
		14.4.2	Example Of Selecting Fields For Configurable Egress ACL Table 0	94
		14.4.3	Example Of Selecting Fields For Configurable Egress ACL Table 1	97
		14.4.4		98
		14.4.5		99
	14.5	-	·	99
		14.5.1	Multiple Actions	99
			and the second s	٥.1
15	VLAIN	I and Pack	tet Type Filtering 1	.01
16	Hashi	nσ	1	.03
-0		_		103
	10.1	16.1.1		L03
		16.1.2		L03 L04
		16.1.3		104 106
		16.1.4		L07
		16.1.5		111
		16.1.6		L14
		16.1.7	0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L14
		16.1.8	8	L14
		16.1.9		L16
		16.1.10	Hash function for Tunneling	L16
17	D loft	Lookup	1	19
11		Lookup		
	17.1			119
		17.1.1		119
		17.1.2		L19
		17.1.3		L21
		17.1.4	Tunnel Exit	L21
12	Learni	ing and Ag	rinα 1	23
-0				. 23 123
	10.1	18.1.1		L23 L23
		18.1.2		L23 L24
			·	
		18.1.3		L24
	10.0	18.1.4		L25
	18.2			L25
		18.2.1		125
		18.2.2		L26
		18.2.3		L27
		18.2.4		L27
	18.3			L27
		18.3.1	3	L28
		18.3.2		L29
		18.3.3		L29
		18 3 4	Software Aging	129

	18.4	18.4.1	nd Hardware Int Data FIFO Inte Writeback Bus	rrupts		 			 			 					
19		ning Tree	_														131
	19.1		ree														131
	19.2 19.3		panning Tree Tree Drop Count														131 132
	19.5	Spanning 1	ree Drop Count	ers		 • •			 			 	٠	 •	•		132
20	Toker	Bucket															133
21	Egres	s Queues a	nd Scheduling														135
			Egress Queue .														135
	21.2		a packets outgo														137
			Remap Egress (137
			Using Packet Ty	•					-,		_					_	
		•	pping														
	21.4	•															138
			Queue Shaper														
	01.5		Prio Shaper														
	21.5	0															141
	21.6		eduler														141
	21.7 21.8		nagement														
	21.0	HOW TO IVI	ake Sure A Port	is Empi	.y	 • •	• •	•	 • •		•	 	•	 •	•		142
22		et Coloring															143
		_	ket Initial Color	_													143
	22.2	Remap Pac	ket Color to Pa	cket Hea	iders .	 			 			 					145
23	Admi	ssion Conti	ol														147
			nission Control			 			 			 					147
		•	Traffic Groups														147
	23.2		ker-Policer														148
24	Tick																151
25			cast Storm Co														153
			Fraffic														153
	25.2	Rate Config	guration			 			 	٠.	•	 	٠	 •	•		154
26	Egres	s Resource	Manager														157
	26.1	Yellow Zon	e			 			 			 					157
	26.2	Red Zone				 			 			 					158
	26.3	Green Zone				 			 			 					158
	26.4	_	on Example														158
	26.5	Restrictions	5			 			 			 					158
27	Flow	Control															159
	27.1	Pausing				 			 			 					159
	27.2	Tail-Drop				 			 			 					159
		27.2.1	Tail-drop as pol	ice for P	ausing	 			 			 					159
	27.3	•	itioning														160
			Reserves														160
	27.4		node														160
	27.5																160
			Pausing Thresh														161
	07.6		Tail-drop Thres														162
	27.6	Enabling T	ail-Drop			 			 			 					162

	27.7	Enabling Pausing	162
	27.8	Dropped packets	162
	27.9	Reconfiguration	162
	27.10		163
28	Egres	s Port Shaper 1	65
20	.		<i>-</i>
29	Statis		67
	29.1		169
	29.2		169
	29.3		169
	29.4	8 - 1 - 1 - 1	L70
	29.5	Ingress Port Receive Statistics	L70
	29.6	Packet Datapath Statistics	L70
	29.7	Miscellaneous Statistics	170
	29.8	Debug Statistics	171
		29.8.1 Debug Statistics Accuracy	171
20	Deele	to To And Form The CDU	72
30			173
	30.1		L73
		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	L74
		·	L74
	30.2		L75
	30.3		L76
			178
		and the second s	179
		30.3.3 Reason Table	180
		30.3.4 Reason Code Operations	181
21	Coro	Interface Description 1	83
31		·	1 03 183
	31.1	·	
	01.0		L84
	31.2		L84
	31.3		189
	31.4	·	189
	31.5		190
		31.5.1 PFC Status	191
		31.5.2 External Pause	191
	31.6	Debug Read Interface	191
	31.7	Debug Write Interface	196
20	.		07
32			97
	32.1	·	L97
	32.2	0	L97
			L97
	32.4	Accumulator Accesses	198
33	Debu	gging the Design 1	99
•	33.1		199
	33.2		202
	JJ.2	Countries in Egress racket riocessing	-02
34	Imple	mentation 2	205
	34.1	Floorplanning	205
		34.1.1 Pipelining	205
			200
		34.1.2 Configuration and debug	206
	34.2		206 206
	34.2	Clock crossings	

	34.4	Dual porte	ed memories
	34.5	Memory ti	ming
	34.6	Lint set up	208
		34.6.1	Waivers
35		ters and T	
	35.1		pace For Tables and Registers
	35.2	•	r
	35.3	_	anks
	35.4		and Tables in Alphabetical Order
	35.5		eue Manager
		35.5.1	ERM Red Configuration
		35.5.2	ERM Yellow Configuration
		35.5.3	Egress Resource Manager Pointer
	25.6	35.5.4	Resource Limiter Set
	35.6	35.6.1	mation
	35.7		Core Version 239 cket Processing 239
	33.1	35.7.1	Beginning of Packet Tunnel Entry Instruction Table
		35.7.1	Color Remap From Egress Port
		35.7.3	
		35.7.4	Color Remap From Ingress Admission Control
		35.7.5	Debug Counter fromPort Setup
		35.7.6	Debug Counter reQueuePortId Setup
		35.7.7	Disable CPU tag on CPU Port
		35.7.8	Drain Port
		35.7.9	EPP Debug addNewMpls
		35.7.10	EPP Debug debugMatchEPP0
		35.7.11	EPP Debug delSpecificVlan
		35.7.12	EPP Debug fromPort
		35.7.12	EPP Debug imActive
		35.7.14	EPP Debug imExtra
		35.7.15	EPP Debug isIPv4
		35.7.16	EPP Debug isIPv6
		35.7.17	EPP Debug isPPPoE
		35.7.18	EPP Debug omEnabled
		35.7.19	EPP Debug omlmActive
		35.7.20	EPP Debug reQueue
		35.7.21	EPP Debug reQueuePkt
		35.7.22	EPP Debug reQueuePortId
		35.7.23	EPP Debug updateTosExp
		35.7.24	Egress Ethernet Type for VLAN tag
		35.7.25	Egress MPLS Decoding Options
		35.7.26	Egress MPLS TTL Table
		35.7.27	Egress Multiple Spanning Tree State
		35.7.28	Egress NAT Operation
		35.7.29	Egress Port Configuration
		35.7.30	Egress Port VID Operation
		35.7.31	Egress Queue To MPLS EXP Mapping Table
		35.7.32	Egress Queue To PCP And CFI/DEI Mapping Table
		35.7.33	Egress Router Table
		35.7.34	Egress Tunnel Exit Table
		35.7.35	Egress VLAN Translation TCAM
		35.7.36	Egress VLAN Translation TCAM Answer
		35.7.37	IP QoS Mapping Table
		35.7.38	Ingress NAT Operation
		35.7.39	L2 QoS Mapping Table

	35.7.40	L2 Tunnel Entry Instruction Table
	35.7.41	L3 Tunnel Entry Instruction Table
	35.7.42	MPLS QoS Mapping Table
	35.7.43	NAT Add Egress Port for NAT Calculation
	35.7.44	Next Hop DA MAC
	35.7.45	Next Hop MPLS Table
	35.7.46	Next Hop Packet Insert MPLS Header
	35.7.47	Output Mirroring Table
	35.7.48	Router Port Egress SA MAC Address
	35.7.49	Select Which Egress QoS Mapping Table To Use
	35.7.50	TOS QoS Mapping Table
	35.7.51	Tunnel Entry Header Data
25.0	35.7.52	Tunnel Entry Instruction Table
35.8		rol
	35.8.1	FFA Used PFC
	35.8.2	FFA Used non-PFC
	35.8.3	PFC Dec Counters for ingress ports 0 to 10
	35.8.4	PFC Inc Counters for ingress ports 0 to 10
	35.8.5	Port FFA Used
	35.8.6	Port Pause Settings
	35.8.7	Port Reserved
	35.8.8	Port Tail-Drop FFA Threshold
	35.8.9	Port Tail-Drop Settings
	35.8.10	Port Used
	35.8.11	Port Xoff FFA Threshold
	35.8.12	Port Xon FFA Threshold
	35.8.13	Port/TC Reserved
	35.8.14	Port/TC Tail-Drop Total Threshold
	35.8.15	Port/TC Xoff Total Threshold
	35.8.16	Port/TC Xon Total Threshold
	35.8.17	TC FFA Used
	35.8.18	TC Tail-Drop FFA Threshold
	35.8.19	TC Xoff FFA Threshold
	35.8.20	TC Xon FFA Threshold
	35.8.21	Tail-Drop FFA Threshold
	35.8.22	Xoff FFA Threshold
	35.8.23	Xon FFA Threshold
35.9		figuration
33.3	35.9.1	Core Tick Configuration
	35.9.2	Core Tick Select
	35.9.3	MAC RX Maximum Packet Length
	35.9.4	Scratch
35 10		cket Processing
33.10	35.10.1	AH Header Packet Decoder Options
	35.10.1	ARP Packet Decoder Options
		•
	35.10.3	Aging Data FIFO
	35.10.4	Aging Data FIFO High Watermark Level
	35.10.5	Allow Special Frame Check For L2 Action Table
	35.10.6	BOOTP and DHCP Packet Decoder Options
	35.10.7	CAPWAP Packet Decoder Options
	35.10.8	CPU Reason Code Operation
	35.10.9	Check IPv4 Header Checksum
	35.10.10	DNS Packet Decoder Options
	35.10.11	Debug Counter debugMatchIPP0 Setup
	35.10.12	Debug Counter dstPortmask Setup
	35.10.13	Debug Counter finalVid Setup
	35 10 14	Debug Counter 12DaHash Setup 28

35.10.15	Debug Counter I2DaHashHitAndBucket Setup	284
35.10.16	Debug Counter I2DaHashKey Setup	284
35.10.17	Debug Counter I2DaTcamHitsAndCast Setup	285
35.10.18	Debug Counter nextHopPtrFinal Setup	285
35.10.19	Debug Counter nextHopPtrHash Setup	286
35.10.20	Debug Counter nextHopPtrLpm Setup	286
35.10.21	Debug Counter nrVlans Setup	286
35.10.22	Debug Counter spVidOp Setup	287
35.10.23	Debug Counter srcPort Setup	287
35.10.24	Debug Counter vlanVidOp Setup	288
35.10.25	Default Packet To CPU Modification	288
35.10.26	ESP Header Packet Decoder Options	288
35.10.27	Egress ACL Rule Pointer TCAM	289
35.10.28	Egress ACL Rule Pointer TCAM Answer	290
35.10.29	Egress Configurable ACL 0 Large Table	290
35.10.30	Egress Configurable ACL 0 Rules Setup	291
35.10.31	Egress Configurable ACL 0 Search Mask	292
35.10.32	Egress Configurable ACL 0 Selection	292
35.10.33	Egress Configurable ACL 0 Small Table	293
35.10.34	Egress Configurable ACL 0 TCAM	294
35.10.35	Egress Configurable ACL 0 TCAM Answer	294
35.10.36	Egress Configurable ACL 1 Rules Setup	295
35.10.37	Egress Configurable ACL 1 TCAM	296
35.10.38	Egress Configurable ACL 1 TCAM Answer	296
35.10.39	Egress Port NAT State	297
35.10.40	Egress Spanning Tree State	297
35.10.40	Enable Enqueue To Ports And Queues	298
35.10.42	Flooding Action Send to Port	298
35.10.42	Force Non VLAN Packet To Specific Color	299
35.10.44	Force Non VLAN Packet To Specific Queue	299
35.10.45	Force Unknown L3 Packet To Specific Color	299
35.10.46	Force Unknown L3 Packet To Specific Egress Queue	300
35.10.47	Forward From CPU	300
35.10.48	GRE Packet Decoder Options	300
35.10.49	Hairpin Enable	301
35.10.50	Hardware Learning Configuration	301
35.10.51	Hardware Learning Counter	302
35.10.52	Hash Based L3 Routing Table	302
35.10.53	Hit Update Data FIFO	303
35.10.54	Hit Update Data FIFO High Watermark Level	304
35.10.55	IEEE 1588 L2 Packet Decoder Options	304
35.10.56	IEEE 1588 L4 Packet Decoder Options	305
35.10.57	IEEE 802.1X and EAPOL Packet Decoder Options	305
35.10.58	IKE Packet Decoder Options	306
35.10.59	IPP Debug debugMatchIPP0	306
35.10.60	IPP Debug doL2Lookup	307
35.10.61	IPP Debug dropPktAfterL2Decode	307
35.10.62	IPP Debug dropPktAfterL3Decode	307
35.10.63	IPP Debug dstPortmask	308
35.10.64	IPP Debug finalVid	308
35.10.65	IPP Debug isBroadcast	308
35.10.66	IPP Debug isFlooding	308
35.10.67	IPP Debug I2DaHash	309
35.10.68	IPP Debug I2DaHashHitAndBucket	309
35.10.69	IPP Debug I2DaHashKey	309
35.10.70	IPP Debug I2DaTcamHitsAndCast	310
35.10.71	IPP Debug nextHopPtrFinal	310

35.10.72	IPP Debug nextHopPtrHash	310
35.10.73	IPP Debug nextHopPtrHashHit	311
35.10.74	IPP Debug nextHopPtrLpm	311
35.10.75	IPP Debug nextHopPtrLpmHit	311
35.10.76	IPP Debug nrVlans	311
35.10.77	IPP Debug routed	312
35.10.78	IPP Debug routerHit	312
35.10.79	IPP Debug spVidOp	312
35.10.80	IPP Debug srcPort	313
35.10.81	IPP Debug vlanVidOp	313
35.10.82	IPv4 TOS Field To Egress Queue Mapping Table	313
35.10.83	IPv4 TOS Field To Packet Color Mapping Table	314
35.10.84	IPv6 Class of Service Field To Egress Queue Mapping Table	314
35.10.85	IPv6 Class of Service Field To Packet Color Mapping Table	314
35.10.86	Ingress Admission Control Current Status	315
35.10.87	Ingress Admission Control Initial Pointer	315
35.10.88	Ingress Admission Control Mark All Red	315
35.10.89	Ingress Admission Control Mark All Red Enable	316
35.10.90	Ingress Admission Control Reset	316
35.10.91	Ingress Admission Control Token Bucket Configuration	316
35.10.92	0 0	317
35.10.93		320
35.10.94		320
35.10.95		321
35.10.96	8 8	321
35.10.97	Ingress Configurable ACL 0 Small Table	322
35.10.98	0 0 0	324
35.10.99	6 6	324
35.10.100		326
35.10.101	Ingress Configurable ACL 1 Pre Lookup	330
35.10.102	Ingress Configurable ACL 1 Rules Setup	331
35.10.103	Ingress Configurable ACL 1 Search Mask	331
35.10.104	Ingress Configurable ACL 1 Selection	332
	Ingress Configurable ACL 1 Small Table	332
35.10.106	Ingress Configurable ACL 1 TCAM	336
35.10.107	Ingress Configurable ACL 1 TCAM Answer	337
35.10.108	Ingress Configurable ACL 2 Pre Lookup	339
	Ingress Configurable ACL 2 Rules Setup	340
	Ingress Configurable ACL 2 TCAM	340
	Ingress Configurable ACL 2 TCAM Answer	341
	Ingress Configurable ACL 3 Rules Setup	344
	Ingress Configurable ACL 3 TCAM	344
	Ingress Configurable ACL 3 TCAM Answer	344
	Ingress Drop Options	345
	Ingress Egress Port Packet Type Filter	346
	Ingress Ethernet Type for VLAN tag	348
	Ingress MMP Drop Mask	348
	Ingress Multiple Spanning Tree State	349
	Ingress Port Packet Type Filter	349
	Ingress Router Table	351
	Ingress VID Ethernet Type Range Assignment Answer	352
35.10.123	0 71 0	353
35.10.124	Ingress VID Inner VID Range Assignment Answer	353
35.10.125	Ingress VID Inner VID Range Search Data	354
35.10.126	Ingress VID MAC Range Assignment Answer	354
35.10.127		354
35.10.128	Ingress VID Outer VID Range Assignment Answer	355

35.10.129	Ingress VID Outer VID Range Search Data
35.10.130	L2 Action Table
35.10.131	L2 Action Table Egress Port State
35.10.132	L2 Action Table Source Port
35.10.133	L2 Aging Collision Shadow Table
	L2 Aging Collision Table
	L2 Aging Status Shadow Table
	L2 Aging Status Shadow Table - Replica
35.10.137	L2 Aging Table
35.10.138	L2 DA Hash Lookup Table
35.10.139	L2 Destination Table
35.10.140	L2 Destination Table - Replica
35.10.141	L2 Lookup Collision Table
35.10.142	L2 Lookup Collision Table Masks
	L2 Multicast Handling
35.10.144	L2 Multicast Table
35.10.145	L2 Reserved Multicast Address Action
35.10.146	L2 Reserved Multicast Address Base
35.10.147	L2 SA Hash Lookup Table
	L2 Tunnel Decoder Setup
	L3 LPM Result
	L3 Routing Default
35.10.151	L3 Routing TCAM
35.10.152	LACP Packet Decoder Options
35.10.153	LLDP Configuration
35.10.154	Learning And Aging Enable
	Learning And Aging Writeback Control
	Learning Conflict
35.10.157	Learning DA MAC
	Learning Data FIFO
35.10.159	Learning Data FIFO High Watermark Level
	Learning Overflow
35.10.161	Link Aggregate Weight
35.10.162	Link Aggregation Ctrl
35.10.163	Link Aggregation Membership
	Link Aggregation To Physical Ports Members
	MPLS EXP Field To Egress Queue Mapping Table
35.10.166	MPLS EXP Field To Packet Color Mapping Table
35.10.167	NAT Action Table
	NAT Action Table Force Original Packet
	Next Hop Packet Modifications
	Next Hop Table
	Port Move Options
	RARP Packet Decoder Options
	Reserved Destination MAC Address Range
	Reserved Source MAC Address Range
35.10.175	Router Egress Queue To VLAN Data
35.10.176	Router MTU Table
	Router Port MAC Address
	SCTP Packet Decoder Options
35.10.179	SMON Set Search
35.10.180	SNAP LLC Decoding Options
35.10.181	Second Tunnel Exit Lookup TCAM
35.10.182	·
35.10.183	Second Tunnel Exit Miss Action
35.10.184	Send to CPU
35.10.185	Software Aging Enable

	35.10.186	Software Aging Start Latch
	35.10.187	Source Port Default ACL Action
	35.10.188	Source Port Table
	35.10.189	Time to Age
	35.10.190	Tunnel Entry MTU Length Check
	35.10.191	Tunnel Exit Lookup TCAM
		Tunnel Exit Lookup TCAM Answer
		VLAN PCP And DEI To Color Mapping Table
		VLAN PCP To Queue Mapping Table
		VLAN Table
35.11		
	35.11.1	L2 Broadcast Storm Control Bucket Capacity Configuration 404
	35.11.2	L2 Broadcast Storm Control Bucket Threshold Configuration 404
	35.11.3	L2 Broadcast Storm Control Enable
	35.11.4	L2 Broadcast Storm Control Rate Configuration
	35.11.5	L2 Flooding Storm Control Bucket Capacity Configuration
	35.11.6	L2 Flooding Storm Control Bucket Threshold Configuration
	35.11.7	L2 Flooding Storm Control Enable
	35.11.8	L2 Flooding Storm Control Rate Configuration
	35.11.9	L2 Multicast Storm Control Bucket Capacity Configuration
	35.11.10	L2 Multicast Storm Control Bucket Threshold Configuration
	35.11.11	L2 Multicast Storm Control Enable
	35.11.12	L2 Multicast Storm Control Rate Configuration
35 12	Scheduling	
33.12	35.12.1	DWRR Bucket Capacity Configuration
	35.12.1	DWRR Bucket Misc Configuration
	35.12.3	DWRR Weight Configuration
	35.12.4	Map Queue to Priority
	35.12.5	Output Disable
35 13	Shapers .	
33.13	35.13.1	Port Shaper Bucket Capacity Configuration
	35.13.2	Port Shaper Bucket Threshold Configuration
	35.13.3	Port Shaper Enable
	35.13.4	Port Shaper Rate Configuration
	35.13.5	Prio Shaper Bucket Capacity Configuration
	35.13.6	Prio Shaper Bucket Threshold Configuration
	35.13.7	Prio Shaper Enable
	35.13.8	Prio Shaper Rate Configuration
	35.13.9	Queue Shaper Bucket Capacity Configuration
	35.13.10	Queue Shaper Bucket Threshold Configuration
	35.13.11	Queue Shaper Enable
	35.13.12	Queue Shaper Rate Configuration
35.14		ffer Memory
	35.14.1	Buffer Free
	35.14.2	Egress Port Depth
	35.14.3	Egress Queue Depth
	35.14.4	Minimum Buffer Free
	35.14.5	Packet Buffer Status
35.15		ACL
	35.15.1	Egress Configurable ACL Match Counter
	35.15.2	Ingress Configurable ACL Match Counter
35.16		Debug
55.10	35.16.1	Debug EPP Counter
	35.16.2	Debug IPP Counter
	35.16.3	EPP PM Drop
	35.16.4	IPP PM Drop
	35.10. +	DS Error Counter

	35.16.6	SP Overflow Drop
35.17	Statistics:	EPP Egress Port Drop
	35.17.1	Egress Port Disabled Drop
	35.17.2	Egress Port Filtering Drop
	35.17.3	Tunnel Exit Too Small Packet Modification To Small Drop 420
	35.17.4	Unknown Egress Drop
35 10		IPP Egress Port Drop
33.10	35.18.1	
		0 th
	35.18.2	Ingress-Egress Packet Filtering Drop
	35.18.3	L2 Action Table Per Port Drop
	35.18.4	MBSC Drop
	35.18.5	Queue Off Drop
35.19		IPP Ingress Port Drop
	35.19.1	AH Decoder Drop
	35.19.2	ARP Decoder Drop
	35.19.3	BOOTP and DHCP Decoder Drop 423
	35.19.4	CAPWAP Decoder Drop
	35.19.5	DNS Decoder Drop
	35.19.6	ESP Decoder Drop
	35.19.7	Egress Configurable ACL Drop
	35.19.8	Empty Mask Drop
	35.19.9	Expired TTL Drop
	35.19.10	GRE Decoder Drop
	35.19.11	IEEE 802.1X and EAPOL Decoder Drop
		·
	35.19.12	IKE Decoder Drop
	35.19.13	IP Checksum Drop
	35.19.14	Ingress Configurable ACL Drop
	35.19.15	Ingress Packet Filtering Drop
	35.19.16	Ingress Spanning Tree Drop: Blocking
	35.19.17	Ingress Spanning Tree Drop: Learning
	35.19.18	Ingress Spanning Tree Drop: Listen
	35.19.19	Invalid Routing Protocol Drop
	35.19.20	L2 Action Table Drop
	35.19.21	L2 Action Table Port Move Drop
	35.19.22	L2 Action Table Special Packet Type Drop
	35.19.23	L2 IEEE 1588 Decoder Drop
	35.19.24	L2 Lookup Drop
	35.19.25	L2 Reserved Multicast Address Drop
	35.19.26	L3 Lookup Drop
	35.19.27	L4 IEEE 1588 Decoder Drop
		•
	35.19.28	LACP Decoder Drop
	35.19.29	Learning Packet Drop
	35.19.30	Maximum Allowed VLAN Drop
	35.19.31	Minimum Allowed VLAN Drop
	35.19.32	NAT Action Table Drop
	35.19.33	RARP Decoder Drop
	35.19.34	Reserved MAC DA Drop
	35.19.35	Reserved MAC SA Drop
	35.19.36	SCTP Decoder Drop 434
	35.19.37	Second Tunnel Exit Drop
	35.19.38	Source Port Default ACL Action Drop
	35.19.39	Tunnel Exit Miss Action Drop
	35.19.40	Tunnel Exit Too Small Packet Modification Drop
	35.19.41	Unknown Ingress Drop
	35.19.42	VLAN Member Drop
35 30		IPP Ingress Port Receive
55.20	Statistics: 25 20 1	IP Multicast ACL Drop Counter

	35.20.2	IP Multicast Received Counter	437
	35.20.3	IP Multicast Routed Counter	437
	35.20.4	IP Unicast Received Counter	438
	35.20.5	IP Unicast Routed Counter	438
35.21	Statistics:	Misc	439
	35.21.1	Buffer Overflow Drop	439
	35.21.2	Drain Port Drop	439
	35.21.3	Egress Resource Manager Drop	439
	35.21.4	Flow Classification And Metering Drop	
	35.21.5	IPP Empty Destination Drop	
	35.21.6	Ingress Resource Manager Drop	
	35.21.7	MAC RX Broken Packets	
	35.21.8	MAC RX Long Packet Drop	441
	35.21.9	MAC RX Short Packet Drop	
	35.21.10	Re-queue Overflow Drop	
35.22	Statistics:	NAT	
	35.22.1	Egress NAT Hit Status	
	35.22.2	Ingress NAT Hit Status	
35.23	Statistics:	Packet Datapath	
	35.23.1	EPP Packet Head Counter	
	35.23.2	EPP Packet Tail Counter	
	35.23.3	IPP Packet Head Counter	443
	35.23.4	IPP Packet Tail Counter	444
	35.23.5	MAC Interface Counters For RX	444
	35.23.6	MAC Interface Counters For TX	444
	35.23.7	PB Packet Head Counter	445
	35.23.8	PB Packet Tail Counter	445
	35.23.9	PS Packet Head Counter	445
	35.23.10	PS Packet Tail Counter	446
35.24	Statistics:	Routing	446
	35.24.1	Next Hop Hit Status	446
	35.24.2	Received Packets on Ingress VRF	446
	35.24.3	Transmitted Packets on Egress VRF	447
35.25	Statistics:	· · · · · · · · · · · · · · · · · · ·	
	35.25.1	SMON Set 0 Byte Counter	447
	35.25.2	SMON Set 0 Packet Counter	
	35.25.3	SMON Set 1 Byte Counter	448
	35.25.4	SMON Set 1 Packet Counter	448
	35.25.5	SMON Set 2 Byte Counter	448
	35.25.6	SMON Set 2 Packet Counter	449
	35.25.7	SMON Set 3 Byte Counter	449
	35.25.8	SMON Set 3 Packet Counter	449
Index			451

List of Figures

1.1	Switch Core Overview	 	 1
4.1	Jitter Overview	 	 3

5.1	VLAN Packet Operations	39
6.1	L2 Lookup Overview	47
17.1	D-left Function	120
	Learning and Aging Engine	125 128
20.1	General Token Bucket Illustration	133
	Egress Queue Selection Diagram	136 140
22.1	Packet Initial Color Selection Diagram	144
23.1	MMP pointer Selection Diagram	148
26.1	Buffer memory congestion zones	157
27.1	The buffer memory is partitioned into Reserved and FFA areas. The unallocated area is the space set aside for the currently incoming packets	161
29.1	Location of Statistics Counters	169
	Packet from CPU with CPU tag	174 175
31.2 31.3	Core Initialization	184 187 187 188
34.1	Timing diagram for a single ported memory used in the dual ported memory wrapper. In this case a concurrent read and write to the same address of a memory wrapper set for one cycle latency and with the write through attribute set.	208
35.1	Address space usage by tables	220
.is	t of Tables	
1.1	Port Numbering Table	24
8.1	Tunnel Entry Unicast or Multicast	59
13.2 13.3	PTP Header Format . PTP over 802.3 Ethernet . PTP over UDP/IPv4 . PTP over UDP/IPv6 .	71 72 72 72
	Ingress ACL Engine Settings	77 70

14.5 Hash Key Example for Simple L2 ACL	9
14.6 Hash Key Example for L3 IPv4 ACL	9
14.7 Hash Key Example for L4 ACL	
14.8 Hash Key Example for Ingress NAT Entry	
14.11Hash Key Example for Outer VLAN ID	
14.12Hash Key Example for Destiantion MAC Address and Outer LAN VID	3
14.13Hash Key Example for Simple L2 ACL	
14.14Hash Key Example for L3 IPv4 ACL	3
14.15Hash Key Example for L4 ACL	
14.16Hash Key Example for Openflow Entry	4
14.17Hash Key Example for Ingress NAT Entry	4
14.20Hash Key Example for Ethernet Type	6
14.21Hash Key Example for Destiantion MAC Address and Outer LAN VID	6
14.22Hash Key Example for Simple L2 ACL	7
14.23Hash Key Example for L3 IPv4 ACL	7
14.24Hash Key Example for L4 ACL	7
14.25Hash Key Example for Openflow Entry	7
14.26Hash Key Example for Ingress NAT Entry	8
14.28Hash Key Example for Ethernet Type	9
14.29Hash Key Example for Exception ACL	9
14.30 Actions that will take effect if one or more is set	0
14.31The lowest numbered takes effect if no priority else the highest numbered with priority set. 9	1
14.32Egress ACL Engine Settings	1
14.33Fields used in the rule search	2
14.35Hash Key Example for MAC DA	4
14.36Hash Key Example for Simple L2 ACL	4
14.37Hash Key Example for L3 IPv4 ACL	4
14.38Hash Key Example for L4 ACL	5
14.39Hash Key Example for Egress NAT Entry	
14.40Hash Key Example for IPsec Encryption Entry	
14.41Hash Key Example for MACsec Encryption Entry	
14.43Hash Key Example for TOS Byte	
14.44Hash Key Example for Simple L2 ACL	
14.45Hash Key Example for L3 IPv4 ACL	
14.46Hash Key Example for L4 ACL	
14.47Hash Key Example for Egress NAT Entry	
14.48Hash Key Example for IPsec Encryption Entry	
14.49Hash Key Example for MACsec Encryption Entry	
14.50 Actions that will take effect if one or more is set	
14.51The lowest numbered takes effect if no priority else the highest numbered with priority set. 10	-
14.51 The lowest numbered takes effect if no phonty else the flightest numbered with phonty set.	٠
18.1 Hardware Aging Operations	7
18.2 Learning Header	8
22.1 Code for Colors	3
$23.1 \ \ Rate \ Configuration \ Example \ \big(Assume \ tickFreqList = [1MHz, \ 100KHz, \ 10KHz, \ 1KHz, \ 100Hz]\big) 14 \\ 14 \ 100KHz \ 100KHz \ 100KHz \ 100KHz \ 100KHz \\ 100KHz \ 100KHz \ 100KHz \ 100KHz \ 100KHz \ 100KHz \\ 100KHz \ 100KHz \ 100KHz \ 100KHz \ 100KHz \ 100KHz \\ 100KHz \ 100KHz \\ 100KHz \ 100KHz \\ 100KHz \ 100KHz \\ 100KHz \ \mathsf$	9
00.1.6	_
29.1 Sequence of Statistics Counters	ŏ
30.1 From CPU tag format	2
30.2 To CPU Header	
30.3 Packet Type Table	
30.4 Reason for packet sent to CPU	
30.4 Neason for packet sent to CFO	T
31.1 Clock and Reset interfaces	4
31.2 Packet RX interface for ports 0 and 1. N is the ingress interface number	
31.3 Packet TX interface for ports 0 and 1. N is the egress interface number	

31.4 Packet RX interface for ports 2-10. \mathbf{N} is the ingress interface number	187
31.5 Packet TX interface for ports 2-10. N is the egress interface number.	188
31.6 The APB interface signals	189
31.7 Interrupt interface	190
31.8 ThePFC status and External Pause interfaces, where ${f N}$ is the packet interface number :	191
31.9 The Debug Read interface	191
31.10Debug Selection Map	196
31.11The Debug Write interface	196
33.1 IPP Debug List	
 34.1 The settings for pipeline flops between floorplan blocks 34.2 The settings for input and output flops for the floorplan blocks 34.3 The memory macros needed for this core. Types: dp=two ports, one read and one write, running on the same clock. dc=two ports, one read and one write, with separate clocks for 	
read and write.	207

Chapter 1

Overview

This L2/L3 Ethernet Switching/Routing Core offers full wire-speed on all 11 ports. Each port has 8 egress queues which are controlled by a multi-level scheduler.

The core is built around a shared buffer memory architecture capable of simultaneous wire-speed switching on all ports without head of line blocking. Packets are stored in the shared buffer memory as fixed size cells of 192 bytes. In total the buffer memory has a capacity of 1024 cells.

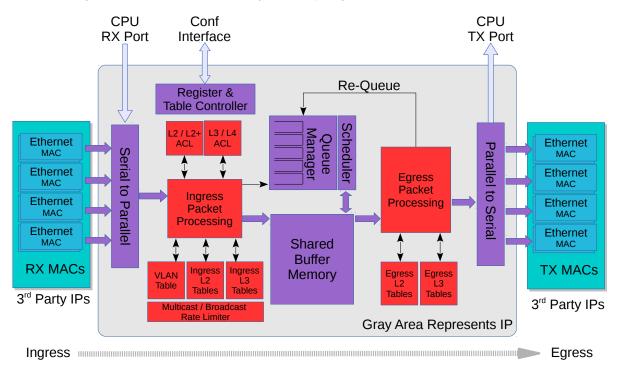


Figure 1.1: Switch Core Overview

Configuring tables and registers are done through a Configuration interface. However it is not required to perform any configuration. The core is ready to receive and forward Ethernet frames once the reset sequence has been completed.

1.1 Feature Overview

- 9 ports of 10 Gigabit Ethernet.
- 2 ports of 25 Gigabit Ethernet.
- Full wire-speed on all ports and all Ethernet frame sizes.
- Store and forward shared memory architecture.
- Support for jumbo packets up to 32739 bytes.
- Passes maximum overlap mesh test (RFC2899) excluding the CPU port, for all packet sizes up to 1601 bytes.
- Queue management operations:
 - Disable scheduling of packets on a port.
 - Disable queuing new packets to a port.
 - Allow a port to be drained without sending out packets.
 - Allow checking if a port is empty or not.
- Input and output mirroring.
- 4 source MAC address ranges with a number of different actions.
- 4 destination MAC address ranges with a number of different actions.
- 4,096 entry L2 MAC table, hash based 4-way.
- 4,096 entry VLAN table.
- 32 entry synthesized CAM to solve hash collisions.
- 4 entries of the synthesized CAM are fully maskable.
- 64 entry L2 multicast table.
- Automatic aging and wire-speed learning of L2 addresses. Does not require any CPU/software intervention.
- Spanning tree support, ingress and egress checks.
- 16 multiple spanning trees, ingress and egress checks.
- Allows software to inject special packets which are used to write into MAC tables while hardware learning engine is running.
- Allows software to track which L2 MAC entries are being learned and port moved.
- Allows software to track which L2 MAC entries are being aged out.
- Egress VLAN translation table allowing unique VID-to-VID translation per egress port.
- VLAN priority tag can bypass VLAN processing and be popped on egress.
- MPLS forwarding with support for swap, push, pop and penultimate pop operations.
- 4 entry VRF table.
- 512 * 4 hash based L3 routing table.
- 16 entry L3 routing TCAM.
- 1,024 entry next hop table. Pointed to from the routing entries.
- 1,024 entry packet modification table used by the next hop table to determine how build 12 fields in a packet to find the next hop.
- Configurable ECMP support based on L3 protocol field,L3 Tos, and L4 SP/DP.

- ECMP supports with up to 64 paths.
- 2,048 number of Ingress Network Address Translation (NAT) entries.
- 1,024 number of Egress Network Address Translation (NAT) entries.
- 2504 entries of ingress classification / ACL Lookups. The classification / ACL keys are configurable for
 each source port and the fields are selected from a incoming packets L2, L3 or L4 fields. The selection
 is described in 14.2 The classification / ACL key can be up to 540 bits long. The classification /
 ACL lookup is based on a combination of hash and TCAM. The actions which can be done is listed
 below:
 - Multiple actions can be assigned to each result. All results can be done in parallel if the user so wishes.
 - Result action can be to drop a packet.
 - Result action can be to send a packet to the CPU port.
 - Result action can be to send a packet to a specific port.
 - Result action can be to update a counter. There are 64 counters which can be used by the classification / ACL engine.
 - Result action can be to force packet to a specific queue on a egress port.
 - Result action can be to assign a meter/market/policer to measure the packet bandwidth.
 - Result action can be to assign a color to the packet which is used by the meter/marker/policer.
 - Result action can be to force the packet to use a specific VID when doing the VLAN table lookup.
 - Result action can be to do a input mirror on a packet.
 - Result action can be to not allow the packet to be learned in L2 MAC table.
- The ingress configurable classification / ACL engine can use the type and code fields from ICMP frames.
- The ingress configurable classification / ACL engine can use the fields, including the group address, from IGMP frames.
- 1312 entries of egress classification / ACL rules. The classification / ACL keys are configurable based on what forwarding actions has been done and the fields are selected from the incoming packets L2, L3 or L4 fields and from forwarding results. The selection is described in 14.4 The ACL key can be up to 540 bits long. For each field there are options to only select part of the bits in a field. The ACL lookup is based on a combination of hash and TCAM. The actions are listed below:
 - Multiple actions can be assigned to each result. All results can be done in parallel if the user so wishes.
 - Result action can be to drop a packet.
 - Result action can be to send a packet to the CPU port.
 - Result action can be to send a packet to a different port than ingress forwarding has decided.
 - Result action can be to update a counter. There are 64 counters which can be used by the classification / ACL engine.
- The egress configurable classification / ACL engine can use the type and code fields from ICMP frames.
- The egress configurable classification / ACL engine can use the fields, including the group address, from IGMP frames.
- 1572864 bits shared packet buffer memory for all ports divided into 1024 cells each of 192 bytes size
- 8 priority queues per egress port.

- Configurable mapping of egress queue from IP TOS, MPLS exp/tc or VLAN PCP bits.
- 32 ingress admission control entries.
- Deficit Weighted Round Robin Scheduler.
- Bandwidth shapers per port.
- Individual bandwidth shapers for each priority on each port.
- Individual bandwidth shapers for each queue on each port.
- Egress queue resource limiter/guarantee with four sets of configurations.
- Configuration interface for accessing configuration and status registers/tables.
- Multicast/Broadcast storm control with separate token buckets for flooding, broadcast and multicast packets.
- Multicast/Broadcast storm control is either packet or byte-based, configurable per egress port.
- LLDP frames can optionally be sent to the CPU.
- IEEE 1588 / PTP support for 1-step and 2-step Ordinary Clock mode. The switch supports transfer of 8 byte timestamp from receive MAC to software and form software to transmit MAC.
- The packets which are sent to the CPU can contain extra sw-defined "meta-data" which software sets up. Meta-data is 2 bytes and can come from a number of different tables.
- Wirespeed tunnel exit and tunnel entry. No looping of packets is needed.
- Tunnel unit for both tunnel entry and tunnel exit. Tunnel exit can be done in the beginning of the packet processing or after normal L2, L3, ACL lookups. The tunnel exit can be done on known fields or by looking up bytes anywhere in the first cell of the packet. Tunnel entry can be done as a result from the normal L2,L3, ACL processing.
- The tunnel exit allows packet headers/bytes to removed and certain information to be copied from the original packet to new tunnel exited packet. Once a tunnel exit has been done the new tunnel exited packet will be processed as normal packet at wirespeed.
- The tunnel entry allows packet headers/bytes to be added and certain information from the previous packet to be copied to the new tunnel headers. The tunnel entry is reached from normal L2,L3 and ACL processing and happens just before the packet is sent out allowing the inner packet to do full switching and routing.

A Packets Way Through The Core

This section describes the path of a packet through the core from reception to transmission, i.e from the RX MAC bus to the TX MAC bus. See Figure 1.1.

- 1. A packet is received on the RX MAC bus with a start of packet signal.
- 2. Ingress port counters are updated.
- The asynchronous ingress FIFO synchronizes the incoming data from the data rate of the MAC clock to the data rate of the core clock.
- 4. The serial to parallel converter accumulates 192 bytes to build a cell, and the cell is sent to ingress processing, if a packet consists of more than 192 bytes then a new cell is built. This is repeated until the *end of packet* signal is asserted.
- 5. Ingress processing (see chapter 3.1) determines the destination port (or ports) and egress queue of the packet. It then decides whether the packet shall be queued or dropped. Many different tables and registers are used in the process to determine the final portmask and final egress queue for the packet.
- 6. If the packet matches a certain traffic type whose bandwidth is monitored by the core, it will be pointed to one of the 32 meter-marker-droppers to do the rate measurement. The result may drop the packet or change the packet color.
- 7. Packets are never modified before they are written into the buffer memory. Rather an ingress to egress header (I2E header) is appended to the packet. Any modifications are done in the egress packet processing pipeline, based on the I2E header.
- 8. Unless the packet is dropped, the packet is written cell-by-cell into the buffer memory with the I2E header appended.
- 9. The buffer memory has enough read and write performance for any traffic scenario and will never cause head of line blocking due to read / write conflicts.
- 10. Once the entire packet is written to buffer memory, it is placed in one or more egress queues and made available to the egress scheduler.
- 11. Each queue is a linked list of pointers to the first cell in each packet linked to the queue. Each egress queue can link all the packets in the buffer memory even if the buffer memory is filled with only minimum size packets.
- 12. Counters of the number of cells per ingress port, per ingress port priority, per egress port and egress port queue are updated according to where the packet is sent.
- 13. A port with packets available for transmission, will only transmit a new packet if the port shaper allows it to.
- 14. When an instance of the packet is selected for output by the egress scheduler, the queue manager will read the packet from the buffer memory and send it, cell-by-cell to the egress packet processing.
- 15. Egress processing (see chapter 3.2) determines how and if the packet shall be sent out and does the final modifications of the packet. A packet can be re-queued again if it shall be sent out multiple times, which could be the case if input/output mirroring is used. L3 multicast may also re-queue a packet multiple times to the same port.
- 16. Once the packet is no longer part of any egress queue, the cells it occupied in the buffer memory are deallocated so they can be used by other packets.
- 17. The parallel to serial converter divides the cell into MAC-bus sized chunks.
- 18. One asynchronous FIFO per egress port synchronizes the outgoing data from the core clock to the MAC clock.
- 19. Data is transmitted on the output port.

20. Egress port counters are updated.

1.2 Port Numbering Table

Table 1.1 shows the port numbering. Port 10 can serve as a CPU port.

Interface Number	BW	Clock	Clock Frequency	Sync With Core Clock	Port Number & Multicast Table Bit	CPU Port
0	25.0Gbit/s	clk_mac_rx/tx_0	195.31MHz	No	0	No
1	25.0Gbit/s	clk_mac_rx/tx_1	195.31MHz	No	1	No
2	10.0Gbit/s	clk_mac_rx/tx_2	312.50MHz	No	2	No
3	10.0Gbit/s	clk_mac_rx/tx_3	312.50MHz	No	3	No
4	10.0Gbit/s	clk_mac_rx/tx_4	312.50MHz	No	4	No
5	10.0Gbit/s	clk_mac_rx/tx_5	312.50MHz	No	5	No
6	10.0Gbit/s	clk_mac_rx/tx_6	312.50MHz	No	6	No
7	10.0Gbit/s	clk_mac_rx/tx_7	312.50MHz	No	7	No
8	10.0Gbit/s	clk_mac_rx/tx_8	312.50MHz	No	8	No
9	10.0Gbit/s	clk_mac_rx/tx_9	312.50MHz	No	9	No
10	10.0Gbit/s	clk_mac_rx/tx_10	312.50MHz	No	10	Yes

Table 1.1: Port Numbering Table

Chapter 2

Packet Decoder

The packet decoder identifies protocols and extracts information to be used in the packet processing.

2.1 Decoding Sequence

In the following diagram the decoding of the incoming packet header is described. The comparison used to determine protocol types are described as well as the order they are decoded. The end of decoding process is denote by an X.

```
[ Timestamp ] |
   +----+
   +-->[ MAC DA == BPDU ]---+
+-->[ MAC DA == SSTP ]---+
   +-->[ MAC DA == cpuMacAddr ]---+
   +-->[ MAC DA == other ]---+
   +-->[ MAC DA == LLDP.mac1/2/3]---+
   +-->[ MAC DA == LACP.mac ]---+
   +----+
[ MAC SA ]
   +----[ Etype <= 1500 ]----+
[ Etype>1500 ] [ LLC = [dsap==0xAA,ssap==0xAA,ctrl==0x03] ]
            [SNAP = [oui==0x0000000 || oui==0x00000F8]]
                      True False
                      "SNAP LLC Decoding Options" Register)
   +---[ EType==fromCpu
   | [ 17 byte CPU tag ]----+
```

```
0,1,2 VLAN tags
    +---[ EType==C-/S-VLAN TPID ]-+
    [ 2 byte VLAN TCI ]
    +----[ Etype <= 1500 ]----+
[ Etype>1500 ] [ LLC = [dsap==0xAA, ssap==0xAA, ctrl==0x03] ]
               [ SNAP = [oui==0x0000000 || oui==0x0000F8] ]
                           True False
                          +--> X (Option to send-to-cpu in
                                        "SNAP LLC Decoding Options" Register)
         +-->[ EType==LLDP.eth]--> X
    +-->[ EType==IEEE_1722_AVTP.eth]--> X
    +-->[ EType==ARP.eth]--> X
    +-->[ EType==RARP.eth]--> X
    +-->[ EType==ieee1588EthType.eth]--> X
    +-->[ EType==ieee8021xEthType.eth]--> X
    +-->[ EType==PTP]--> X
    +---[ EType==MPLS ]
    | [ MPLS tag 1 ]--+
      [ MPLS tag 2 ]--+
       [ MPLS tag 3 ]--+
       [ MPLS tag 4 ]--+
      +->[ nibble==IPv4 ]--> X
      +->[ nibble==IPv6 ]--> X
       +->[ nibble==unknown ]--> X
    +-->[ EType==unknown ]--> X
    +-->[ EType==PPPoE ]
    | [ PPPoE header ]
         +-->[ EType!=IPv6 or EType !=IPv4 ]--> X
          +-->[ EType==IPv6 ]----+
          +-->[ EType==IPv4 ]
    +-->[ EType==IPv6 ]-----+
                        +-->[ EType==IPv4 ]----+
                        v v
               [ IPv4 Header ] [ IPv6 Header ]
                                +-->[ Routing Header]
                                    +-->[type == unknown ]
                                          +-->[segments left > 0 ]--> X
                                     | +-->[segments left ==0 ]--+
```

C

```
+-->[type == SRH
                 Ι
+-->[ TCP Header
                                   ]--> X
+--> [ L4Proto == ahHeader.14Proto
                                 1--> X
+-->[ L4Proto == espHeader.14Proto ]--> X
                                  1--> X
+-->[ L4Proto == gre.14Proto
                                  ]--> X
+-->[ L4Proto == sctp.14Proto
+-->[ IGMP Header
                                  1--> X
+-->[ ICMP Header
                                  1--> X
+-->[ UDP Header
+-->[ UDP Dest Port == bootp.udp1/udp2 ] --> X
+-->[ UDP Dest Port == ike.udp1/udp2
+-->[ UDP Dest Port == capwap.udp1/udp2 ] --> X
+-->[ UDP Dest Port == gre.udp1/udp2 ] --> X
+-->[ UDP Dest Port == Unknown
```

The packet decoding is done according to the figure above. The packet decoding steps are described below.

- 1. A packet arrives at the ingress packet processing pipeline.
- 2. The destination MAC address is extracted and compared.
 - (a) If the address matches the BPDU multicast address (01:80:C2:00:00:00) the packet can be sent to the CPU if enabled in **Send to CPU**. There is no decoding done apart from the MAC address comparison. BPDU frames are usually 802.3 encapsulated with a 802.2 LLC header. This decoding is not done by the switch. Note that packets that match the LLDP criteria described below will not be considered BPDU packets.
 - (b) If the address matches the SSTP (Shared Spanning Tree Protocol) multicast address (01:00:0C:CC:CC:CD) the packet can be sent to the CPU if enabled in **Send to CPU**. There is no decoding done apart from the MAC address comparison.
 - (c) If the address matches the configurable **cpuMacAddr** and this feature is enabled then the packet will be sent to the CPU port.
 - (d) If the address matches one of the mac1/mac2/mac3 addresses in the **LLDP Configuration** the packet will subject to further LLDP decoding.
 - (e) If the DA MAC is equal to the register LACP Packet Decoder Options field mac then the field source port bit in the toCpu determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field drop determines if the packet shall be dropped.
- 3. The source MAC address is extracted from the packet.
- 4. The Ethernet type is extracted from the packet and is then compared to known types.
 - (a) LLC SNAP

 If the Ethernet Type is smaller than 1500 then a packet is considered a LLC/SNAP packet.

 These can be located both before and after the VLAN headers. If the LLC/SNAP is not equal LLC != (dsap==0xAA,ssap==0xAA,ctrl==0x03) or SNAP != (oui==0x0000000 ——

(

oui==0x0000F8) then there exists a option to send the packet to the CPU in register **SNAP LLC Decoding Options**. If not sent to the CPU the decoding will stop here.

(b) LLDP

If the MAC DA address is equal to any of the **LLDP Configuration** mac1/mac2/mac3 addresses and the Ethernet Type is equal to the register **LLDP Configuration** field **eth** then the field **portmask** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. Default is to forward LLDP frames to the CPU port. A packet that matches the LLDP critera will not be considered a BPDU packet even if it matches the BPDU multicast address.

(c) ARP

If the Ethernet Type field is equal to the ARP Packet Decoder Options field eth then the field source port bit in the toCpu determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field drop determines if the packet shall be dropped.

(d) RARP

If the Ethernet Type field is equal to the register RARP Packet Decoder Options field eth then the field source port bit in the toCpu determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field drop determines if the packet shall be dropped.

(e) 802.1X and EAPOL Packets

If the Ethernet Type field is equal to register IEEE 802.1X and EAPOL Packet Decoder Options field eth then the field source port bit in the toCpu determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field drop determines if the packet shall be dropped. The drop counter is located in IEEE 802.1X and EAPOL Decoder Drop.

(f) IEEE 1588 L2 Ethernet Type

If the Ethernet Type field is equal to register **IEEE 1588 L2 Packet Decoder Options** field **eth** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

(g) PTP

When identified as a PTP/1588 packet by the EtherType and if the packet is sent to the CPU with a To CPU Tag then the ptp bit will be set.

(h) VLAN Tags

There are a number of fixed VLAN types that are identified as well as configurable types. The VLAN processing will use the VLAN tags that decoding has identified and ignore intermediate tags of other types.

- i. Customer VLAN Type 0x8100
- ii. Service VLAN Tag 0x88A8
- iii. Configurable VLAN Type setup Ingress Ethernet Type for VLAN tag.

When using the Configurable Customer/Service VLAN Type the egress pipeline needs to be setup with the same values if there are actions configured that pushes new VLAN tags to the packet. This is setup in register **Egress Ethernet Type for VLAN tag**.

(i) MPLS.

One MPLS tag is decoded. No other L3 decoding will be done after this.

(j) From CPU Tags

Packets from CPU will use a Ethernet type value of 0x9988. The From CPU Tag is further described in Chapter 30.

(k) IPv4 or IPv6.

If the type identifies these protocols (potentially also after a PPPoE header) the following IPv4

or IPv6 headers are decoded. IPv4 packet with wrong header checksum can be accepted or dropped according to the **Check IPv4 Header Checksum** register. If the L4 protocol is TCP or UDP these headers are also decoded.

(I) Routing Header.

If a routing header is identified in IPv6, the L4 protocol is decoded from the routing header. The core supports further process for the segment routing header, for other routing types the core will skip the routing header if the segments left field is 0, otherwise the packet will be treated as unrecognized and sent to the CPU.

(m) L4 Protocol.

If the packet is either a IPv4 or IPv6 and if the L4 protocol is either UDP or TCP then the source port and destination port fields will be extracted.

i. ICMP header

The ICMP type along with the code extracted.

ii. IGMP header

The IGMP type along with the code and IPv4 group address is extracted.

iii. AH Header

If the next protocol field in IPv4 or IPv6 is equal to the register **AH Header Packet Decoder Options** field **I4Proto** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

iv. ESP Header

If the next protocol field in IPv4 or IPv6 is equal to the register **ESP Header Packet Decoder Options** field **I4Proto** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

v. GRE

If the next protocol field in IPv4 or IPv6 is equal to the register **GRE Packet Decoder Options** field **I4Proto** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

vi. SCTP

If the next protocol field in IPv4 or IPv6 is equal to the register SCTP Packet Decoder Options field I4Proto then the field source port bit in the toCpu determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field drop determines if the packet shall be dropped.

(n) UDP or TCP Source or Destination Port Checks

i. GRF

If the Destination Port in UDP is equal to the **GRE Packet Decoder Options** field **udp1** or field **udp2** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

ii. DNS

If the Destination Port in UDP or TCP is equal to the **DNS Packet Decoder Options** field **I4Port** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

iii. BOOTP or DHCP

If the Destination Port in UDP is equal to the register **BOOTP** and **DHCP** Packet **Decoder Options** field **udp1** or field **udp2** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

iv. CAPWAP

If the Destination Port in UDP is equal to the register **CAPWAP Packet Decoder Options** field **udp1** or field **udp2** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

v IKF

If the Destination Port in UDP is equal to the register **IKE Packet Decoder Options** field **udp1** or field **udp2** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

vi. IEEE 1588 L4

If the Destination Port, and IPv4 or IPv6 and the UDP is equal to the register **IEEE 1588 L4 Packet Decoder Options** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

(o) Unknown.

After an unknown Ethernet type no further decoding is done.

Chapter 3

Packet Processing

3.1 Ingress Packet Processing

The ingress packet processing is done as soon as the packet enters the switch. The packet is not sent to the buffer memory until the ingress packet processing is done.

- Source Port to Link Aggregate
 Source port is mapped to a link aggregate through the Link Aggregation Membership table. From this point all references to source ports are actually link aggregate numbers. For details see the Link Aggregation chapter.
- Packet Decoding for Tunnel Exit Lookup
 The packet headers are decoded and data extracted. For details see the Packet Decoder For Tunnel Exit section in the tunneling chapter.
- 3. Tunnel Exit Lookup

The packet is subjected to a tunnel exit lookup which if found true can remove a part of the packets headers and/or payload of the packet. Certain fields from the original packet can also be copied to the inner packet. Once this has been done the packet processing will be only done on the inner packet. For details see the **Tunnel Exit** section.

- 4. Packet Decoding
 - The packet headers are decoded and data extracted. For details see the Packet Decoding chapter.
- Destination MAC Address Range Classification
 The destination MAC address is compared with Reserved Destination MAC Address Range table to determine if it should be dropped, sent to CPU or if priority should be forced.
- Source MAC Address Range Classification
 The destination MAC address is compared with Reserved Source MAC Address Range table to determine if it should be dropped, sent to CPU or if priority should be forced.
- 7. SMON
 - If the packets source port and the VID for the outermost VLAN matches an SMON counter then that counter will be updated (see the **Statistics** chapter).
- 8. Ingress Port Packet Type Filter
 The ingress packet type filter, setup through Ingress Port Packet Type Filter per source port, determines if the packet will be dropped or be processed further. This is based on protocol type and type of VLAN. See the VLAN and Packet Type Filtering chapter.
- 9. Configurable ACL

The incoming packet is classified on a configurable selection of L2, L3 and L4 fields. The ACL lookup is a d-left hash search, described in Dleft Lookup. There are numerous actions that can be applied when a packet matches an ACL entry. For details see the **Configurable ACL Engine** section.

10. Ingress Spanning Tree

The ingress spanning tree state of the source port (from the **Source Port Table**) is checked to determine if packet processing should continue. STP is further described in the **Spanning Tree** chapter.

11. Ingress VLAN Processing

VLAN processing consists of two parts. Determining the VLAN membership and performing VLAN header modifications.

The VLAN membership is determined from the assigned ingress VID. See the **Assignment of Ingress VID** section. This will then be used to index into the **VLAN Table** to determine, among other things, VLAN port membership, MSTP and Global ID used in L2 lookups.

12. Ingress MSTP

The VLAN membership determines which MSTP the packet belongs to by pointing into the **Ingress Multiple Spanning Tree State** table. The state of the source port within this MSTP is checked to determine if packet processing should continue. MSTP is further described in the **Spanning Tree** chapter.

13. IP Routing

The routing function figures out where to forward the packet by determining the Next Hop. For details on the routing function see the **Routing** chapter.

(a) Determine Next Hop

The routing function is entered if an IP packet matches the router ports MAC address (Router Port MAC Address) and routing is allowed on the packets VLAN. L2 lookup, learning and aging will not be performed on routed packets. The router will search for the IP destination address in the routing tables to determine the packets Next Hop, i.e. which port to send the packet to.

(b) VLAN Operations

The Next Hop will also determine up to two VLAN operations to perform on the routed packet.

14. IPv4 checksum check and drop.

For IPv4 packets calculate the checksum value and optionally drop the packet with wrong checksum value. For a routed IPv4 packet the check and drop is always performed.

15. L2 Switching

If the packet is not routed the destination MAC address is searched for in the L2 DA Hash Lookup Table. If the address is found the corresponding entry in the L2 Destination Table will return a single destination port or multiple egress ports (if the destination address points to a multicast entry). The status in the L2 Aging Table is also updated. If the destination address is not found then the packet will be flooded to all ports that are members of the packets VLAN. See chapter L2 Switching for details.

16. L2 Action Table Lookup

The L2 Action Table Lookups provides a extra level of controll over what shall be done with the L2 packets. It can be used to archive 802.1X compliance and be used to secure the switch. The functionality has a enable bit in the Source Port Table field enableL2ActionTable. Depending on the result from both the L2 SA Lookup, L2 DA Lookup and status on source port (I2ActionTablePortState) and destination port(s) L2 Action Table Egress Port State a address is formed to read out L2 Action Tables. The L2 Action Table is based on the packets destiantion ports, while L2 Action Table Source Port is based on the packets incoming source port. If the packet is going to no egress port (portmask==0) then none of the L2 Action Table actions will be done while the L2 Action Table Source Port is always carried out (When function is enabled).

17. Egress Spanning Tree

When the destination port(s) are known, the spanning tree state for the destination ports are checked in **Egress Spanning Tree State** register.

18. Egress MSTP

The MSPT state for the destination ports are checked in the Egress Multiple Spanning Tree State

register. The MSTP id, determined above, is used to index the table.

19. Learning Lookup

If the packet is not routed the source MAC address is searched in the L2 SA Hash Lookup Table. If the address is not found or it has moved to a different port then the Learning Engine will update the tables unless the packet was marked to be dropped. See the Learning and Aging chapter for details.

20. IP Statistics

Statistics of IP unicast, multicast and routed packets are updated.

21. Configurable Egress ACL

The Egress ACL can classify incoming packet based on a configurable selection of L2, L3 and L4 fields but also based on the result from switching and routing. The ACL lookup is a D-left hash search, described in Dleft Lookup. There are numerous actions that can be applied when a packet matches an ACL entry. For details see the **Configurable Egress ACL Engine** section.

22. Ingress/Egress Port Packet Type Filter

As the packet is ready to be queued, the **Ingress Egress Port Packet Type Filter** is applied for each egress port where the packet is to be queued. See chapter **VLAN and Packet Type Filtering**.

23. Link Aggregation

The destination ports are now mapped to physical ports using a hash function on the packet headers. The hash index selects which of the physical member ports of this link aggregate that the packet should be sent to. See the **Link Aggregation** chapter.

24. Multicast Broadcast Storm Control

Multicast packets that are destined for physical ports that have exceeded the MBSC limits will be dropped at this point. See chapter **Multicast Broadcast Storm Control**.

25. Input Mirroring

If the source port is setup to be input mirrored the mirror port is now added to the list of destination ports. A copy of the input packet, without modifications, will be transmitted on the selected mirror port.

26. Determine Egress Queue Priority

Egress queues are assigned to packets based on their L2/L3 protocols or classification results. See the **Determine Egress Queue Priority** section.

27. Packet Initial Coloring

Initial colors are assigned to packets based on their L2/L3 protocols or classification results to represent the drop precedence. See the **Ingress Packet Initial Coloring** section.

28. NAT Action Table Check

Certain processing bits, if the packet was routed, if the packet was switch, if the packet was flooded along with bits from ingress and egress ACL plus status bits from ports are looked up in the table **Egress Port NAT State**. This table can redirect packets to the CPU, Drop the packet or do nothing.

29. Queue Management

If queue management has turned off queuing to a port the packet will be dropped at this point. See section **Queue Management** for details.

30. Drop Statistics

If the preceding processing has not set any destination ports then the packet is dropped and the **Empty Mask Drop** counter is incremented.

31. Ingress Admission Control

Packets are grouped into traffic groups based on source port numbers and packet headers, and the bandwidth of each traffic group is measured. If a traffic group exceeds the configured bandwidth or burst size, the initial packet color can be remarked or the packet can be dropped. See the **Ingress Admission Control** section. While the groupping process is through sequence of ingress packet

processing steps, the metering process is after all other ingress packet processing are done and before the enqueuing of the packet.

3.2 Egress Packet Processing

After ingress packet processing the packet is stored in the packet buffer memory. The egress packet processing is done when the packet is scheduled for transmission. A single packet can be sent out in multiple copies, for example due to broadcast or mirroring. If the copies are not identical, or multiple copies should be transmitted on the same port, then the packet will be re-queued. This means that it will be re-inserted into the queue engine, where it will again be selected for output and passed once more through the egress packet processing.

1. Output Mirroring

If output mirroring is enabled for the egress port then the packet is re-queued, so that a copy of the outgoing packet will be transmitted on the output mirror destination port. See the **Mirroring** chapter.

2. IP Header Update

For routed packets the IP checksum is updated after TTL update, as setup in Egress Router Table.

3. Routed DA/SA MAC Update

For routed packets update the MAC addresses based on the Next Hop.

4. Egress Port VLAN

A VLAN header operation can be performed based on the physical output port. See the **VLAN Processing** chapter.

5. Egress Port Packet Type Filter

The egress packet type filter, setup through **Egress Port Configuration** per egress port, determines if the packet will be dropped or be allowed to be transmitted. See the **VLAN and Packet Type Filtering** chapter.

6. VRF Statistics

If the packet is routed it will be counted in **Transmitted Packets on Egress VRF** counter for the VRF it belongs to.

7. Egress VLAN Translation

Potentially replace the outgoing VID and Ethernet Type on a specific port with a specific VID. Uses a TCAM located in register **Egress VLAN Translation TCAM**.

8. Reassemble Packet Headers

Depending on if the packet shall entern a tunnel or not this can be the final step in the egress processing which is to reassembly the outgoing (potentially inner) packet header.

9. Tunnel Entry

Result from packet processing, both ingress and egress, can result in that a packet shall enter a tunnel. This tunnel is described as a number of bytes to be added to the packet at certain points. There also exists options which allows the outer packet to copy certain data from the inner packet (such as TOS byte, next header).

Chapter 4

Latency and Jitter

This chapter is meant as an introduction to the causes of latency and jitter in the core. It gives some numbers, but mostly points out the general principles.

The switch has a fixed minimal latency, the bulk of which comes from the ingress and egress packet processing, the store-and-forward operation, and the dataflow registers between design units.

4.1 Latency

The major contributors to latency:

- 1. The Serial to Parallel converter (SP) gathers the data chunks from the MAC into wider cells.
- 2. The IPP has a fixed latency of 24 core clock cycles.
- 3. The queue engine stores the entire packet in buffer memory before adding it to the queues.
- 4. The EPP has a fixed latency of 7 core clock cycles.
- 5. Packet modifications that decrease the packet size (for example removing a VLAN) will cause a packet to be delayed one scheduling slot for certain packet sizes.

4.2 Jitter

There are tree places (t1-t3) in the core where latency jitter can be introduced. See Figure 4.1 on page 36.

- t1 In the SP the ports are visited in a fixed order, thus introducing a jitter the size of the port visitation period. There is also an asyncronous FIFO between the port and the core clock regions, adding one clock period (of the slowest clock) of jitter.
- **t2** The egress scheduler visits the ports in a fixed order, introducing a jitter the size of the port visitation period.
- t3 The asyncronous FIFO between the core and port clock regions adds one core clock period (of the slowest clock) of jitter.

Note, though, that the core is dimensioned to handle even the worst case jitter without causing packet drops or increased IFG.

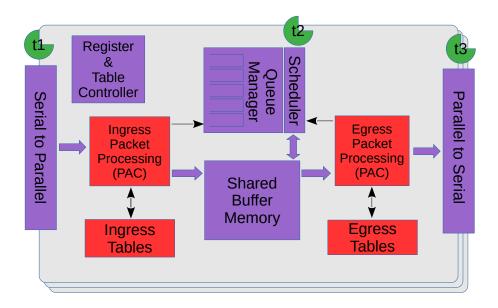


Figure 4.1: Jitter Overview

VLAN Processing

5.1 Assignment of Ingress VID

All packets entering the switch will be assigned an ingress VID even if the incoming packet doesn't have a VLAN header. This is the VID used to lookup in the **VLAN Table**.

The ingress VID assignment is processed in several steps. The initial assignment is controlled per source port by the **vlanAssignment** in the **Source Port Table** and then it can be updated in a number of ways ranging from L2 to L4 protocols.

5.1.1 VID Assignment from Packet Fields

Ingress VID can be assigned from certain packet fields, other than the packets incoming VID.

There exists a number of these field tables listed below:

- On the L2 MAC layer in Ingress VID MAC Range Search Data and its result table Ingress VID MAC Range Assignment Answer, the search data can be either on source MAC or destination MAC ranges.
- On the Outer VID in Ingress VID Outer VID Range Search Data and its result table Ingress VID Outer VID Range Assignment Answer. If the packet has no outer VID then this is skipped. There exists options if the packets VID shall be matched depending on if this is a S-tag or C-tag.
- On the Inner VID in Ingress VID Inner VID Range Search Data and its result table Ingress VID Inner VID Range Assignment Answer. If the packet has no inner VID then this is skipped. There exists options if the packets VID shall be matched depending on if this is a S-tag or C-tag.
- On the Ethernet Type which is following the innermost VLAN tag. The setup is in Ingress VID
 Ethernet Type Range Search Data and its result table Ingress VID Ethernet Type Range
 Assignment Answer.

VID Assignment Search Order

If there are matches in multiple tables then the "order" field determines which result to use. The result with the highest order value will be used. The search order within a table is not affected by the order field

The search is carried out as follows:

- 1. The MAC ranges, defined in Ingress VID MAC Range Search Data
- 2. The Outer VID ranges, defined in Ingress VID Outer VID Range Search Data
- 3. The Inner VID ranges, defined in Ingress VID Inner VID Range Search Data

4. The Ethernet Type ranges, defined in Ingress VID Ethernet Type Range Search Data

5.1.2 Force Ingress VID from Ingress Configurable ACL

The ACL engine has an option to override the ingress VID assigned above. If the forceVidValid field in the Ingress Configurable ACL N Small Table is set to 1, the corresponding forceVid field will be used as the new ingress VID value. The same applies to the Ingress Configurable ACL N Large Table and Ingress Configurable ACL N TCAM Answer tables. The detailed L2 ACL match and action are described in the Configurable ACL Engine section.

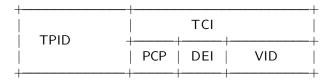
5.2 VLAN membership

All packets entering the switch will be member of a VLAN, either assigned from the incoming VLAN headers or through a default configuration described below.

The VLAN membership defines which ports that are part of a VLAN. Packets belonging to a VLAN can only enter on the ports that are member of the VLAN.

The L2 switching can only send out packet on the ports that are members of the VLAN, including broadcast, multicast and flooding. This limitation does not apply to routed packets.

The VLAN membership also assigns a global identifier (GID) to a packet which is used during L2 lookup to allow multiple VLANs to share the same L2 tables.


The VLAN membership also determines which multiple spanning tree (MSTP) a packet is part.

The egress queue priority can also be assigned from the VLAN membership (see chapter 21.1).

5.3 VLAN operations

There are a number of operations that can be performed on the packet's VLAN headers such as push/pop etc. Multiple operations can be performed in sequence such that the resulting VLAN header stack from one operation becomes the input to the following operation. However the content of the VLAN headers do not come from previous VLAN operations, they are always created from the original incoming packet or from tables.

For reference here is the 802.1Q VLAN header:

When referring to outermost and innermost VLAN header, outermost means the first VLAN header that the packet decoding has identified as a VLAN header. Innermost means the second VLAN header as identified by the packet decoder.

The VLAN operations that can be performed are:

- Pop The outermost VLAN header in the packet is removed.
- Push A new VLAN header is added to the packet before any previous VLANs. It will become the
 new outer VLAN. The selection of each of the VLAN fields such as TPID, VID, PCP and DEI/CFI
 are configurable. These fields can either come from existing VLAN headers in the original incoming
 packet or from tables.
- Swap/Replace The outermost VLAN header in the packet is replaced. The selection of each of the VLAN fields such as TPID, VID, PCP and DEI/CFI are configurable. These fields can either come from existing VLAN headers in the original incoming packet or from tables.

38

• Penultimate Pop - All VLAN headers (up to as many as supported by the packet decoder) are removed from the packet.

Figure 5.1 shows the effect of one of these operations on a packet.

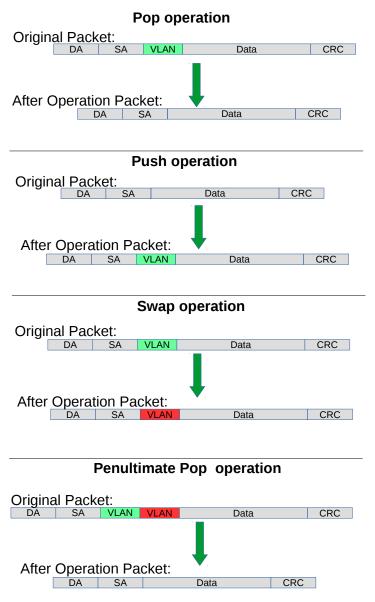


Figure 5.1: VLAN Packet Operations

5.3.1 Default VLAN Header

When a packet enters without a VLAN header an internal default VLAN header will be created. The internal header will have VID, CFI and PCP from **Source Port Table** fields **defaultVid**, **defaultCfiDei**, **defaultPcp**.

The default VLAN header is only used in VLAN operations that selects data from the VLAN packet header.

5.3.2 Source Port VLAN Operation

A VLAN operation to be performed (e.g. push, pop, swap) can be selected by the **vlanSingleOp** field in **Source Port Table**.

If the packet is routed this VLAN operation will not be performed.

5.3.3 Operation Based On Incoming Packets Number of VLANs

There exists a option which overrides the default **vlanSingleOp** field depending on the number of VLANs the packet has. This operation allows a user to set a specific operation depeding on the number of VLANs the incoming packet has. This VID operation then overrides the default VID operation. This operation is setup in field **nrVlansVidOperationIf**.

5.3.4 Configurable ACL VLAN Swap Operation

The Ingress Configurable ACL N Small Table , Ingress Configurable ACL N Large Table and Ingress Configurable ACL N TCAM Answer tables provides three fields updateVid, updatePcp and updateCfiDei to perform a VLAN swap operation. The VLAN type can also be changed using the updateEType. VLAN push and pop operations are not supported in this ACL.

If the packet is routed then the VLAN swap operation in the ACL will not be performed.

5.3.5 VLAN Table Operation

The **VLAN Table** defines the VLAN port membership, which GID (Global Identifier) to use in L2 lookups, the MSPT to use , if routing is allowed and a VLAN operation to be performed (e.g. push, pop or swap).

If the packet is routed then the VLAN operation from VLAN Table will not be performed.

5.3.6 VLAN Table VID Operation Based On the Packets Number of VLANs

There exists a option which overrides the default <code>vlanSingleOp</code> field depending on the number of VLANs the packet has. This operation allows a user to set a specific operation depeding on the number of VLANs the incoming packet has after the source port operation <code>push/pop/swap/penultmate</code> pop has been done. The VID operation then overrides the default VID operation specified in field <code>vlanSingleOp</code> and all its data fields. This operation is setup in field <code>nrVlansVidOperationIf</code>. This setting is done on a per port basis allowing each source port to have its own setting. Source port 0 is represented in bits [1:0] , Source port 1 is represented in bits [3:2] and so on.

5.3.7 Egress Port VLAN Operation

A VLAN operation to be performed (e.g. push, pop, swap) can be selected by the **vlanSingleOp** field in **Egress Port Configuration**.

A pop operation is done on packets that match a specific VID if **enablePriorityTag** is set in **Source Port Table**.

5.3.8 Egress Port VID Operation

Egress Port VID Operation provides an option to override the default **vlanSingleOp** depending on the number of VLANs the packet has and the ingress VID of the packet. Each entry of the **Egress Port VID Operation** register compares the egress port, ingress VID and VLAN tagging conditions and activate the corresponding VLAN operation from the first hit.

5.3.9 Egress Vlan Translation

This operation which is located in the egress path allows a replacement of the outermost VLAN Identifier in the packet. The egress port, the outermost VID of the packet after all VLAN operations and the outermost VID type (C or S tag) creates a lookup key to be used in a TCAM lookup located in **Egress VLAN Translation TCAM** which allows maskable bits for each entry..

5.3.10 Priority Tagged Packets

Priority tagged packets are packets that have a VLAN tag with VLAN ID equal to 0. The purpose of these are to extract the PCP bits and use as priority.

The priority extraction can be done as described in 21.1 Determine Egress Queue section.

The priority tag can be ignored in all VLAN processing and finally removed on the egress if **enablePriorityTag** is set in **Source Port Table**. Which VLAN ID that triggers this is configured in **priorityVid**

The priority extraction is not dependent on the **enablePriorityTag** setting.

5.3.11 Router VLAN Operations

- If a packet is routed then any VLAN headers in the incoming packet detected by the packet decoder will be removed on the egress.
- All other VLAN operations during ingress packet processing will not be done on routed packets.
- The routers next hop will point to the **Next Hop Packet Modifications** table which can specify up to two push VLAN operations to perform.
- The **Egress Port Configuration** VLAN operation is performed on routed packets after the VLAN operations specified in **Next Hop Packet Modifications**.

5.3.12 VLAN Operation Order

All VLAN operations are performed in sequence on a packet. They follow the order as:

- 1. One of the four VLAN operations from:
 - Source Port Table VLAN operation.
 - Inner VLAN push operation from routers **Next Hop Packet Modifications**.
- 2. One VLAN swap operation from:
 - updateVid, updatePcp, updateCfiDei or updateEType in the Configurable ACL Engine.
- 3. One of the four VLAN operations from:
 - VLAN Table VLAN operation.
 - Outer VLAN push operation from routers **Next Hop Packet Modifications**.
- 4. One of the four VLAN operations from:
 - Egress Port Configuration VLAN operation.

The input to the first VLAN operation is the incoming packet. The packet decoder identifies the position of the VLAN headers in the packet and this information is used for the subsequent VLAN operations.

The output from one VLAN operation is input to the next VLAN operation. For example if the first VLAN operation is a push and the second is a swap then the effect will be that the pushed header is replaced by the swap.

If a VLAN operation needs a VLAN header in the packet, i.e. a swap or a pop, and there is no VLAN header in the packet then the operation will not be performed.

5.3.13 VLAN Operation Examples

This process is first described informally with a few examples but to fully specify the behavior it is also described as pseudo code.

Here are examples of sequences of VLAN operations performed on packets with mixed VLANs and custom tags. The incoming packet headers, sequence of VLAN operations and outgoing packet header are briefly described.


```
'V1'...'V2' are VLAN tags in original packet
'new V1'..'new V2' are VLAN tags that have been created by the VLAN operations
Example 1)
incoming packet:
[DA][SA][V1]
VLAN operations: 1. swap new V1
outgoing packet:
[DA/SA] [new V1]
Example 2)
incoming packet:
[DA][SA][V1]
VLAN operations: 1. push new V1
outgoing packet:
[DA/SA] [new V1] [V1]
Example 3)
incoming packet:
[DA][SA][V1][V2]
VLAN operations: 1. push new V1
outgoing packet:
[DA/SA][new V1][V1][V2]
Example 4)
incoming packet:
[DA][SA][V1][V2]
VLAN operations: 1. pop
outgoing packet:
[DA/SA][V2]
Example 5)
incoming packet:
[DA] [SA] [V1] [V2]
VLAN operations: 1. pop
VLAN operations: 2. swap new V1
VLAN operations: 3. push new V2
outgoing packet:
```

5.3.14 VLAN Reassembly

[DA/SA][new V2][new V1]

The reassembly of the VLAN headers uses data from the packet decoding together with data from the VLAN operations to create the new packet headers.

The following is Python code that exactly models the reassembly operation. The process starts when the L3 and payload in the outgoing packet has been reassembled but before any VLAN or other L2 tags have been added.

The code uses the same incoming packet and VLAN operations as **Example 5)** in the previous section to illustrate the data structure.

```
# The design supports this number of VLAN tags in the ingress packet.
nr_of_ingress_vlans = 2
# Packet decoding results in a list of all VLAN tags from the ingress packet.
pkt_vlan_tags = [ 'V2', 'V1' ]
# Number of VLAN tags that will be used from the original packet. Before any
# VLAN operations this equals number of incoming VLANs, it could be decreased by
# swap or pop but can't be increased. When nr_of_new_vlans==0, pop or swap will
# decrement it. At any time popAll will set it to 0.
nr_of_pkt_vlans = 2
# Number of new VLAN tags to be used in the reassembly. Push and swap operations
# will increment this and at the same time the new VLAN to the end of new_vlans.
# popAll will set it to 0.
nr_of_new_vlans = 0
# New VLAN tags to be used in the reassembly.
new_vlans = []
# After all VLAN operation sequences: pop, swap new V1, push new V2, VLAN
reassembly collects needed information to get started.
nr_of_pkt_vlans = 0
nr_of_new_vlans = 2
pkt_vlan_tags = [ 'V2', 'V1' ]
new_vlan_tags = [ 'new V1', 'new V2']
# At the starting point of re-assembling the VLAN tags the egress packet contains the
# updated packet after the original tags, i.e. L3/L4/payload.
egress_pkt = ['payload']
# Reassemble the tags with updated VLANs.
while nr_of_pkt_vlans > 0: # Egress packet has VLAN tags from ingress
    # Pop inner most tag from pkt_vlan_tags and insert it first in the egress_pkt
    egress_pkt.insert(0,pkt_vlan_tags[0])
   pkt_vlan_tags = pkt_vlan_tags[1:]
   nr_of_pkt_vlans -= 1
while nr_of_new_vlans > 0: # Egress packet has new VLAN tags
    # Insert a new VLAN first in the egress_pkt from internal VLAN stack.
    egress_pkt.insert(0,new_vlan_tags[0])
   new_vlan_tags = new_vlan_tags[1:]
   nr_of_new_vlans -= 1
```

Now egress_pkt contains all updated VLAN headers and tags. After this new DA/SA
and other new tags like to_cpu_tag is added to get the final egress packet.

Switching

Most packets will be subjected to a L2 MAC destination address lookup to determine the destination egress port (or ports). These are the exceptions:

- Packet decoder determines that this protocol should be send to the CPU. See Packet Decoder chapter.
- A classification unit action dropped the packet, sent the packet to the CPU, or sent the packet to a specific egress port. See Classification chapter.
- The packet has a From CPU tag which allows the normal packet forwarding process to be bypassed.
 See Packet From CPU Port section.
- The packet is routed. See the Routing chapter.
- The packet is dropped earlier in the packet processing chain. See chapter Ingress Packet Processing for details.

6.1 L2 Destination Lookup

If none of the above applies a L2 MAC address destination lookup will be performed in the following manner:

- The GID is given by the gid field from the VLAN Table lookup. See the VLAN Processing chapter.
- The hash is calculated with {GID,DA MAC} as key (see MAC Table Hashing).
- The hash is used as index into the **L2 DA Hash Lookup Table**. 4 entries are read out in parallel, each corresponding to a hash bucket.
- The bucket entries are all compared with the {GID,DA MAC} key and if one entry is equal to the key that entry is considered a match.
- The {GID, DA MAC} key is also compared with all the entries in the L2 Lookup Collision Table
 CAM. The CAM is searched starting from entry 0 and the first matching entry is treated as a match.
 Any following matching entries are ignored.
- Some entries in L2 Lookup Collision Table has per-bit masks. These are set up in the L2 Lookup Collision Table Masks registers. Using the mask an entry can define with single-bit granularity what shall be included in the comparison. A zero in the mask means that the corresponding bit shall be ignored, while a one means that the bit shall be compared.
- An entry in the L2 DA Hash Lookup Table is only compared if the corresponding valid bits are set.
 The valid bits are located in the L2 Aging Table , the L2 Aging Status Shadow Table and the L2 Aging Status Shadow Table Replica . If all the valid bits are not set then this will result in a non-match even if the {destination MAC , GID} in the L2 DA Hash Lookup Table entry matches. For the collision CAM the valid bits are located in the L2 Aging Collision Table and L2 Aging Collision Shadow Table. See figure 6.1.

- If both CAM and L2 hash tables return a match, the result from the CAM table will take precedence.
- Once the final entry has been determined, the result is read out from the L2 Destination Table. It
 has enough entries to fit the destinations for both the L2 hash table and the L2 CAM table. The L2
 CAM table entries are located after the L2 hash table entries.
- If the pktDrop field in the L2 Destination Table is set the packet will be dropped.
- If the destination shall be a single port (i.e. it is not to be multicasted) then the uc field shall be set to one and the destPort or mcAddr field shall contain the egress port number.
- If a packet shall be sent to multiple output ports then the uc field shall be set to zero and the destPort or mcAddr field shall contain a pointer to a entry in the L2 Multicast Table. The entry in the L2 Multicast Table contains a portmask where bit 0 represents port 0, bit 1 port 1, and so on. A bit set to one results in the corresponding port receiving a packet.
- The DA MAC address ff:ff:ff:ff:ff:ff is the broadcast address, meaning that all the member ports in the VLAN (configured in the VLAN Table vlanPortMask field) will receive a packet.
- Normally the source port is excluded from the destination portmask. If that results in an empty
 destination port mask then the packet is dropped and counted in the L2 Lookup Drop register.
 - This behaviour can be changed using the **Hairpin Enable** register, allowing a packet to be switched to the same port it came in.
- Ports that are not members of the VLAN will be removed from the portmask. If there are no ports left in the port mask then the packet is dropped and counted in the **L2 Lookup Drop** register.
- If there is no hit in either the L2 DA Hash Lookup Table or the L2 Lookup Collision Table, then the packet will be flooded, i.e. sent out to all ports in the VLAN. This means that the port mask for the outgoing packet will be taken from the vlanPortMask field in the VLAN Table.
- If the Flooding Action Send to Port is enabled on this source port (using enable set to one) and the packet is flooded then the packet is sent to the destination port pointed to by the field destPort instead of being flooded to all ports part of the packets VLAN. The destination port does not need to be part of the packets VLAN group membership.
- If there is a hit then the hit bit in the L2 Aging Table is set to one.
- The final physical port is determined by the link aggregation. See chapter Link Aggregation for more information.
- Learning new unknown SA MAC addresses is described in chapter Learning and Aging.

6.2 Software Interaction

Observe that L2 tables can not be directly written by software if learning engine is turned on. Doing so can cause packets to be dropped and/or flooded and the learning engine may stop working. See chapter Learning and Aging for information how to safely update the L2 tables.

6.3 L2 Action Table

There is two tables which allows detailed control for each packet depending on the source L2 MAC table result, the destination L2 MAC table result and the ingress and egress port which each has a configurable state. This the L2 Action Table used for each egress port which the packet shall be sent to is defined in L2 Action Table and secondly the L2 Action Table Source Port. Both tables used a number of bits from the source port table, egress port state, SA and DA MAC lookups to form a address into the tables which is then read out and acted on. Each source port enables if the L2 Action tables shall be used or not using the field enableL2ActionTable. The L2 Action Tables can be used to permit specific frames from certain source ports to other destination ports using a filter defined in Allow Special Frame Check For L2 Action Table. There are 4 rules which are shared among all ports and pointed from the L2 Action Tables as a result by setting useSpecialAllow to one and then pointing to the rule using field allowPtr.

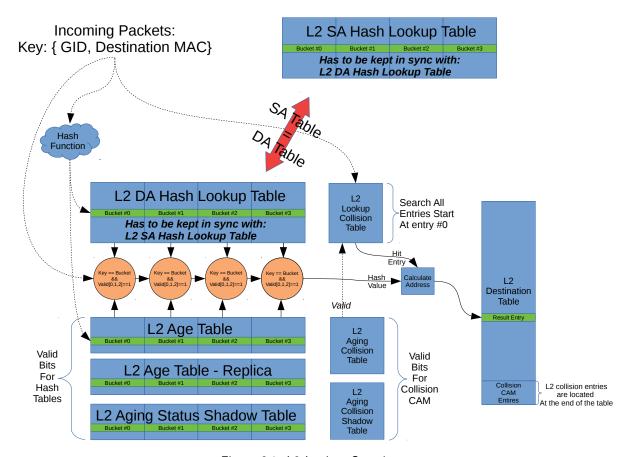


Figure 6.1: L2 Lookup Overview

If a packet is going to no egress ports (portmask==0) then none of the actions in the **L2 Action Table** will be carried out, while the **L2 Action Table Source Port** will always be carrie out since a packet always comes in on a source port. Because of this the addressing is slightly different for these two table lookups.

The use cases for the tables is described below. Both tables have the same result actions.

6.3.1 Learning Unicast and Learning Multicast

As stated before the L2 Action Table can be used to stop learning on certain frames. There is a additional setting allowing the user to define if the learning is not to be allowed for unicast or multicast packets. Since a learning lookup is based on the Source MAC address this is also what is compared against. If the SA MAC is a multicast address then the **noLearningMc** field will be used to determine if the packet shall be learned or if SA MAC address is a unicast then the **noLearningUc** will determine if the packet shall be learned or not.

6.3.2 Drop and Learning

If a packet is dropped by the L2 Action Table the packet will be still be learned. If you want the packets not to be learned then both **dropAll** and **noLearningUc** and **noLearningMc** should be turned on (set to one).

6.3.3 Priorities Between Actions

There are multiple actions from the L2 action table this section explains the order between them.

1. The drop special packet is first carried out and drops all instances of the packet

Packet Architects AB

- 2. The drop port move then takes priority and drops all instance of the packet
- 3. The drop-all drops all instances of a packet however special type packets can still be accepted if they are setup to do so.
- 4. After the drops the send-to-CPU is carried out. Only a single copy will be sent to the CPU.

6.3.4 Using L2 Action Table for 802.1X

Simple Port Authentication

By using the source port bit I2ActionTablePortState and the egress port state bit in register L2 Action Table Egress Port State to indicate if a port is authenticated or not packets can be limited to communicate with other ports. This is done by setting up the different addresses in the L2 Action Table to do drop operations when a packet comes in from a non-authenticated port going to a authenticated port.

Port Authentication with MAC addresses

In order to allow already existing computers (MAC address) allow to pass through the switch without any problems the SA lookup result bit I2ActionTableSaStatus can be used indicate if this source MAC address (i.e. computer/end-station) has been authenticated or not on this port. A non-authenticated computer shall still be able to communicate with other ports which are not authenticated. Since the three bits partly forms the address into the L2 Action Table it is possible to form rules which when a packet is allowed to access other ports depending on what the state of these ports are and if the computer it wants to communicate with is known to the switch or not. The field I2ActionTableDaStatus can be used to further enhance the security wheather or not two computers shall be able to communicate.

Port Authentication Enhancements with Learning and Port-Move

As the network security needs to be enhanced further the L2 Action Table allows setting up rules if a packet coming in and going to different ports shall be able to be learned or if a already existing MAC address shall be able to be port moved.

Port Authentication Enhancements only allow certain traffic types

As the last enhancement there can be special rules formed which allows only certain packet types to pass on a port combination using the result options **useSpecialAllow** and **allowPtr**. This allowPtr points to general rules of which packet types to drop or to allow. This rules are setup in **Allow Special Frame Check For L2 Action Table**.

Routing

This core supports IPv4 and IPv6 routing as well as MPLS switching.

The routing is disabled by default and needs to be setup from the configuration interface before it can be used. This core supports virtual router ports/functions (VRFs). The VRFs allow the core to handle multiple virtual routers sharing the same set of tables and register. A VRF identifier is used to determine which virtual router each table entry belongs to.

The routing is done separately from the L2 switching. There is no switching done before or after the router. The router is entered when a packets destination MAC address equals the routers MAC address. The packet exits the router directly to an egress port.

MPLS follows the same order of operations as IP routing and uses the same tables. The MPLS processing is therefore described here.

7.1 Order of Operation

Routing function is done after the L2 ACLs. The routing engine performs the following steps:

- 1. Check if the VLAN allows packets to be routed. If this is not the case normal L2 lookups will be done. This is specified by the **allowRouting** field in **VLAN Table**.
- 2. Compare the incoming packets MAC destination address with all the entries in the Router Port MAC Address. There are per source port option in field selectMacEntryPortMask which allows the compared MAC address to be different based on which source port the packet comes in. The alternative MAC address to compare is located in field altMacAddress. If no match then the routing function is skipped. If the router port search found a match then the packet enters the router with an assigned VRF from the table.
- 3. The carried packet type (IPv4, IPv6 or MPLS) is checked against the allowed type that are setup in Ingress Router Table. If the type is not allowed the packet will be dropped. There is a alternative to dropping the packets and instead send them to the CPU. This can be archived by setting the sendToCpuOrDrop bit to one.
- 4. If the incoming packets TTL is below the allowed TTL, as specified in **Ingress Router Table** then the packet is dropped.
- 5. To determine the packets destination/next hop the destination address combined with the assigned VRF is searched for in the **Hash Based L3 Routing Table** and in the **L3 Routing TCAM**. If there is a match in both the TCAM and the hash table then the hash entry is selected since the hash table always contains the longest prefix. For the hash based search the next hop result is setup in the **Hash Based L3 Routing Table** and for the LPM search it is setup in **L3 LPM Result**.

The difference between MPLS and IP search is that in MPLS the 20-bit MPLS label from the outermost MPLS header is used as destination address.

- If there is a match in the routing tables and the ECMP is enabled in the matched entry (either the useECMP in the Hash Based L3 Routing Table or useECMP in the L3 LPM Result table) then ECMP next hop calculation is performed.
 - ECMP calculates a hash based on the IP source and destination addresses, the IP proto field, IP TOS and the TCP/UDP source port and destination port.
 - For MPLS the ECMP hash key consists of the outermost header and does not include embedded IP headers. The hash value is added as an offset to the **nextHopPointer** after masking (**ecmpMask**) and shifting (**ecmpShift**).
- If there is no hit in the destination address search then the default next hop is used. The default is defined in L3 Routing Default per VRF. There are also options to drop the packet or send to CPU port.
- IP statistics is updated in the IP Unicast Received Counter, IP Unicast Routed Counter and Received Packets on Ingress VRF registers. MPLS forwarded packets are only counted in Received Packets on Ingress VRF
- 9. The next hop from the previous steps is used as index into the **Next Hop Table**. The entries determine where to route the packet, which is either a single destination port or a pointer to a L2 multicast entry. There are also options to drop the packet or send to CPU port.

Each entry also contains a packet modification pointer which points to several tables that determines what header modification that should be done when the packet exits the router.

- The Next Hop Packet Modifications table determines what VLAN operations to perform when exiting the router. If the entry's valid bit is not set the packet will be send to the CPU.
- The Next Hop DA MAC which determines the destination MAC address to use in the outgoing packet.
- For MPLS the Next Hop MPLS Table determines what MPLS header modifications that should be done on the outgoing packets. These are described in detail in the register description and in the MPLS chapter.

The srv6Sid flag is the local instantiated SRv6 segment identifier that enables the packet modification on egress to update the IPv6 destination address to the next segment. When hitting the SRv6 segment identifier, a legal segment routing header needs to be provided, otherwise the packet will be send to the CPU instead.

- 10. An MTU check, as specified in the Router MTU Table, is performed on incoming routed packets. This check is executed by comparing the IPv4 Total Length field with the limit configured in field maxIPv4MTU, separately for each destination port and VRF. Similarly, the IPv6 Payload Length field is compared with field maxIPv6MTU. If either length field exceeds its respective limit, the packet will be forwarded to the CPU for further processing. Notably, the MTU check is not applied to MPLS packets.
- 11. When next hop hit status updates are enabled in the Ingress Router Table then each time a packet is routed using a Next Hop Table entry the corresponding status bit is set in the Next Hop Hit Status.
- 12. The ingress part of routing is now completed. This is followed by other ingress functions such as L3 ACL etc. Finally the packet is queued to one or multiple egress ports.
- 13. The egress processing of the routed packet performs the packet header modifications. First step is update of the TTL field which is controlled by the **Egress Router Table**.
- 14. There exists an option called **Next Hop Packet Insert MPLS Header** which enables a outgoing routed packet to add MPLS labels after the L2 / VLAN headers. This allows the router to enter a MPLS tunnel in order to reach the next hop though a MPLS network. If a packet is already a MPLS packet this option offers a way to insert extra MPLS headers on top of the MPLS label stack. NOTE: It is not possible to insert MPLS headers if the packet has a PPPoE header, If the packet is a PPPoE then no MPLS insertion is then carried out.

- 15. A new L2 header is constructed with a DA MAC from the Next Hop DA MAC table. The SA MAC will be the incoming DA MAC. The Router Port Egress SA MAC Address allows the user to insert a alternative SA MAC address instead of the normal which should have been the packets DA MAC address. This setting is done per egress port.
- 16. The routers VLAN operations are performed. See the VLAN Processing chapter.
- 17. The segment routing operations are performed if needed.
 - Decrement Segments Left by 1.
 - Copy Segment List[Segments Left] from the SRH to the destination address of the IPv6 header.
- 18. The IPv4 header checksum is recalculated.
- 19. Egress router statistics is updated in Transmitted Packets on Egress VRF.
- 20. Egress VLAN Translation is done using the Dleft lookup 17, on the newly assigned outermost egress VID of the packet.
- 21. If the result from the **Next Hop Table** points to a tunnel entry using fields **tunnelEntry** then the tunnel entry is carried out after all the packet modifications has been done according to the router exit.
- 22. If the result from the next **Next Hop Table** points to a tunnel exit using fields **tunnelExit** then the tunnel exit is carried out before the packet is modified by the router. Please note that if the tunnel exit packet modifications are modifying the same fields as the router (SA/DA MAC and VLANs and TTL fields) then these fields will be overwritten by the router.
- 23. The egress ports VLAN operations are performed. See the VLAN Processing chapter.

Tunneling

The tunneling has two functions, first the tunnel exit, which enables the user to remove a number of bytes from a incoming packet, then process the packet as the inner layer packet. Secondly enter a tunnel in which a outgoing packet is encapulated with a number of bytes somewhere in the packet.

8.1 Packet Decoder For Tunnel Exit

In the following diagram the decoding of the incoming packet header is described. The comparison used to determine protocol types are described as well as the order they are decoded. The end of decoding process is denote by an X.

There are options for the tunnel exit when it comes to reconizing the Ethernet Types for VLANs. The settings are located in register **L2 Tunnel Decoder Setup** which allows the user to setup custom types for C-tagged and S-tagged VLAN packets. If a packet originates from the CPU port and bears the from-CPU-Tag, with the Force Original Bit enabled within this header, there will be no execution of tunnel exit or tunnel entry.

8.2 Tunnel Exit

The tunnel exit can be done in multiple ways. In order for a packet to be enabled do a tunnel exit the field in register **Source Port Table** field **disableTunnelExit** in the incoming source port needs to be set to zero. The packet decoder decribed in 8.1 extracts the relevant fields from the incoming packet:

- 1. Packet is a SNAP/LLC Packet
- 2. Ethernet Type Field after possible VLAN headers
- 3. Ethernet Type for L3
- 4. If MPLS: Up to 4 MPLS headers.
- 5. If IPv4 then IPv4 Destination Address
- 6. If IPv4 then IPv4 Source Address
- 7. If IPv6 then IPv6 Destination Address
- 8. If IPv6 then IPv6 Source Address
- 9. L4 source port, if TCP or UDP packet
- 10. L4 destination port, if TCP or UDP packet
- 11. One bit to indicate that the incoming packet had a from CPU tag.

All of these fields are then looked up in the Tunnel Exit Table using the Dleft function described in Dleft Tunnel Exit If the first tunnel exit lookup has a hit then the packet will do a second tunnel lookup which can result in a tunnel exit. The second lookup is needed because some protocols require a second field to be looked up before a tunnel exit can be determined, example of these types of protocols are VxLAN and GRE-over-UDP. There also exists options which enbles the user to not use the packet data for the second lookup, instead use data from the first lookup answer fields, thereby allowing the first lookup to be the only lookup which matters (second lookup will still be performed but data is controlled from first lookup).

Packets with From CPU Tag

When a packet matches the criteria for tunnel exit and is tagged with a 'from CPU' label, and if the 'force-original-packet' bit is set within this tag, the packet will not undergo tunnel exit. Consequently, any rules configured to forward such packets to the CPU upon a hit in the initial lookup but not in the second tunnel lookup will also not be executed.

Tunnel Exit Places in the packet

The tunnel exit operations can remove configurable number of bytes, a maximum of 192 bytes can be removed, at the following places:

- 1. At the beginning of the packet.
- 2. After the DA and SA MAC and the VLAN headers.
- 3. After the DA and SA MAC, the VLAN headers and IPv4,IPv6 headers .

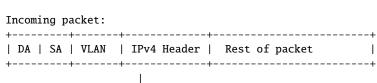
8.2.1 To Not To Use Second Lookup

To only use the first lookup and not select any new data for the second lookup this is done by setting the direct bit to one (direct) and setting up the field tablndex, This tablndex field is then used to do the search in the **Second Tunnel Exit Lookup TCAM**. The result in the **Second Tunnel Exit Lookup TCAM** Answer tells the tunnel unit how to remove the data from the packet.

8.2.2 Use Second Lookup With Packet Data

If the user does not want to use the direct method but rather extract new data from the packet then the second lookup field is extracted on a byte boundry which is pointed out by the field **secondShift**, this second shift value can also take into account if the incoming packet has zero, one or two vlans by setting the field **secondIncludeVlan** to one (which will increase the value of **secondShift** with 4 for each VLAN.). For the value used in the second lookup (either from packet data or from result from first table lookup) there exists options if each bit should be used or not in the lookup (using a mask located in field **lookupMask**). The second tunnel exit lookup has a type field which comes from the first Dleft tunnel exit lookup result thereby allowing different tunnel exit types not to get a false positive.

8.2.3 How To Remove Data From Packet In A Tunnel Exit


Once the first and second tunnel exit lookups are done a tunnel exit is performed. How the tunnel exit is done is described by the result from the second tunnel exit lookup. The results are located in tables Second Tunnel Exit Lookup TCAM and Second Tunnel Exit Lookup TCAM Answer

There are important fields are **howManyBytesToRemove** and **removeVlan** which specifices which bytes to remove in the incoming packet starting from the position after the L2 DA/SA + VLANs. The removeVlan removes 1 or 2 VLANs in the coming packet.

There exists options if the second lookup should fail which allows the user to drop the packet (while the first was tunnel exit lookup was a hit). This is located in **Second Tunnel Exit Miss Action**. This action has a setting for each of the different packet keys which comes from the first tunnel exit lookup result.

The same operations done at ingress during a tunnel exit must be mirrored in the egress register **Egress Tunnel Exit Table** otherwise the packet will look different once its sent out. Which entry to use in the **Egress Tunnel Exit Table** is pointed to by the field **tunnelExitEgressPtr**.

Example 1) Remove IPv4 Header

Packet Architects AB

```
Outgoing packet:
+-----+
| DA | SA | Rest of packet
In tunnel exit table: SA+DA+VLAN ID+IPv4 SA+IPv4 DA.
Remove from start byte:12 to end byte:72.
The removal is done setting the register howManyBytesToRemove = 20
  and then setting the removeVlan = 1
Example 2) Remove Dual VLANs.
Incoming packet:
+----+
| DA | SA | first VLAN | Second VLAN | Rest of packet
+----+
              v
Outgoing packet:
+----+
| DA | SA | Rest of packet
+----+
In tunnel exit table: SA+DA+2 * VLAN Headers
Remove from start byte:12 to end byte:20.
The removal is done setting the register howManyBytesToRemove = 0
  and then setting the removeVlan = 1
```

8.2.4 Packet Insertion and Removal Limits

For the core to operate correctly it needs enough bytes in the first part of the packet. The packet processing gets the first 192 bytes of the whole packet. Once a packet is passed to the egress processing pipeline 28 bytes of the total 192 bytes is consumed by a internal header. For tunnel exit this means that if the inner packet headers (L2+L3+L4) after a tunnel exit goes beyond 192 - 28 bytes minus the tunnel exit removed bytes then this inner packet will be dropped due to insufficient bytes to decode the packet.

8.2.5 Tunnel Exit Options

Besides the above tunnel exit operations there are also a number of other operations which can be done.

- Drop the packet. Using field dontExit.
- Set the VLAN table VID which shall be used. Using field replaceVidset to one and then setting the VID to be used in field newVid
- Do not do the tunnel exit. Using fielddontExit.

8.2.6 Tunnel Exit from Tables

Tables such as VLAN, L2, L2 Multicastouting,L3 tables and ACLs have option to do a tunnel exit. If this packet already did a tunnel exit then the packet will be sent to CPU since the hardware can not process two tunnel exits after each other, the packet will be sent to the CPU with the reason code 3,868.

8.3 Tunnel Entry

Entering a tunnel allows adding protocol headers at the beginning of the packet, after the L2 headers (After Ethernet MAC DA/SA and VLANs) and finall after L3 (After IPv4/IPv6/MPLS headers, before L4 headers). The After L2

tunnel headers starts with an IP header (IPv4 or IPv6) followed by an optional UDP header. After IP/UDP headers additional headers can be inserted but the content of those headers are not modified by the switch.

The same table address is read out in all of the tunnel entry instructions **Tunnel Entry Instruction Table**, **Beginning of Packet Tunnel Entry Instruction Table**, **L2 Tunnel Entry Instruction Table** and **L3 Tunnel Entry Instruction Table**) pointed to by the tunnel entry pointers from L2,L3,ACL tables.

Original egress packet before tunnel header insertion:

```
+----+
| MAC DA | MAC SA | VLAN* | Orig EType | Original L3 | Original L4 |
+-----+
```

After tunnel insertion at beginning of packet:

After tunnel insertion After L2 Headers:

+		+	+	-++
+	I	1	(NEW)After L2 Tunnel Header	Original
MA	C DA MAC	SA VLAN*	New EType IP UDP X	Original L3 L4
+	+	+	+	-+

After tunnel insertion After L3 Headers:

+		+	+		
		•	'		
			Updates in L3 Header:	(NEW) After L3 Tunnel	Header Original
MAC DA	MAC SA	VLAN*	-L4 Type and IP Length	X	L4
l I			(original L3)		
+	<u> </u>	+	+		

The content of the inserted protocol headers is configured in the Tunnel Entry Header Data table.

The length of the IPv4 header is fixed at 20 bytes. The IPv6 header is 40 bytes. These can be followed by 8 bytes of UDP header.

The tunnel entry is done in the egress processing after all other packet modifications. For example any VLAN operations are done before tunnel headers are inserted. If the packet was routed the Next Hop packet modifications (such as IP header TTL update and MAC DA/SA update) will be done before the tunnel header insertion.

For tunnel entry after L2 the insertion point after Ethernet and VLAN headers is automatically identified and for tunnel entry after L3 headers the insertion point after the L2, L3 headers is automatically identified.

The tunnel inserted header can be updated with correct Payload Length/ Total Length fields if the fields Beginning of Packet Tunnel Entry Instruction Table 13Type is IPv6 or IPv4 or in L2 Tunnel Entry Instruction Table field 13Type is set to IPv4 or IPv6. For IPv4 header the Header Checksum is calculated based on the configured header but after updating the Total Length field. For these length fields and the checksum field the value stored in the Tunnel Entry Header Data is not used.

All other fields in the IP header are unchanged and taken directly from the **Tunnel Entry Header Data**. It is up to the software configuration to create a valid IP header. This includes setting the Protocol/Next Header field if an UDP header follows the IP header.

After the inserted IP/UDP headers can follow additional headers up to the maximum width of the **Tunnel Entry Header Data** (80 bytes).

The tunnel insertion process will always perform the tunnel header insertion if instructed to by table actions in the ingress processing. There is no check at all of the content of the original protocol headers at this point.

For tunnel entry after L3 there exists options in which the preceeding IPv4 or IPv6 headers protocol type / next header byte will be updated. This is controlled by the L3 Tunnel Entry Instruction Table field updateL4Type. Besides this the IPv4 or IPv6 length field is updated with the header added.

8.3.1 Tunnel Length Insertion

There exists a option to insert a length into the header data. This length field is first inserted ,by overwriting 2 bytes in the insertion data, defined in the **Tunnel Entry Header Data** which is then inserted into the packet.

Packet Architects AB

Software needs to make room for the insertion data. There is no extra length added to the insertion data.

Example as follows: (Inserting at beginning of packet, same applies to all other insertions.)

Original egress packet before tunnel header insertion:

+----+ | MAC DA | MAC SA | VLAN* | Orig EType | Original L3 | Original L4 | +-----+

Tunnel Header to be inserted.

First insertion of length field in Tunnel Header is carried out:

(Data is written over in the Tunnel Header)

After tunnel insertion at beginning of packet:

8.3.2 Tunnel Entry Tables

A packet can enter the tunnel from a number of tables. Each table has a tunnel entry action bit and a pointer into the Tunnel Entry Instruction Table, this table is the master table which then determines which of the tunnel entry tables Beginning of Packet Tunnel Entry Instruction Table, L2 Tunnel Entry Instruction Table or L3 Tunnel Entry Instruction Table to use. This is determined by the field tunnelEntryType.

In the **Tunnel Entry Instruction Table** is a pointer to the tunnel header to be inserted, the length of the tunnel header. This table also contains a instruction which enables a 2-byte length field to be inserted into the tunnelHeader at any byte position. If this is used the bytes in this position will be overwritten.

- 1. Next Hop Table
 The field tunnelEntry and field tunnelEntryPtr points to a tunnel entry instruction.
- 2. Result from a Ingress Configurable ACL Result can point to a tunnel entry or a tunnel exit. The user can define if this should be done as a unicast or multicast tunnel entry. In a unicast entry all the packets use the same Tunnel Entry Instruction Table entry independent of the outgoing port while the multicast entries means that each destination port is used as a offset to the base pointer.
- 3. Result from a Egress Configurable ACL Result can point to a tunnel entry or a tunnel exit. The user can define if this should be done as a unicast or multicast tunnel entry. In a unicast entry all the packets use the same Tunnel Entry Instruction Table entry independent of the outgoing port while the multicast entries means that each destination port is used as a offset to the base pointer.

The tunnel pointers from these tables can be used as unicast or multicast pointers. Multicast means that the tunnel entry can be configured differently for each egress port. When a pointer is of unicast type the pointer value is used to directly index the **Tunnel Entry Instruction Table**.

If a pointer is of multicast type then the destination port number will be added to the pointer before index the **Tunnel Entry Instruction Table**. This allows for using different tunnel headers for different ports.

58

8.3.3 Priority between Tunnel Exit and Tunnel Entry in Tables

Since the tunnel entry and tunnel exit can be pointed to by several tables what is the priority between them.

Packet Architects AB

Table	Unicast or	Comment
	Multicast	
Next Hop Table	Unicast or	A Next Hop Entry is unicast, however it can point to a
	Multicast	L2 Multicast Entry.
Ingress ACL Result Ta-	Unicast or	Enables the user to freely select if unicast or multicast.
bles	Multicast	
Egress ACL Result Ta-	Unicast or	Enables the user to freely select if unicast or multicast.
bles	Multicast	

Table 8.1: Tunnel Entry Unicast or Multicast

- Egress Port Configuration Priority
 If a port has set the Egress Port Configuration with tunnel entry or tunnel exit this will take priority over previous set tunnel exit or tunnel entry.
- Egress Port Configuration and Tunnel Exit Lookup

 Between tunnel exit unit and tunnel exit from egress port configuration table then the egress port configuration table takes precedence. This means that what the processing done on ingresss can alter from how the packet will actually look when it is sent out.
- Tunnel Exit Lookup and Tables Tunnel Exit

 If both the tunnel exit lookup and tables tunnel exit says to do a tunnel exit then the packet will be sent to the CPU port for further checks by software.

8.3.4 Tunnel Entry and Routing with MTU check

Since a ACL or IP entry might call upon a packet to enter a tunnel this might mean that the outgoing IPv4 or IPv6 packet might be too long for the next hops MTU. This check can be turned on for each tunnel entry and it will only be checked if a packet is routed. If the packet is over the MTU then it will be removed from the output ports destination masks and a copy will be sent to the CPU. In order for this to work the table **Tunnel Entry MTU Length Check** must be setup to reflect the additional bytes being added to the IP packet headers.

MPLS

This core is equipped with MPLS forwarding. The processing of MPLS packets follows the same pattern as IP routing, with the major difference that an MPLS header operation (such as push, pop, swap and penultimate pop) can be carried out. Since the order of operation for MPLS is almost identical to IP routing it is described in the Routing chapter.

9.1 MPLS Header Operations

In addition to the processing that is done for IP routed packets the MPLS router can perform operations on the MPLS header stack.

The Next Hop MPLS Table determines which operation to perform.

- Pop The outermost MPLS header in the packet is removed.
- Push A new MPLS header is added to the packet before any previous MPLS headers. The label for the new header and the source for the EXP bits are specified in the table entry.
- Swap/Replace The outermost MPLS header in the packet is replaced. The label for the new header and the source for the EXP bits are specified in the table entry.
- Penultimate Pop All MPLS headers (up to as many as supported by the packet decoder, see Packet
 Decoding chapter) are removed from the packet. In addition the Ethernet Type is set to IPv4 or IPv6, see
 the following section.
- Remapping of EXP bits in the outermost MPLS header. Either use the existing value, use form the table or
 use a remapping table Egress Queue To MPLS EXP Mapping Table.

The Egress MPLS TTL Table determines which operation on the TTL field to perform when exiting the VRP, either decrement the TTL or set a new TTL. Each VRP can have their own setting.

9.2 MPLS Penultimate Pop

A normal Pop operation removes one MPLS header but leaves the Ethernet Type unmodified (identifying the packet as still being a MPLS packet).

The Penultimate Pop operation removes all MPLS headers and also updates the packets Ethernet Type. This assumes that the payload in the MPLS packet is an IP packet. The first nibble in the payload is then decoded (see **Packet Decoding** chapter) to determine if the packet is IPv4 or IPv6 and then the Ethernet Type is updated accordingly.

9.3 MPLS Header Insertion To Reach Next Hop

There exists an option called **Next Hop Packet Insert MPLS Header** which enables a outgoing routed packet to add up to MPLS labels after the L2 / VLAN headers. The operation is pointed out by the field **nextHopPacketMod** in table **Next Hop Table**. If a packet is already a MPLS packet this option offers a way to insert extra MPLS headers on top of the MPLS label stack.

NOTE: It is not possible to insert MPLS headers if the packet has a PPPoE header. If the packet is a PPPoE then no MPLS insertion is then carried out.

NAT - Network Address Translation

There are two functions that can determine if a NAT operation shall be performed, the Configurable Ingress ACL and the Configurable Egress ACL. Each of these point to a NAT operation table that will be performed in egress, Ingress NAT Operation and Egress NAT Operation.

The ACL pointers points to a base index and the egress port number can be added to this base index. The register NAT Add Egress Port for NAT Calculation determines if this shall be done or not, there is one setting for ingress NAT and one setting for egress NAT. This is a global setting.

The Ingress ACL and Egress ACL has independent NAT operation tables and corresponding NAT actions.

An action is one of the following.

- Replace source IP address.
- Replace destination IP address.
- Replace TCP/UDP source port number.
- Replace TCP/UDP destination port number.

The two NAT operations are performed in the order ingress operation first followed by egress operation (in the case where both operations would modify the same packet field).

If the layer 4 type is TCP and IP address or TCP port number is changed then the TCP checksum is recalculated.

If the layer 4 type is UDP and IP address or UDP port number is changed then the UDP checksum is recalculated

If an IP address is changed then the IP header checksum is recalculated.

When a NAT operation is perform the status registers **Egress NAT Hit Status** and **Ingress NAT Hit Status** are updated.

10.1 Ingress Packet Processing Option

Since the packet operations for NAT is carried out just before the packet is sent out there are cases where the user want the ingress routing and other processes to use the private or public IP address (and/or L4 address). This can be done by setting the enableUpdatelp or enableUpdatel2 fields in one of Ingress Configurable ACL N Large Table and Ingress Configurable ACL N TCAM Answer

10.2 NAT Action Table Check

At the end of the ingress packet processing a NAT port operation check is done. This involves checking all the egress ports NAT state (in register Egress Port NAT State) and comparing them to the ingress port NAT state (in field natPortState) together with the NAT operations from ingress and egress ACL and if the packet was routed or switched. These five bits are used as a address into the table NAT Action Table. For all the egress ports the

packet is going out on the table is checked and if any of the actions are send to cpu or drop this takes precedence and is carried out instead of sending out the packet on the already looked up ports. When to a packet is sent to the CPU from the NAT Action table there are options if the packet should be the original packet or the modified packet, this is setup in NAT Action Table Force Original Packet, there is separate setting for each reason code enabling options when using the two different packets to CPU.

The priority of the NAT Action Table is as follows: (Only a single action is carried out.)

- 1. If all actions are No actions the packet is sent to egress.
- 2. If any action has the Sent to CPU then the packet will be sent to the CPU
- 3. If any action has drop then all instances are dropped and a counter is updated

Mirroring

This core supports both input and output mirroring.

11.1 Input Mirroring

Input mirroring allows all packets received by an ingress port to be copied to an egress port without packet modifications.

- For each port, one input mirroring port can be configured through the Source Port Table. The input-MirrorEnabled field enables a input mirror copy and send it to the port configured in the destInputMirror field.
- Packets hit in the Configurable ACL Engine can send an input mirror copy to the port configured in ACL's
 destInputMirror field if there is an enabled inputMirror action.

By default the input mirror copy will bypass any packet modification or drop decisions during the ingress or egress packet processing. Extra options are given in the **Source Port Table** to limit the range of the mirroring destination. **imUnderVlanMembership** only allows the input mirror copy to be sent to the members of the VLAN. **imUnderPortIsolation** only allows the input mirror copy to be sent to the destination that does not block the current source port from the **Ingress Egress Port Packet Type Filter**. If a packet has an input mirror action from the ACL and its source port also enables input mirroring, the destination port of that copy is determined by the ACL result.

11.2 Output Mirroring

Output mirroring allows the user to select an egress port to be mirrored so that packet that is transmitted to that egress port can have a copy sent to an egress port. For each port, one output mirroring port can be configured through the **Output Mirroring Table**:

- The output mirroring functionality can be enabled per port using the outputMirrorEnabled field from the Output Mirroring Table.
- The port to which the mirror copy is sent is setup by the output MirrorPort field in the Output Mirroring
 Table. Multiple input ports can use the same output mirroring destination port.

With input mirroring, a port can be used to observe the traffic received by any port. With output mirroring, a port can be used to observe the traffic transmitted from any port. When there are multiple mirror copies requested or the CPU port is involved, the switch works as follows:

- An input mirrored packet can be output mirrored again.
- An output mirrored packet will not be mirrored again even if the destination port has output mirroring turned on
- When a packet is mirrored to the CPU port, it will not carry an extra to-CPU tag since it is the copy of another packet.

It is possible that a packet is sent out in multiple copies on the same port when mirroring is turned on. In this case at most four instances of the same received packet can appear on an egress port. The order of the packet instances will be:

- 1. Normal switched/routed packet
- 2. Input mirror copy
- 3. Output mirror copy of the switched/routed packet
- 4. Output mirror copy of the input mirror copy

11.2.1 Requeueing FIFO

Output mirroring (and input mirroring to oneself) is accomplished by requeuing the packets in separate requeueing FIFOs after External Packet Processing. There is one requeue FIFO per egress port.

The egress scheduling will only see the packet at the head of each FIFO, but this packet will be selected before the packets belonging to the same queue in the normal egress queues.

This method of output mirroring means that:

- 1. The requeuing FIFOs are truly FIFOs per port, so there will be head-of-line blocking between packets of different egress queues mirrored to the same port.
- 2. The (up to three) mirroring copies for a single input packet are created in series. The first one is not created until the original packet has been scheduled and gone through Egress Packet Processing, the second one not until the first copy has been scheduled and gone through Egress Packet Processing and so on...
- 3. When several ports output mirror to the same port, or a higher speed port mirrors to a lower speed port (physical or shaped port speed) the requeueing FIFO for the mirroring destination port may fill up and cause packet drops.

The depth of the requeueing FIFOs is ten packets per egress port.

Drops due to the requeueing FIFOs overflowing are counted in the Re-queue Overflow Drop register.

Link Aggregation

Link aggregation is a solution to bundle multiple ports into a higher bandwidth link. Each link aggregate is setup using the Link Aggregation Membership and Link Aggregation To Physical Ports Members.

The Link Aggregation Membership register maps the incoming packets source port number to a link aggregate number. The link aggregate number is then used during ingress packet processing instead of source port/destination port numbers.

When a destination port (destination link aggregate number) has been determined by ingress packet processing the Link Aggregation To Physical Ports Members table maps the link aggregate number to which physical ports that are part of the link aggregate, i.e. the physical ports the packet shall be transmitted to.

Note that once link aggregation is enabled all ports needs to be setup as link aggregates, even if a port only has a single port part of its link aggregate. These ports are usually setup as having a one-to-one mapping, i.e. source port number, link aggregate number and physical port number are all the same.

The Link Aggregation Membership register and the Link Aggregation To Physical Ports Members register must be kept in sync by software.

To distribute the packets over the ports that are part of a link aggregate, a hash is calculated over some of the packets fields which is configured by register Link Aggregation Ctrl. The hash value calculated is used to index the Link Aggregate Weight table which results in a port mask of the ports that will be used for this specific hash.

The ratio that each port in a link aggregate is used is determined by the number of times the port is set in the Link Aggregate Weight table divided by the number of entries in the table.

It is important to setup all entries in the Link Aggregate Weight table with one port set for each link aggregate, otherwise a certain hash value will have no port set thereby causing the packet to be dropped.

12.0.1 One-to-one Port Mapping

To setup a one-to-one mapping, then the bit which corresponds to the port number shall be set in the members. This maps each link aggregate number to a physical port with the same number.

The la should then be set so that each source port number maps to the link aggregate with the same number, i.e. table entry 0 should hold a value of 0, table address 1 should hold a value 1, etc.

12.1 Example

Lets say that a link aggregate shall use physical ports 0,1,2 and each port shall have equal amount of traffic. Another link aggregate will use ports 6,7 also with equal load between the ports. The remaining ports are setup to be one-to-one. In this example these are ports 3,4 and 5, on a switch with 8 ports.

To setup the Link Aggregation Membership register we associate the source port with the link aggregate number that it belongs to. Ports 0,1,2 are part of link aggregate 0 and port 6,7 are part or link aggregate 1. The remaining ports are setup to use the same link aggregate number as the port number.

```
for port in [0,1,2]:
    rg_sp2la[port] = 0

for port in [6,7]:
    rg_sp2la[port] = 1

for port in [3,4,5]:
    rg_sp2la[port] = port
```

In Link Aggregation To Physical Ports Members we need to setup the relation from link aggregate number to physical port members.

```
rg_la2Phy[0] = 0b00000111  # la #0 = ports 0,1,2
rg_la2Phy[1] = 0b11000000  # la #1 = ports 6,7
rg_la2Phy[3] = 0b00001000  # la #3 = port 3
rg_la2Phy[4] = 0b00010000  # la #4 = port 4
rg_la2Phy[5] = 0b00100000  # la #5 = port 5
```

To setup how the traffic is distributed between the link aggregate member ports we first select which packet headers that will be used in the hash calculation. In this example we chose to select source MAC, destination MAC, IP addres, L4, TOS value and vlan header as calculation base for the hash value.

```
rg_linkAggCtrl.useSaMacInHash = 1
rg_linkAggCtrl.useDaMacInHash = 1
rg_linkAggCtrl.useIpInHash = 1
rg_linkAggCtrl.useL4InHash = 1
rg_linkAggCtrl.useTosInHash = 1
rg_linkAggCtrl.useVlanInHash = 1
```

The table Link Aggregate Weight shall then be setup so that ports 0,1,2 have equal weight. This is accomplished by configuring so that the number of bits set for port 0 in all hash entries are equal to number of bits for port 1 and port 2. Which bits are set are not important as long as only one bit per entry are set and the total number of bits per port are equal.

If the hash of the packets fields are distributed evenly then 1/3 of the packets will be distributed to each of the three ports part of the link aggregate.

Similarly to setup a link aggregate on ports 6,7 with equal load between the ports then each entry in the Link Aggregate Weight table must have bit 6 or 7 set and with equal number of bits for the two ports.

The ratio for link aggregation 0, is 34% on port 0, 33% on port 1 and 33% on port 2. For link aggregation 1, it is 50% on each port.

```
for hash_index in range(0,85):
                                      # 34%
 r_hash2LA[hash_index] = 0b00000001 # port 0
for hash_index in range(86,170):
                                      # 33%
 r_hash2LA[hash_index] = 0b00000010 # port 1
for hash_index in range(171,256):
                                      # 33%
  f_hash2LA[hash_index] = 0b00000100 # port 2
for hash_index in range(128):
                                      # 50%
 r_hash2LA[hash_index] |= 0b01000000  # port 6
for hash_index in range(128,256):
                                      # 50%
 r_hash2LA[hash_index] |= 0b10000000  # port 7
for hash_index in range(256):
                                      # 100%
 r_hash2LA[hash_index] |= 0b00001000 # port 3
 r_hash2LA[hash_index] |= 0b00010000 # port 4
 r_hash2LA[hash_index] |= 0b00100000 # port 5
```


Finally when all the registers have been configured the link aggregation function is enabled in the **Link Aggregation Ctrl** register.

```
rg_linkAggCtrl.enable = 1
```

12.2 Hash Calculation

The hash key consists of the following fields in the order listed starting with the msb.

- MAC DA, 48 bits
- MAC SA, 48 bits
- VLAN ID, 12 bits
- IP TOS, 8 bits
- TCP/UDP Source Port, 16 bits
- TCP/UDP Destination Port, 16 bits
- IP Proto. 8 bits
- IPv4/IPv6 Source Address, 128 bits
- IPv4/IPv6 Destination Address, 128 bits
- Source Port, 4 bits

If a field is disabled in the Link Aggregation Ctrl register then the field in the hash key will be 0.

If a packet is routed then the MAC DA field will contain the next hop pointer instead of the MAC address and the VLAN ID will be 0.

The hashing is done in two steps, first the key is build, and the fields used in the key depends on the Link Aggregation Ctrl register, once the key is build then hash function is used to determine the address used ot lookup the Link Aggregation To Physical Ports Members.

```
def build_key(daMac,useDaMacInHash,
             saMac, useSaMacInHash,
              vlanId, useVlanIdInHash,
              tos, useTosInHash,
             sp, useL4InHash,
             dp,
              proto,
              salp, uselpInHash,
              dalp,
              nextHop, useNextHopInHash,
              srcPort , routed ):
    # This function builds the key to be
       used for calculating the hash.
    final\_data \, = \, 0
    if useDaMacInHash==0:
        daMac = 0
    if useNextHopInHash==0:
        nextHop = 0
    if routed == 1:
        daMac = nextHop
        vlanId = 0
    final_data = final_data <<48</pre>
    final_data = final_data | daMac
    final_data = final_data <<48
    if useSaMacInHash==1:
        final_data = final_data | saMac
    final_data = final_data <<12
    if useVlanIdInHash==1:
```



```
final_data = final_data | vlanld
    final_data = final_data <<8</pre>
    if useTosInHash==1:
        final_data = final_data | tos
    final_data = final_data <<16</pre>
    if useL4InHash==1:
        final_data = final_data | sp
    final_data = final_data <<16
     if \quad {\tt useL4InHash} \! = \! \! 1 : \\
        final_data = final_data | dp
    final_data = final_data <<8</pre>
    if useL4InHash==1:
        final_data = final_data | proto
    final_data = final_data << 128
    if uselpInHash==1:
        final_data = final_data | salp
    final_data = final_data << 128
    if uselpInHash == 1:
        final_data = final_data | dalp
    final_data = final_data <<4</pre>
    final_data = final_data | srcPort
    return final_data
def calcLaHash( key ):
    mask = (1 << 8) - 1
    _{\text{hash}} = 0
    for j in range (52):
        _hash = _hash ^ (key & mask)
        key = key >> 8
    return _hash & mask
```


IEEE 1588/PTP Support

The core has support for IEEE 1588 / PTP with a number of features.

- Transfer of timestamp from RX MAC to CPU in the To CPU Tag.
- Identify PTP packets and send to CPU.
- Control of TX MAC action from settings in the From CPU Tag.
- Transfer of timestamp in the From CPU Tag to the TX MAC.
- Provide position of packet fields to the TX MAC needed for timestamp operation.

13.1 Timestamp from RX MAC

Each ingress port can receive a timestamp at the end of the packet. When the ingress port receives the end of the packet from the MAC, a timestamp valid flag indicates whether the packet is timestamped.

The timestamp size is 8 bytes.

13.1.1 Timestamp to the CPU

The RX MAC timestamp will be transferred to the CPU in the **Timestamp** field of the **To CPU Tag**. This will only be done when the packet is identified as a PTP packet by setting the ptp bit and the packet is sent to the CPU port with a **To CPU Tag**. For all other packets the timestamp will be discarded.

If redirecting to the CPU with ptp bit set without having a timestamp header on the source port will result in an invalid timestamp field in the **To CPU Tag** header.

13.2 PTP Frame Decoding

The switch supports PTP packets embedded in an 802.3 Ethernet frame, in an UDP/IPv4 frame or in an UDP/IPv6 frame.

PTP Head	byte position	
transportSpecific	byte 0	
reserved	versionPTP	byte 1
		byte 2-6
correction	byte 8-15	
	byte 16-33	
originTime	byte 34-43	

Table 13.1: PTP Header Format

MAC DA	MAC SA	EtherType=0x88F7	PTP

Table 13.2: PTP over 802.3 Ethernet

13.2.1 PTP over 802.3 Ethernet

The packet decoder identifies PTP packets embedded in 802.3 Ethernet frames by the Ethernet Type. There is no comparison of the Ethernet destination address.

In order to be sent to the CPU any function (except input mirroring) that sends to the CPU port can be used. For example the 1588 standard multicast group addresses (01-1B-19-00-00-00, 01-80-C2-00-00-0E) can be set in the **L2 Destination Table** and point to entries in the **L2 Multicast Table**. For the link local multicast (01-80-C2-00-00-0E) that should be dropped by bridges, only the CPU port should be set in the **mcPortMask**. For the general multicast group address (01-1B-19-00-00-00) that should be broadcasted, then set all ports including the CPU port in the mask.

The ptp bit in the To CPU Tag will be set when the Ethernet Type matches the PTP type.

13.2.2 PTP over UDP

MAC DA MAC SA	EtherType	IPv4	UDP	PTP	1
-----------------	-----------	------	-----	-----	---

Table 13.3: PTP over UDP/IPv4

MAC DA MAC SA	EtherType	IPv6	UDP	PTP	Checksum Correction
-----------------	-----------	------	-----	-----	---------------------

Table 13.4: PTP over UDP/IPv6

PTP embedded in IPv4/IPv6 UDP can be identified with an L3 ACL rule and sent to the CPU using the sendToCpu action. The ptp action must also be set in order for the **ptp** bit in the **To CPU Tag** to be set together with a valid Timestamp field.

13.3 Software Control of TX MAC PTP Actions

The TX MAC needs to perform the following PTP actions.

- TX MAC updates timestamp in outgoing packet.
- TX MAC produces timestamp to be read by software.
- TX MAC updates correction field in outgoing packet with current time minus software time from the timestamp in the From CPU Tag.

These actions are controlled by software by sending PTP packets from the CPU port with a **From CPU Tag**. In the **From CPU Tag** header there are fields that will be transferred directly to the transmit MAC on dedicated signals (see **Packet Interface**).

- oupd_ts_ps_N this signals will be set when the From CPU Tag field upd_ts is set. This is used to tell the transmit MAC that it should update the packets originTimestamp field.
- oupd_cf_ps_N this signals will be set when the From CPU Tag field upd_cf is set. This is used to tell the transmit MAC that it should update the correctionField.
- ots_ps_N this signal will have the value of the From CPU Tag ptp_ts field and should be used by the transmit MAC when updating the correctionField.
- ots_to_sw_ps_N this signal will have the value of the From CPU Tag ts_to_sw field. This is used to tell the transmit MAC that it should create a timestamp of the current packet and transfer the timestamp to software. The switch is not involved in the transfer of the timestamp to software.

13.3.1 Packet Updates by the Transmit MAC

When the transmit MAC updates a PTP packet it needs to know position of the fields in the packet. This information is decoded by the switch and passed to the transmit MAC on dedicated ports.

- IPv4/UDP checksum field.
- IPv6/UDP checksum correction field (last 2 bytes in IPv6/UDP packet).
- PTP originTimestamp field.
- PTP correctionField.

When the transmit MAC updates a PTP packets and PTP is embedded in UDP/IP then the UDP checksum needs to be updated.

- For IPv4/UDP packets the UDP checksum field is zeroed by the MAC and therefore needs the position of the UDP checksum field.
- For IPv6/UDP it is forbidden to use zero checksum. Instead the last two bytes of the PTP packet is used to correct the checksum. The MAC therefore needs position of the UDP checksum field and the position of the second-to-last byte of the packet. (see IETF RFC 7821 UDP Checksum Complement)

The transmit MAC also needs the position of the originTimestamp and correctionField. The position of the originTimestamp is provided to the MAC and from that position the MAC can calculate the position of the correctionField since that is always in the same relative position.

All this information is transferred to the MAC on dedicated signals (see Packet Interface).

- oudp4_ps_N when this is set the packet is a UDP packet encapsulated in IPv4.
- oudp6_ps_N when this is set the packet is a UDP packet encapsulated in IPv6.
- oudp_csum_ps_N this is the first byte of the UDP Checksum field relative to the first byte of the packet.
- ots_pos_ps_N this is the first byte of the originTimestamp field in a PTP packet relative to the first byte of the packet. This position is correct for all three encapsulation types.
- oudp_corr_ps_N this is the first byte of the UDP checksum correction field. This field is always the last two bytes of the packet.

13.4 Support for Ordinary Clock

In this section is described how to implement the PTP packet handling for Ordinary Clock mode.

13.4.1 Master sending Sync

Software sends a PTP Sync packet to the CPU port with a **From CPU Tag**. In the **From CPU Tag** the destination port (or ports) are set and the control needed for the TX MAC connected to the egress port are included.

In 1-step mode the outgoing frames timestamp field is updated by the MAC with the timestamp. The timestamp is not used by software.

The TX MAC will get the position of the timestamp field from the switch.

If the packet is an IP/UDP packet then the checksum needs to be update by the MAC since the PTP header is changed. The MAC will get the position of the checksum field from the switch.

If PTP is embedded in IPv4/UDP then the UDP checksum field is cleared by the MAC. If it's IPv6/UDP then UDP checksum is not allowed to be cleared and instead the last two bytes in the frame is padding used for checksum adjustment. The MAC will get the position of the checksum adjustment field from the switch.

In 2-step mode the timestamp from the TX MAC is read out by software and the outgoing frame is not modified by the MAC. The **From CPU Tag** must control the MAC to produce a timestamp for software.

13.4.2 Slave receiving Sync

The RX MAC timestamps all packets. The timestamp must be prepended to the frames before they enter the switch. The switch port must be configured to receive the prepended timestamp.

Software needs to configure the switch to direct the Sync frame to the CPU port with a **To CPU Tag**. The ptp bit must be set so that the timestamp that was prepended to the frame is sent to the CPU in the **To CPU Tag**.

13.4.3 Slave sending DelayReq

Software sends a PTP DelayReq packet to the CPU port with a **From CPU Tag**. In the **From CPU Tag** the destination port (or ports) are set and the control needed for the TX MAC connected to the egress port.

The TX MAC must produce a timestamp of this packet. The timestamp from the TX MAC is read out by software and the outgoing frame is not modified by the MAC.

13.4.4 Master receiving DelayReq

The hardware mechanisms used are exactly as in Slave receiving Sync.

13.4.5 Master sending DelayReply

Software sends a PTP DelayReply packet to the CPU port with a **From CPU Tag**. In the **From CPU Tag** the destination port (or ports) are set.

There is no timestamp needed for this frame so the TX MAC is not directed to produce any timestamp.

13.4.6 Slave receiving DelayReply

Software needs to configure the switch to direct the DelayReply frame to the CPU port. The timestamp produced by the RX MAC is not used and the **To CPU Tag** therefore does not need to include the timestamp.

13.5 Support for 1-step Peer to Peer

13.5.1 Initiator sending PDelayReq

Software sends a PTP PDelayReq packet to the CPU port with a From CPU Tag. In the From CPU Tag the destination port (or ports) are set and the control needed for the TX MAC connected to the egress port.

The TX MAC must produce a timestamp of this packet. The timestamp from the MAC is read out by software and the outgoing frame is not modified by the MAC.

13.5.2 Peer receiving PDelayReq

The hardware mechanisms used are exactly as in Slave receiving Sync.

13.5.3 Peer sending PDelayResp

Software sends a PTP PDelayReq packet to the CPU port with a **From CPU Tag**. In the **From CPU Tag** the destination port (or ports) are set and the control needed for the TX MAC connected to the egress port.

The TX MAC must produce a timestamp of this packet.

In 1-step mode the outgoing frames correction field is updated by the MAC with the difference between the produced timestamp and software supplied timestamp (from a received PDelayReq). The produced timestamp is not used by software. The TX MAC will get the position of the correction field from the switch.

13.5.4 Initiator receiving PDelayResp

Software needs to configure the switch to direct the PDelayResp frame to the CPU port. The ptp bit must be set so that the timestamp that was prepended to the frame is sent to the CPU in the To CPU Tag.

Chapter 14

Classification

14.1 L2 Classification

- L2 Destination MAC range classification is setup in table Reserved Destination MAC Address Range.
 - The table is searched starting from entry 0.
 - When a range is matched the corresponding actions (drop, send to cpu, force egress queue) will be activated.
 - If multiple ranges are matched, any matching range that sets drop will cause a drop.
 - Any match that sets sendToCpu will cause send to CPU (this has priority over drop).
 - When multiple ranges that match has set the forceQueue then the highest numbered entry will determine the value.
- L2 Source MAC range classification is setup in table Reserved Source MAC Address Range.
 - The table is searched starting from entry 0.
 - When a range is matched the corresponding actions (drop, send to cpu, force egress queue) will be activated
 - If multiple ranges are matched, any matching range that sets drop will cause a drop.
 - Any match that sets sendToCpu will cause send to CPU (this has priority over drop).
 - When multiple ranges that match has set the forceQueue then the highest numbered entry will determine
 the value
- If the destination MAC address bits [47:8] matches the L2 Reserved Multicast Address Base then bits [7:0] of the destination MAC address is used as a index in the table L2 Reserved Multicast Address Action which determines what action to take on the packet. Actions are set per source port and can either be to drop the packet or to send it to the CPU.

14.2 Configurable Ingress ACL Engine

The ingress ACL engine uses a configurable selection of fields from the incoming packet headers, from L2 fields to L4 fields. From the selected fields a hash table lookup is then done using D-left hashing. The hashing is combined with a TCAM to resolve hash collisions and to enable per entry masking of data. Each of the hash tables can also be masked, but only a single mask can be applied for all data in a hash table.

There are 4 parallell ACL engines that each can perform one lookup per packet. All lookups are done in parallel and then there is a post processing of all the matching results to determine what actions to perform. There can be multiple actions taken for a single packet. How the actions are determined when there are multiple matches are described below.

14.2.1 Field Selection

For each source port the **useAcl** *N* field in the **Source Port Table** configures if the incoming packets shall be subjected to an ACL lookup. By default the ACL is turned off.

If the ACL is turned on then the field **aclRule***N* is used as a pointer into **Ingress Configurable ACL N Rules Setup**. This determines which fields that are used in the ACL lookup for this source port.

Each ACL engine has its own unique fields which can be selected. These are listed below. A field is selected by setting the corresponding bit in the fieldSelectBitMask.

ACL	Width	Fields	Nr of	Number	Small	Large	TCAM
Engine	of	to se-	Rules	of Parallel	Table	Table	Entries
	Search	lect	(Fields)	Hash	Entries	Entries	
	Data	from	to maxi-	Tables			
			mum use				
0	330	14	7	4	256	2048	16
1	135	33	7	2	8	128	8
2	540	28	20	2	0	0	24
3	80	10	10	2	0	0	16

Table 14.1: Ingress ACL Engine Settings

Pre Lookup for Configurable Ingress ACL Table 0

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields to be selected. If this lookup does not result in a valid rule pointer then the rule pointer from the source port table will be selected. The prelookup is setup in Ingress Configurable ACL 0 Pre Lookup

Packet Field	Size in Bits	Description
Source Port Bits	2 bits	The source port bits from source port table preLookupA-
		clBits.
Type of L3 Packet	2 bits	The packets L3 Type
		0 = IPv4
		1 = IPv6
		2 = MPLS 3 = Others.
		5 — Others.

Fields for Configurable Ingress ACL Table 0

The following fields can be selected for Configurable Ingress ACL Table 0, the column Bit in Select Bitmask is the number which is set in the bitmask to select the field.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
0	MAC DA	48	Always valid	The packets destination MAC address.
1	MAC SA	48	Always valid	The packets source MAC address
2	IPv4 SA	32	When L2 frame holds a IPv4 packet.	IPv4 Source Address.
3	IPv4 DA	32	When L2 frame holds a IPv4 packet.	IPv4 Destination Address.
4	IPv6 SA	128	When L2 frame holds a IPv6 packet.	IPv6 Source Address.
5	IPv6 DA	128	When L2 frame holds a IPv6 packet.	IPv6 Destination Address.
6	L4 Source Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets source port.
7	L4 Destination Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets destination port.
8	L4 Protocol	8	When packet is a IPv4 or IPv6	IPv4, IPv6 L4 protocol type byte.
9	Ethernet Type	16	Always valid	The packets Ethernet Type after VLANs.
10	L4 Type	3	Always valid	The type of an L4 packet. 0 = Not any type in this list. 1 = IPv6 or IPv4 packet but L4 protocol is not UDP, TCP, IGMP, ICMP, ICMPv6 or MLD 2 = UDP in IPv4/6 3 = TCP in IPv4/6 4 = IGMP in IPv4/6 5 = ICMP in IPv4/6 6 = ICMPv6 in IPv6, excluding MLD 7 = MLD - sub protocol of ICMPv6

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
11	L3 Type	2	Always valid	The type of an L3 packet. 0 = IPv4 1 = IPv6 2 = MPLS 3 = Not IPv4,IPv6 or MPLS.
12	Source Port	4	Always valid	The source port of the packet.
13	Rule Pointer	3	Always valid	The rule pointer (index in the Ingress Configurable ACL N Rules Setup).

14.2.2 Example Of Selecting Fields For Configurable Ingress ACL Table 0

Since this ACL engine can select up to 7 fields. This is done by setting bits in the rule pointers fieldSelectBit-mask. Lets look at a few examples of the layout of the 330 bits in search key looks like when different fields are selected.

Example ACL with MAC DA

In this example we only want to create a rule with one field which is the MAC destiantion address. This means that the fieldSelectBitmask, which is 14 bits, will be set as follows 1 in binary format (Hex value of 0x1) and the lookup data will be located as follows:

0	MAC DA	Valid
-	Width: 48	1
49	48 1	0 0

Table 14.4: Hash Key Example for MAC DA

Example of Simple L2 ACL

In this example we want to create a rule which with three L2 fields which are Destiantion MAC address, source MAC address and Ethernet Type. Typically this is a L2 ACL Engine. This means that the fieldSelectBitmask, which is 14 bits , will be set as follows 1000000011 in binary format (Hex value of 0x203) and the lookup data will be located as follows:

0	Ethernet Type	MAC DA	MAC SA	Valid
-	Width: 16	Width: 48	Width: 48	3
115	114 99	98 51	50 3	2 0

Table 14.5: Hash Key Example for Simple L2 ACL

Example of L3 IPv4 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address, source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means that the fieldSelectBitmask, which is 14 bits , will be set as follows 100100001100 in binary format (Hex value of 0x90c) and the lookup data will be located as follows:

0	L3 Type	IPv4 DA	IPv4 SA	L4 Protocol	Valid
-	Width: 2	Width: 2 Width: 32		Width: 8	4
78	77 76	75 44	43 12	11 4	3 0

Table 14.6: Hash Key Example for L3 IPv4 ACL

Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port, L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the fieldSelectBitmask,

which is 14 bits , will be set as follows 1100111000000 in binary format (Hex value of 0x19c0) and the lookup data will be located as follows:

0	Source Port	L3 Type	L4 Protocol	L4 Destination Port	L4 Source Port	Valid
-	Width: 4	Width: 2	Width: 8	Width: 16	Width: 16	5
51	50 47	46 45	44 37	36 21	20 5	4 0

Table 14.7: Hash Key Example for L4 ACL

Example of Ingress NAT Entry

In this example we want to create an rule where the result would be used to change source IP address and/or source L4 Address. This means that the fieldSelectBitmask, which is 14 bits, will be set as follows 1110001000100 in binary format (Hex value of 0x1c44) and the lookup data will be located as follows:

0	Source Port	L3 Type	IPv4 SA	L4 Type	L4 Source Port	Valid
-	Width: 4	Width: 2	Width: 32	Width: 3	Width: 16	5
62	61 58	57 56	55 24	23 21	20 5	4 0

Table 14.8: Hash Key Example for Ingress NAT Entry

Pre Lookup for Configurable Ingress ACL Table 1

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields to be selected. If this lookup does not result in a valid rule pointer then the rule pointer from the source port table will be selected. The prelookup is setup in Ingress Configurable ACL 1 Pre Lookup

Packet Field	Size in Bits	Description
Source Port Bits	2 bits	The source port bits from source port table preLookupA-
		clBits.
Number of VLANS	2 bits	The packets number of incoming VLANs.
Type of L3 Packet	2 bits	The packets L3 Type
		0 = IPv4
		1 = IPv6
		2 = MPLS 3 = Others.
Type of L4 Packet	3 bits	The packets L4 Type
		0 = Not known.
		1 = Is IPv4 or IPv6 but type is not any L4 type in this list.
		2 = UDP
		3 = TCP 4 = IGMP
		5 = ICMP
		6 = ICMPv6
		7 = MLD

Fields for Configurable Ingress ACL Table 1

The following fields can be selected for Configurable Ingress ACL Table 1, the column Bit in Select Bitmask is the number which is set in the bitmask to select the field.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
0	TCP Flags	9	When packet has a L4 TCP protocol and is not a fragment.	The tcp flags for the packet. Bit 0: ns, Bit 1: cwr, Bit 2: ece, Bit 3: urg, Bit 4: ack, Bit 5: psh, Bit 6: rst, Bit 7:syn, Bit 8: fin
1	MAC DA	48	Always valid	The packets destination MAC address.
2	MAC SA	48	Always valid	The packets source MAC address

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
3	Outer VID	12	When packet has a VLAN.	The packets outermost VLAN Identifier (VID)
4	Has VLANs	1	Always valid	Does the packet have any VLAN tags 0 = No VLAN in packet 1 = One or more VLANs in packet
5	Outer VLAN Tag Type	1	When packet has an outer VLANs.	When the packet has an outer VLAN what Ethernet Type is this VLAN? 0 = Customer VLAN Tag 1 = Service VLAN Tag
6	Inner VLAN Tag Type	1	When packet has an inner VLAN.	When the packet has an inner VLAN what Ethernet Type is this VLAN? 0 = Customer VLAN Tag 1 = Service VLAN Tag
7	Outer PCP	3	When packet has a VLAN.	The packets outermost VLAN PCP field.
8	Outer DEI	1	When packet has a VLAN.	The packets outermost VLAN DEI field.
9	Inner VID	12	When packet has a two VLANs.	The packes innermost VLAN Identifier (VID).
10	Inner PCP	3	When packet has a two VLANs.	The packets innermost VLAN PCP field.
11	Inner DEI	1	When packet has a two VLANs.	The packets innermost VLAN DEI field.
12	IPv4 SA	32	When L2 frame holds a IPv4 packet.	IPv4 Source Address.
13	IPv4 DA	32	When L2 frame holds a IPv4 packet.	IPv4 Destination Address.
14	IPv6 SA	128	When L2 frame holds a IPv6 packet.	IPv6 Source Address.
15	IPv6 DA	128	When L2 frame holds a IPv6 packet.	IPv6 Destination Address.
16	Outer MPLS	20	When L2 frame holds a MPLS packet.	Outermost MPLS label.
17	TOS	8	When packet is a IPv4 or IPv6	IPv4 or IPv6 Type-Of-Service (TOS) byte.
18	TTL	8	When packet is a IPv4,IPv6 or MPLS	IPv4, IPv6 or MPLS Time-To-Live (TTL) byte.
19	L4 Source Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets source port.
20	L4 Destination Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets destination port.
21	MLD Address	128	When packet is a IPv6 and the ICMPv6 type is equal to 130,131,132	The MLD headers Multicast Address field.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
22	ICMP Type	8	When L4 packet is a ICMP packet	ICMP Type.
23	ICMP Code	8	When L4 packet is a ICMP packet	ICMP Code.
24	IGMP Type	8	When L4 packet is a IGMP	IGMP Type.
25	IGMP Group Address	32	When L4 packet is a IGMP	IGMP Group Address.
26	IPv6 Flow Label	20	When a packet is a IPv6.	IPv6 Flow Label.
27	L4 Protocol	8	When packet is a IPv4 or IPv6	IPv4, IPv6 L4 protocol type byte.
28	Ethernet Type	16	Always valid	The packets Ethernet Type after VLANs.
29	L4 Type	3	Always valid	The type of an L4 packet. 0 = Not any type in this list. 1 = IPv6 or IPv4 packet but L4 protocol is not UDP, TCP, IGMP, ICMP, ICMPv6 or MLD 2 = UDP in IPv4/6 3 = TCP in IPv4/6 4 = IGMP in IPv4/6 5 = ICMPv6 in IPv6, excluding MLD 7 = MLD - sub protocol of ICMPv6
30	L3 Type	2	Always valid	The type of an L3 packet. 0 = IPv4 1 = IPv6 2 = MPLS 3 = Not IPv4,IPv6 or MPLS.
31	Source Port	4	Always valid	The source port of the packet.
32	Rule Pointer	3	Always valid	The rule pointer (index in the Ingress Configurable ACL N Rules Setup).

14.2.3 Example Of Selecting Fields For Configurable Ingress ACL Table 1

Since this ACL engine can select up to 7 fields. This is done by setting bits in the rule pointers fieldSelectBit-mask. Lets look at a few examples of the layout of the 135 bits in search key looks like when different fields are selected.

Example ACL with Outer VLAN ID

In this example we only want to create a rule with one field which is the Outer VLAN ID. This means that the fieldSelectBitmask, which is 33 bits , will be set as follows 1000 in binary format (Hex value of 0x8) and the lookup data will be located as follows:

0	Outer	VID	Va	lid
-	Width	: 12	1	Ĺ
13	12	1	0	0

Table 14.11: Hash Key Example for Outer VLAN ID

Example with Destiantion MAC Address and Outer VLAN VID

In this example we want to create a rule which with two fields which are destiantion MAC address and outermost VLAN Identifier. This means that the fieldSelectBitmask, which is 33 bits , will be set as follows 1010 in binary format (Hex value of 0xa) and the lookup data will be located as follows:

82 Packet Architects AB

0	MAC DA	Outer VID	Valid
-	Width: 48	Width: 12	2
62	61 14	13 2	1 0

Table 14.12: Hash Key Example for Destiantion MAC Address and Outer LAN VID

Example of Simple L2 ACL

0	Ethernet Type	MAC DA	MAC SA	Valid
-	Width: 16	Width: 48	Width: 48	3
115	114 99	98 51	50 3	2 0

Table 14.13: Hash Key Example for Simple L2 ACL

Example of L3 IPv4 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address, source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means that the fieldSelectBitmask, which is 33 bits, will be set as follows 1001000000000001100000000000 in binary format (Hex value of 0x48003000) and the lookup data will be located as follows:

0	L3 Type	IPv4 DA	IPv4 SA	L4 Protocol	Valid
-	Width: 2	Width: 32	Width: 32	Width: 8	4
78	77 76	75 44	43 12	11 4	3 0

Table 14.14: Hash Key Example for L3 IPv4 ACL

Example of L4 ACL

0	Source Port	L3 Type	L4 Protocol	L4 Destination Port	L4 Source Port	Valid
-	Width: 4	Width: 2	Width: 8	Width: 16	Width: 16	5
51	50 47	46 45	44 37	36 21	20 5	4 0

Table 14.15: Hash Key Example for L4 ACL

Example of Openflow Entry

In this example we want to create a rule which looks like an Openflow entry. This can be done by selecing source port, destiantion MAC, source MAC, Ethernet Type, inner VLAN, outer VLAN, L3 Type, IPv4 SA, IPv4 DA, L4 protocol, L4 Source port and L4 Destiantion port and finally the rule pointer. All in all 13 fields are selected. This means that the fieldSelectBitmask, which is 33 bits , will be set as follows 111011000000110010010010011001001110 in binary format (Hex value of 0x1d818320e) and the lookup data will be located as follows:

0	Source	e Port	MAG	C DA	MAC	SA	Oute	r VID	Innei	· VID	Ethe	rnet Type	L:	3 Type
-	Widt	h : 4	Widtl	h: 48	Width	: 48	Width	n : 12	Widtl	h: 12	Wie	dth : 16	W	idth : 2
262	261	258	257	210	209	162	161	150	149	138	137	122	12	1 120
IPv4	4 SA	IPv4	DA	L4 Pr	otocol	L4 D	estinati	ion Port	: L4	Source	Port	Rule Poi	nter	Valid
Widt	h : 32	Width	ı: 32	Widt	h : 8	١ ١	Width:	16	V	Vidth:	16	Width:	3	13
119	88	87	56	55	48	47	7	32	3	1	16	15	13	12 0

Table 14.16: Hash Key Example for Openflow Entry

Example of Ingress NAT Entry

	0	Source	e Port	L3 ⁻	Гуре	IPv₄	I SA	L4 ⁻	Гуре	L4 Sour	ce Port	Va	lid
	-	Widt	h : 4	Widt	h : 2	Widtl	ı: 32	Widt	h : 3	Width	: 16	5	5
(62	61	58	57	56	55	24	23	21	20	5	4	0

Table 14.17: Hash Key Example for Ingress NAT Entry

Pre Lookup for Configurable Ingress ACL Table 2

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields to be selected. If this lookup does not result in a valid rule pointer then the rule pointer from the source port table will be selected. The prelookup is setup in Ingress Configurable ACL 2 Pre Lookup

Packet Field	Size in Bits	Description
Source Port Bits	2 bits	The source port bits from source port table preLookupA-
		clBits.
Number of VLANS	2 bits	The packets number of incoming VLANs.
Type of L3 Packet	2 bits	The packets L3 Type
		0 = IPv4
		1 = IPv6 2 = MPLS
		2
		5 — Others.

Fields for Configurable Ingress ACL Table 2

The following fields can be selected for Configurable Ingress ACL Table 2, the column Bit in Select Bitmask is the number which is set in the bitmask to select the field.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
0	TCP Flags	9	When packet has a L4 TCP protocol and is not a fragment.	The tcp flags for the packet. Bit 0: ns, Bit 1: cwr, Bit 2: ece, Bit 3: urg, Bit 4: ack, Bit 5: psh, Bit 6: rst, Bit 7:syn, Bit 8: fin
1	MAC DA	48	Always valid	The packets destination MAC address.
2	MAC SA	48	Always valid	The packets source MAC address
3	Outer VID	12	When packet has a VLAN.	The packets outermost VLAN Identifier (VID)
4	Has VLANs	1	Always valid	Does the packet have any VLAN tags 0 = No VLAN in packet 1 = One or more VLANs in packet

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
5	Outer VLAN Tag Type	1	When packet has an outer VLANs.	When the packet has an outer VLAN what Ethernet Type is this VLAN? $0 = \text{Customer VLAN Tag}$ $1 = \text{Service VLAN Tag}$
6	Inner VLAN Tag Type	1	When packet has an inner VLAN.	When the packet has an inner VLAN what Ethernet Type is this VLAN? 0 = Customer VLAN Tag 1 = Service VLAN Tag
7	Outer PCP	3	When packet has a VLAN.	The packets outermost VLAN PCP field.
8	Outer DEI	1	When packet has a VLAN.	The packets outermost VLAN DEI field.
9	Inner VID	12	When packet has a two VLANs.	The packes innermost VLAN Identifier (VID).
10	Inner PCP	3	When packet has a two VLANs.	The packets innermost VLAN PCP field.
11	Inner DEI	1	When packet has a two VLANs.	The packets innermost VLAN DEI field.
12	IPv4 SA	32	When L2 frame holds a IPv4 packet.	IPv4 Source Address.
13	IPv4 DA	32	When L2 frame holds a IPv4 packet.	IPv4 Destination Address.
14	IPv6 SA	128	When L2 frame holds a IPv6 packet.	IPv6 Source Address.
15	IPv6 DA	128	When L2 frame holds a IPv6 packet.	IPv6 Destination Address.
16	Outer MPLS	20	When L2 frame holds a MPLS packet.	Outermost MPLS label.
17	TOS	8	When packet is a IPv4 or IPv6	IPv4 or IPv6 Type-Of-Service (TOS) byte.
18	TTL	8	When packet is a IPv4,IPv6 or MPLS	IPv4, IPv6 or MPLS Time-To-Live (TTL) byte.
19	L4 Source Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets source port.
20	L4 Destination Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets destination port.
21	IPv6 Flow Label	20	When a packet is a IPv6.	IPv6 Flow Label.
22	L4 Protocol	8	When packet is a IPv4 or IPv6	IPv4, IPv6 L4 protocol type byte.
23	Ethernet Type	16	Always valid	The packets Ethernet Type after VLANs.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
24	L4 Type	3	Always valid	The type of an L4 packet. 0 = Not any type in this list. 1 = IPv6 or IPv4 packet but L4 protocol is not UDP, TCP, IGMP, ICMP, ICMPv6 or MLD 2 = UDP in IPv4/6 3 = TCP in IPv4/6 4 = IGMP in IPv4/6 5 = ICMP in IPv4/6 6 = ICMPv6 in IPv6, excluding MLD 7 = MLD - sub protocol of ICMPv6
25	L3 Type	2	Always valid	The type of an L3 packet. 0 = IPv4 1 = IPv6 2 = MPLS 3 = Not IPv4,IPv6 or MPLS.
26	Source Port	4	Always valid	The source port of the packet.
27	Rule Pointer	2	Always valid	The rule pointer (index in the Ingress Configurable ACL N Rules Setup).

14.2.4 Example Of Selecting Fields For Configurable Ingress ACL Table 2

Since this ACL engine can select up to 20 fields. This is done by setting bits in the rule pointers fieldSelectBit-mask. Lets look at a few examples of the layout of the 540 bits in search key looks like when different fields are selected.

Example ACL with Ethernet Type

0	Ethernet Type	Valid
-	Width: 16	1
17	16 1	0 0

Table 14.20: Hash Key Example for Ethernet Type

Example with Destiantion MAC Address and Outer VLAN VID

In this example we want to create a rule which with two fields which are destiantion MAC address and outermost VLAN Identifier. This means that the fieldSelectBitmask, which is 28 bits , will be set as follows 1010 in binary format (Hex value of 0xa) and the lookup data will be located as follows:

0	MAG	C DA	Outer	Valid			
-	Widtl	h: 48	Width	: 12	2		
62	61 14		13	2	1	0	

Table 14.21: Hash Key Example for Destiantion MAC Address and Outer LAN VID

Example of Simple L2 ACL

In this example we want to create a rule which with three L2 fields which are Destiantion MAC address, source MAC address and Ethernet Type. Typically this is a L2 ACL Engine. This means that the fieldSelectBitmask, which is 28 bits , will be set as follows 100000000000000000000110 in binary format (Hex value of 0x800006) and the lookup data will be located as follows:

86 Packet Architects AB

0	Ethernet Type	MAC DA	MAC SA	Valid
-	Width: 16	Width: 48	Width: 48	3
115	114 99	98 51	50 3	2 0

Table 14.22: Hash Key Example for Simple L2 ACL

Example of L3 IPv4 ACL

0	L3 ⁻	Гуре	IPv4	I DA	IPv4	1 SA	L4 Pro	tocol	Va	lid
-	Width: 2		Width: 32		Width: 32		Width: 8		4	
78	77	76	75	44	43	12	11	4	3	0

Table 14.23: Hash Key Example for L3 IPv4 ACL

Example of L4 ACL

0	Source Port		Source Port L3 T		L4 Pro	otocol	L4 Destina	ation Port	L4 Sou	Va	lid	
		n : 4 Width : 2		Widt	h : 8	Width: 16		Width: 16		5	5	
51	50	47	46	45	44	37	36	21	20	5	4	0

Table 14.24: Hash Key Example for L4 ACL

Example of Openflow Entry

In this example we want to create a rule which looks like an Openflow entry. This can be done by selecing source port, destiantion MAC, source MAC, Ethernet Type, inner VLAN, outer VLAN, L3 Type, IPv4 SA, IPv4 DA, L4 protocol, L4 Source port and L4 Destiantion port and finally the rule pointer. All in all 13 fields are selected. This means that the fieldSelectBitmask, which is 28 bits , will be set as follows 1110110110000011001000001110 in binary format (Hex value of 0xed8320e) and the lookup data will be located as follows:

0	Source	e Port	MAG	C DA	MAC	SA	Oute	· VID	Inner	· VID	Ethe	rnet Type	L	3 Type
-	Widt	h : 4	Widt	h : 48	Width	: 48	Width	ı: 12	Width	ı: 12	Wie	dth : 16	W	idth: 2
261	260	257	256	209	208	161	160	149	148	137	136	121	12	0 119
ΙΡν	4 SA	IPv4	- DA	L4 Pr	otocol	L4 D	estinati	on Port	: L4	Source	Port	Rule Poi	nter	Valid
Widt	:h : 32	Width	ı: 32	Widt	h : 8	١ ١	Nidth :	16	V	√idth:	16	Width	: 2	13
118	87	86	55	54	47	46	5	31	3	0	15	14	13	12 0

Table 14.25: Hash Key Example for Openflow Entry

Example of Ingress NAT Entry

	0	Source Port	L3 Type	IPv4 SA	L4 Type	L4 Source Port	Valid	
ı	- Width : 4		Width: 2	Width: 32	Width: 3	Width: 16	5	
İ	62	61 58	57 56	55 24	23 21	20 5	4 0	

Table 14.26: Hash Key Example for Ingress NAT Entry

Fields for Configurable Ingress ACL Table 3

The following fields can be selected for Configurable Ingress ACL Table 3, the column Bit in Select Bitmask is the number which is set in the bitmask to select the field.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
0	L2 Packet Flags	4	Always valid	Type of L2 Packet . Bit [0] Is if the packet has a SNAP header. Bit [1] Is If the L2 packet has a PPPoE header with Ethernet Type==0x8863. Bit [2] Is If the L2 packet has a PPPoE header with Ethernet Type==0x8864. Bit [3] Is if the packet is a PPPoE but the carried type is not IPv4 or IPv6.
1	IPv4 Options	5	Always valid	Bit [0] is if the IPv4 header fragment offset field is not zero. Bit [1] is if the IPv4 header length != 20 bytes. Bit [4:2] IPv4 Header Flags in the header (the three bit flags for fragmentation).
2	TCP Flags	9	When packet has a L4 TCP protocol and is not a fragment.	The tcp flags for the packet. Bit 0: ns, Bit 1: cwr, Bit 2: ece, Bit 3: urg, Bit 4: ack, Bit 5: psh, Bit 6: rst, Bit 7:syn, Bit 8: fin
3	TOS	8	When packet is a IPv4 or IPv6	IPv4 or IPv6 Type-Of-Service (TOS) byte.
4	L4 Source Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets source port.
5	L4 Destination Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets destination port.
6	L4 Protocol	8	When packet is a IPv4 or IPv6	IPv4, IPv6 L4 protocol type byte.
7	Ethernet Type	16	Always valid	The packets Ethernet Type after VLANs.
8	L4 Type	3	Always valid	The type of an L4 packet. 0 = Not any type in this list. 1 = IPv6 or IPv4 packet but L4 protocol is not UDP, TCP, IGMP, ICMP, ICMPv6 or MLD 2 = UDP in IPv4/6 3 = TCP in IPv4/6 4 = IGMP in IPv4/6 5 = ICMP in IPv4/6 6 = ICMPv6 in IPv6, excluding MLD 7 = MLD - sub protocol of ICMPv6
9	L3 Type	2	Always valid	The type of an L3 packet. 0 = IPv4 1 = IPv6 2 = MPLS 3 = Not IPv4,IPv6 or MPLS.

14.2.5 Example Of Selecting Fields For Configurable Ingress ACL Table 3

Since this ACL engine can select up to 10 fields. This is done by setting bits in the rule pointers fieldSelectBit-mask. Lets look at a few examples of the layout of the 80 bits in search key looks like when different fields are selected.

Example ACL with Ethernet Type

In this example we only want to create a rule with one field which is the Ethernet Type. This means that the fieldSelectBitmask, which is 10 bits, will be set as follows 10000000 in binary format (Hex value of 0x80) and the lookup data will be located as follows:

0	Ethernet	Туре	Va	lid
-	Width:	16	1	L
17	16	1	0	0

Table 14.28: Hash Key Example for Ethernet Type

Example of Exception ACL

In this example we want to create an rule where exception packets are selected they can then be send to CPU or dropped. This means that the fieldSelectBitmask, which is 10 bits, will be set as follows 1100000111 in binary format (Hex value of 0x307) and the lookup data will be located as follows:

0	L2 Packet Flags		IPv4 Options		TCP	Flags	L4 T	ype	L3 7	уре	Valid	
-	Width: 4		Width: 5		Width: 9		Width: 3		Width: 2		5	5
28	27	24	23	19	18	10	9	7	6	5	4	0

Table 14.29: Hash Key Example for Exception ACL

14.2.6 ACL Search

The hash key is used to perform a lookup using the D-left hashing function described in detail in chapter D-left Lookup.

Before the hash key is used the mask in Ingress Configurable ACL N Search Mask is applied.

D-left calculates two hash values from the hash key. These hash values are then used to index the **Ingress Configurable ACL N Small Table** and **Ingress Configurable ACL N Large Table**. The hash calculations are described in section Hash function for Configurable ACL.

In addition to the D-left search the hash key is also used to search in the Ingress Configurable ACL N TCAM .

14.2.7 ACL Actions

Once a hit has been determined by any of the searches above, the answer is read out from the corresponding answer entry. If it was a D-left hash hit then the answer actions is part of the hash memories (Ingress Configurable ACL N Small Table , Ingress Configurable ACL N Large Table). If it was a hit in the TCAM then the Ingress Configurable ACL N TCAM Answer is used.

The behavior for multiple hits is configured in Ingress Configurable ACL N Selection .

The statistics counter which can be updated are located in the Ingress Configurable ACL Match Counter

14.3 Multiple ACL Lookups

The section above describes a single ACL Lookup. There are however 4parallel ACL lookups. The functionality in the different lookup engines is the same with the exception that ACL engine 0 has seperate keys for IGMP, ICMP or MLD packets which are not available in the other engines.

Each of the ACL engines has its own rule configuration as well as its own hash and TCAM tables. The hash and TCAM table sizes and search data width for the different engines are as follows.

By using the same rules for multiple engines the table space for a rule can be extended.

14.3.1 Multiple Actions

If the parallel ACL engines have multiple matches the result actions from each search engine can take effect. How multiple actions are handled depends on the type of action.

Any Match

If one or more ACL engines matches and has this action set then the action will take effect.

Action Field	Ingress	Ingress	Ingress	Ingress
	Acl 0	Acl 1	Acl 2	Acl 3
	Has	Has	Has	Has
	Ac-	Ac-	Ac-	Ac-
	tion	tion	tion	tion
ptp	No	Yes	Yes	No
noLearning	No	Yes	Yes	No
dropEnable	Yes	Yes	Yes	Yes
sendToCpu	Yes	Yes	Yes	Yes

Table 14.30: Actions that will take effect if one or more is set.

First Match or Priority

If multiple ACL engines matches and has this action set then the value from the lowest numbered engine will be used. If an entry has the priority field set this value will be used and the values which do not have priority set will be ignored. If multiple matches have the priority field set then value from the highest numbered engine will be used.

Counter Update

All matches that have counter update action, **updateCounter** set will take effect. Each counter pointed to will be updated. If multiple actions point to the same counter then the counter value will only be incremented by one

Send To Port

All matches that have an action **sendToPort** will take effect by setting the port number in the packet destination port mask, possibly resulting in a multicast.

Send To CPU

If any match has the **sendToCpu** action set it will take effect. When the To CPU Tag is used the reason code will indicate table index in the lowest numbered engine.

Ingress Admission Control Pointer

If there are multiple matches with actions to set the MMP pointer, mmpPointer then the selection will be done based on the mmpOrder field. This selection is described in Ingress Admission Control.

Update IP Action

In some engines there can also be actions to update the IP fields. Since these actions are only available in one ACL engine there is no need to resolve multiple hits. If an action is enabled and the entry is hit it will take effect.

Enable Field	Priority Field	Value Field	Ingress	Ingress	Ingress	Ingress
	-		Acl 0	Acl 1	Acl 2	Acl 3
			Has	Has	Has	Has
			Ac-	Ac-	Ac-	Ac-
			tion	tion	tion	tion
forceVidValid	forceVidPrio	forceVid	No	Yes	Yes	No
forceQueue	forceQueuePrio	eQueue	Yes	Yes	Yes	Yes
forceColor	forceColorPrio	color	Yes	Yes	Yes	Yes
mmpValid	mmpOrder	mmpPtr	Yes	Yes	Yes	Yes
updateCfiDei	cfiDeiPrio	newCfiDeiValue	No	Yes	Yes	No
updatePcp	pcpPrio	newPcpValue	No	Yes	Yes	No
updateVid	vidPrio	newVidValue	No	Yes	Yes	No
updateEType	ethPrio	newEthType	No	Yes	Yes	No
imPrio	inputMirror	destInputMirror	Yes	Yes	Yes	No
natOpValid	natOpPrio	natOpPtr	Yes	Yes	Yes	No
tunnelEntry	tunnelEntryPrio	tunnelEntryPtr	No	Yes	Yes	No
		tunnelEn-				
		tryUcMc				
sendToPort	N/A	destPort	Yes	Yes	Yes	Yes
metaDataValid	metaDataPrio	metaData	Yes	Yes	Yes	Yes
updateCounter	N/A	counter	Yes	Yes	Yes	No
enableUpdateIp	N/A	updateSaOrDa	Yes	Yes	Yes	No
		newlpValue				
enableUpdateL4	N/A	updateL4SpOrDp	Yes	Yes	Yes	No
		newL4Value				
updateTosExp	N/A	newTosExp	Yes	Yes	Yes	No

Table 14.31: The lowest numbered takes effect if no priority else the highest numbered with priority set.

14.3.2 Default Port ACL action

When a port has the field **enableDefaultPortAcl** set then once a packet misses the ingress ACL lookup, on this source port, this action will be carried out. The action to be carried out is specified in the register **Source Port Default ACL Action**. The actions are the same which can be done for the ACL Lookup. If the bit is set in field **forcePortAclAction** then all packets coming in on this source port are subjected to the actions specified in **Source Port Default ACL Action**. This force ACL default action overrides all other ingress ACL actions/decisions.

14.4 Configurable Egress ACL Engine

The egress ACL engine uses a configurable selection of fields from the incoming packet headers, from L2 fields to L4 fields. From the selected fields a hash table lookup is then done using D-left hashing. The hashing is combined with a TCAM to resolve hash collisions and to enable per entry masking of data. Each of the hash tables can also be masked, but only a single mask can be applied for all data in a hash table.

There are 2 parallell ACL engines that each can perform one lookup per packet. All lookups are done in parallel and then there is a post processing of all the matching results to determine what actions to perform. There can be multiple actions taken for a single packet. How the actions are determined when there are multiple matches are described below.

ACL	Width	Fields	Nr of	Number	Small	Large	TCAM
Engine	of	to se-	Rules	of Parallel	Table	Table	Entries
	Search	lect	(Fields)	Hash	Entries	Entries	
	Data	from	to maxi-	Tables			
			mum use				
0	135	18	7	4	256	1024	16
1	540	20	20	2	0	0	16

Table 14.32: Egress ACL Engine Settings

14.4.1 Field Selection

Which fields that will be used in the ACL search is configured in the **Egress Configurable ACL N Rules Setup** table. To determine which rule in the table to use the forwarding result from routing and switching is input to a search in **Egress ACL Rule Pointer TCAM**.

The rule pointer determined through this search is then index into **Egress Configurable ACL N Rules Setup** table. This table determines which fields that will be part of the hash key in the ACL search.

The possible fields to select are shown below for each ACL engine.

Determining Rule

The forwarding result fields that are used to search in the **Egress ACL Rule Pointer TCAM** are listed below. There is also a mask field for each of the search data fields allowing a selection of which bits in a field that should be compared.

Field	Description
destPortMask	The packets egress ports, one bit per port.
routed	The packet was routed.
vrf	The VRF used when routed.
flooded	The packet was flooded due to L2 table miss.
ucSwitched	The packet was L2 switched to a unicast destination port.
mcSwitched	The packet was L2 switched to a multicast group.
vid	The index used in the VLAN table lookup.
L3 Type	The incoming packets L3 type. IPv4, IPv6 , MPLS or other.
L4 Type	The incoming packets L4 type. TCP,UDP,IGMP,ICMP,ICMPv6,MLD etc.
srcPort	The packets source port.

Table 14.33: Fields used in the rule search.

The TCAM is searched starting at entry 0 and the first matching entry is used. The result is then taken from the Egress ACL Rule Pointer TCAM Answer table at the corresponding position. The result is a rule pointer into the Egress Configurable ACL N Rules Setup tables.

If there is no match in the TCAM the rule pointer 0 will be used. The rule setup can thus not be used to disable the ACL search.

Each Egress ACL engine has a separate rule table and seperate pointers to each acl rule table.

Creating the hash key

All the bits from the fields selected in a rule are concatenated into a hash key. The hash key is used in several places.

- From the hash key two hash indexes are calculated which points into the Egress Configurable ACL N Small Table and Egress Configurable ACL N Large Table .
- Secondly the hash key is stored in the compareData field of the hash table entries.
- If a Egress Configurable ACL N TCAM entry is used the packet data keys are stored in the compareData field of that entry.
- When searching the tables a hash key is constructed from the incoming packets decoded packet fields. The appropriate valid bits are set.

Following the valid bits are the field data in the order that the fields are selected in **Egress Configurable ACL N Rules Setup** .

Selectable Packet Fields

The table below lists which fields that are possible to select along with a description on when the fields are valid.

A selected field will only result in a match if the incoming packet has the correct protocol type for the selected field, as determined by the Packet Decoder. For example to match an IPv4 source address does therefore not require that the rule contains a field that checks that the protocol type is a IPv4 packet.

Fields for Configurable Egress ACL Table 0

The following fields can be selected for Configurable Egress ACL Table 0, the column Bit in Select Bitmask is the number which is set in the bitmask to select the field.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
0	MAC DA	48	Always valid	The packets destination MAC address.
1	MAC SA	48	Always valid	The packets source MAC address
2	IPv4 SA	32	When L2 frame holds a IPv4 packet.	IPv4 Source Address.
3	IPv4 DA	32	When L2 frame holds a IPv4 packet.	IPv4 Destination Address.
4	IPv6 SA	128	When L2 frame holds a IPv6 packet.	IPv6 Source Address.
5	IPv6 DA	128	When L2 frame holds a IPv6 packet.	IPv6 Destination Address.
6	L4 Source Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets source port.
7	L4 Destination Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets destination port.
8	GID	12	Always valid	GID Pointer from VLAN Table.
9	VID	12	Always valid	The internal VID assigned to the packet.
10	L2 Multicast Pointer	6	When a L2 or L3 router points to a L2 Multicast entry.	If a packet uses a multicast pointer (To the L2 Multicast table) then this is the pointer value.
11	Destination Port- mask	11	Always valid	The destination portmask for the packet.
12	L4 Protocol	8	When packet is a IPv4 or IPv6	IPv4, IPv6 L4 protocol type byte.
13	Ethernet Type	16	Always valid	The packets Ethernet Type after VLANs.
14	L4 Type	3	Always valid	The type of an L4 packet. 0 = Not any type in this list. 1 = IPv6 or IPv4 packet but L4 protocol is not UDP, TCP, IGMP, ICMP, ICMPv6 or MLD 2 = UDP in IPv4/6 3 = TCP in IPv4/6 4 = IGMP in IPv4/6 5 = ICMP in IPv4/6 6 = ICMPv6 in IPv6, excluding MLD 7 = MLD - sub protocol of ICMPv6
15	L3 Type	2	Always valid	The type of an L3 packet. 0 = IPv4 1 = IPv6 2 = MPLS 3 = Not IPv4,IPv6 or MPLS.
16	Source Port	4	Always valid	The source port of the packet.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
17	Rule Pointer	3	Always valid	The rule pointer (index in the Ingress Configurable ACL N Rules Setup).

14.4.2 Example Of Selecting Fields For Configurable Egress ACL Table 0

Since this ACL engine can select up to 7 fields. This is done by setting bits in the rule pointers fieldSelectBit-mask. Lets look at a few examples of the layout of the 135 bits in search key looks like when different fields are selected.

Example ACL with MAC DA

In this example we only want to create a rule with one field which is the MAC destiantion address. This means that the fieldSelectBitmask, which is 18 bits , will be set as follows 1 in binary format (Hex value of 0x1) and the lookup data will be located as follows:

0	MAC DA	Valid
-	Width: 48	1
49	48 1	0 0

Table 14.35: Hash Key Example for MAC DA

Example of Simple L2 ACL

In this example we want to create a rule which with three L2 fields which are Destiantion MAC address, source MAC address and Ethernet Type. Typically this is a L2 ACL Engine. This means that the fieldSelectBitmask, which is 18 bits , will be set as follows 10000000000011 in binary format (Hex value of 0x2003) and the lookup data will be located as follows:

0	Ethernet Type	MAC DA	MAC SA	Valid
-	Width: 16	Width: 48	Width: 48	3
115	114 99	98 51	50 3	2 0

Table 14.36: Hash Key Example for Simple L2 ACL

Example of L3 IPv4 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address, source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means that the fieldSelectBitmask, which is 18 bits , will be set as follows 1001000000001100 in binary format (Hex value of 0x900c) and the lookup data will be located as follows:

0	L3 Type	IPv4 DA	IPv4 SA	L4 Protocol	Valid
-	Width: 2	Width: 32	Width: 32	Width: 8	4
78	77 76	75 44	43 12	11 4	3 0

Table 14.37: Hash Key Example for L3 IPv4 ACL

Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port, L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the fieldSelectBitmask, which is 18 bits , will be set as follows 11001000011000000 in binary format (Hex value of 0x190c0) and the lookup data will be located as follows:

0	Source Port	L3 Type	L4 Protocol	L4 Destination Port	L4 Source Port	Valid
-	Width: 4	Width: 2	Width: 8	Width: 16	Width: 16	5
51	50 47	46 45	44 37	36 21	20 5	4 0

Table 14.38: Hash Key Example for L4 ACL

Example of Egress NAT Entry

In this example we want to create an rule where the result would be used to change destination IP address and/or destination L4 Address. This means that the fieldSelectBitmask, which is 18 bits , will be set as follows 1100000010001000 in binary format (Hex value of 0xc088) and the lookup data will be located as follows:

0	L3 Type	IPv4 DA	L4 Type	L4 Destination Port	Valid
-	Width: 2	Width: 32	Width: 3	Width: 16	4
57	56 55	54 23	22 20	19 4	3 0

Table 14.39: Hash Key Example for Egress NAT Entry

Example of IPsec Encryption Entry

In this example we want to create an rule where the result would be used to send the packet to the crypto engine to be encrypted before it should be sent out. This means that the fieldSelectBitmask, which is 18 bits , will be set as follows 10000000000000000 in binary format (Hex value of 0x8008) and the lookup data will be located as follows:

0	L3 Ty	/pe	IPv4	Valid		
-	Width	: 2	Width	2	2	
36	35	34	33	2	1	0

Table 14.40: Hash Key Example for IPsec Encryption Entry

Example of MACsec Encryption Entry

In this example we want to create an rule where the result would be used to send the packet to the crypto engine to be encrypted before it should be sent out. This means that the fieldSelectBitmask, which is 18 bits, will be set as follows 1000000000000 in binary format (Hex value of 0x800) and the lookup data will be located as follows:

0	Destination Portmask	Valid
-	Width: 11	1
12	11 1	0 0

Table 14.41: Hash Key Example for MACsec Encryption Entry

Fields for Configurable Egress ACL Table 1

The following fields can be selected for Configurable Egress ACL Table 1, the column Bit in Select Bitmask is the number which is set in the bitmask to select the field.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
0	L2 Packet Processing Flags	2	Always valid	Type of L2 packet processingwhich is to be done with this packet. Bit[0] If the packet was going to result to a port Move. Note that if the L2 Action Table forced the port move to not happen this field data follow this action. Bit[1] Packet is to be learned.
1	MAC DA	48	Always valid	The packets destination MAC address.
2	MAC SA	48	Always valid	The packets source MAC address
3	IPv4 SA	32	When L2 frame holds a IPv4 packet.	IPv4 Source Address.
4	IPv4 DA	32	When L2 frame holds a IPv4 packet.	IPv4 Destination Address.
5	IPv6 SA	128	When L2 frame holds a IPv6 packet.	IPv6 Source Address.
6	IPv6 DA	128	When L2 frame holds a IPv6 packet.	IPv6 Destination Address.
7	TOS	8	When packet is a IPv4 or IPv6	IPv4 or IPv6 Type-Of-Service (TOS) byte.
8	L4 Source Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets source port.
9	L4 Destination Port	16	When packet is a IPv4 or IPv6 and UDP or TCP L4 protocol is present	L4 TCP or UDP packets destination port.
10	GID	12	Always valid	GID Pointer from VLAN Table.
11	VID	12	Always valid	The internal VID assigned to the packet.
12	L2 Multicast Pointer	6	When a L2 or L3 router points to a L2 Multicast entry.	If a packet uses a multicast pointer (To the L2 Multicast table) then this is the pointer value.
13	Destination Port- mask	11	Always valid	The destination portmask for the packet.
14	L4 Protocol	8	When packet is a IPv4 or IPv6	IPv4, IPv6 L4 protocol type byte.
15	Ethernet Type	16	Always valid	The packets Ethernet Type after VLANs.
16	L4 Type	3	Always valid	The type of an L4 packet. 0 = Not any type in this list. 1 = IPv6 or IPv4 packet but L4 protocol is not UDP, TCP, IGMP, ICMP, ICMPv6 or MLD 2 = UDP in IPv4/6 3 = TCP in IPv4/6 4 = IGMP in IPv4/6 5 = ICMP in IPv4/6 6 = ICMPv6 in IPv6, excluding MLD 7 = MLD - sub protocol of ICMPv6
17	L3 Type	2	Always valid	The type of an L3 packet. 0 = IPv4 1 = IPv6 2 = MPLS 3 = Not IPv4,IPv6 or MPLS.
18	Source Port	4	Always valid	
10	Jource Port	4	Aiways valid	The source port of the packet.

Bit in Select Bitmask	Field Name	Size in Bits	When is field valid?	Description
19	Rule Pointer	2	Always valid	The rule pointer (index in the Ingress Configurable ACL N Rules Setup).

14.4.3 Example Of Selecting Fields For Configurable Egress ACL Table 1

Since this ACL engine can select up to 20 fields. This is done by setting bits in the rule pointers fieldSelectBit-mask. Lets look at a few examples of the layout of the 540 bits in search key looks like when different fields are selected.

Example ACL with TOS Byte

In this example we only want to create a rule with one field which is the TOS. This means that the fieldSelectBitmask, which is 20 bits , will be set as follows 10000000 in binary format (Hex value of 0x80) and the lookup data will be located as follows:

0	TO	S	Va	lid
-	Width	1		
9	8	1	0	0

Table 14.43: Hash Key Example for TOS Byte

Example of Simple L2 ACL

In this example we want to create a rule which with three L2 fields which are Destiantion MAC address, source MAC address and Ethernet Type. Typically this is a L2 ACL Engine. This means that the fieldSelectBitmask, which is 20 bits , will be set as follows 100000000000110 in binary format (Hex value of 0x8006) and the lookup data will be located as follows:

0	Ethernet Type	MAC DA	MAC SA	Valid
-	Width: 16	Width: 48	Width: 48	3
115	114 99	98 51	50 3	2 0

Table 14.44: Hash Key Example for Simple L2 ACL

Example of L3 IPv4 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address, source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means that the fieldSelectBitmask, which is 20 bits , will be set as follows 10010000000011000 in binary format (Hex value of 0x24018) and the lookup data will be located as follows:

	0	L3 7	Гуре	IPv4	- DA	IPv4	I SA	L4 Pro	otocol	Va	llid
İ	-	Widt	h : 2	Widtl	ı: 32	Widtl	ı: 32	Width	า : 8	4	4
İ	78	77	76	75	44	43	12	11	4	3	0

Table 14.45: Hash Key Example for L3 IPv4 ACL

Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port, L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the fieldSelectBitmask, which is 20 bits , will be set as follows 11001000011000000000 in binary format (Hex value of 0x64300) and the lookup data will be located as follows:

0	Source Port	L3 Type	L4 Protocol	L4 Destination Port	L4 Source Port	Valid
-	Width: 4	Width: 2	Width: 8	Width: 16	Width: 16	5
51	50 47	46 45	44 37	36 21	20 5	4 0

Table 14.46: Hash Key Example for L4 ACL

Example of Egress NAT Entry

In this example we want to create an rule where the result would be used to change destination IP address and/or destination L4 Address. This means that the fieldSelectBitmask, which is 20 bits , will be set as follows 110000001000010000 in binary format (Hex value of 0x30210) and the lookup data will be located as follows:

0	L3 Type		IPv4 DA L4 Type		L4 Destination Port		Va	lid		
- Width: 2		Width: 32		Width: 3		Width: 16		4	1	
57	56	55	54	23	22	20	19	4	3	0

Table 14.47: Hash Key Example for Egress NAT Entry

Example of IPsec Encryption Entry

In this example we want to create an rule where the result would be used to send the packet to the crypto engine to be encrypted before it should be sent out. This means that the fieldSelectBitmask, which is 20 bits , will be set as follows 100000000000000000 in binary format (Hex value of 0x20010) and the lookup data will be located as follows:

0	L3 Type		IPv4	Valid		
-	Widt	h : 2	Width	ı: 32	2	2
36	35	34	33	2	1	0

Table 14.48: Hash Key Example for IPsec Encryption Entry

Example of MACsec Encryption Entry

In this example we want to create an rule where the result would be used to send the packet to the crypto engine to be encrypted before it should be sent out. This means that the fieldSelectBitmask, which is 20 bits , will be set as follows 10000000000000 in binary format (Hex value of 0x2000) and the lookup data will be located as follows:

0	Destination	Valid		
-	Width: 11]	L
12	11	1	0	0

Table 14.49: Hash Key Example for MACsec Encryption Entry

14.4.4 ACL Search

The hash key is used to perform a lookup using the D-left hashing function described in detail in chapter D-left Lookup.

Before the hash key is used the mask in **Egress Configurable ACL N Search Mask** is applied.

D-left calculates two hash values from the hash key. These hash values are then used to index the **Egress Configurable ACL N Small Table** and **Egress Configurable ACL N Large Table**. The hash calculations are described in section Hash function for Configurable ACL.

In addition to the D-left search the hash key is also used to search in the Egress Configurable ACL N TCAM

98

Packet Architects AB

14.4.5 ACL Actions

Once a hit has been determined by any of the searches above, the answer is read out from the corresponding answer entry. If it was a D-left hash hit then the answer actions is part of the hash memories (Egress Configurable ACL N Small Table , Egress Configurable ACL N Large Table). If it was a hit in the TCAM then the Egress Configurable ACL N TCAM Answer is used.

The behavior for multiple hits is configured in **Egress Configurable ACL N Selection** .

The statistics counter which can be updated are located in the Egress Configurable ACL Match Counter

14.5 Multiple ACL Lookups

The section above describes a single ACL Lookup. There are however 2 parallel ACL lookups.

Each of the ACL engines has its own rule configuration as well as its own hash and TCAM tables. By using the same rules for multiple engines the table space for a rule can be extended.

14.5.1 Multiple Actions

If the parallel ACL engines have multiple matches the result actions from each search engine can take effect. How multiple actions are handled depends on the type of action.

Any Match

If one or more ACL engines matches and has this action set then the action will take effect.

Action Field	Egress Acl 0 Has Ac- tion	Egress Acl 1 Has Ac- tion
dropEnable	Yes	Yes
sendToCpu	Yes	Yes

Table 14.50: Actions that will take effect if one or more is set.

First Match or Priority

If multiple ACL engines matches and has this action set then the value from the lowest numbered engine will be used

If an entry has the priority field set this value will be used and the values which do not have priority set will be ignored.

If multiple matches have the priority field set then value from the highest numbered engine will be used.

Counter Update

All matches that have counter update action, **updateCounter**, set will take effect. Each counter pointed to will be updated. If multiple actions point to the same counter then the counter value will only be incremented by one.

Send To Port

All matches that have an action **sendToPort** will take effect by setting the port number in the packet destination port mask. Any previous destination ports set will be cleared.

Send To CPU

If any match has the **sendToCpu** action set it will take effect. When the To CPU Tag is used the reason code will indicate table index in the lowest numbered engine. Any previous destination ports set will be cleared.

Enable Field	Priority Field	Value Field	Egress	Egress
			Acl 0	Acl 1
			Has	Has
			Ac-	Ac-
			tion	tion
natOpValid	natOpPrio	natOpPtr	Yes	No
tunnelEntry	tunnelEntryPrio	tunnelEntryPtr	Yes	Yes
		tunnelEn-		
		tryUcMc		
sendToPort	N/A	destPort	Yes	Yes
metaDataValid	metaDataPrio	metaData	Yes	Yes
updateCounter	N/A	counter	Yes	Yes

Table 14.51: The lowest numbered takes effect if no priority else the highest numbered with priority set.

Chapter 15

VLAN and Packet Type Filtering

This chapter gives an overview of the filtering options available on ingress and egress. Filtering allows different types of packets to be accepted or dropped.

A filter is applied at the source port as packets enter the switch core. This is set up in the **Ingress Port Packet Type Filter** register.

When the packet is ready to be queued, the **Ingress Egress Port Packet Type Filter** is applied for each egress port the packet is to be queued onto. If the packet is dropped then a drop counter is updated for each packet which is dropped.

Before a packet is to be sent out, the egress port it is checked in the Egress Port Configuration to see if the packet is allowed to be sent out.

The settings are unique for each port.

A packet of a certain type may be allowed to enter on a certain ingress port. But this does not mean the frame is ultimately allowed to be transmit, since ingress and egress port filters are setup independently.

In addition to the egress port packet type filter, there is also a source port filter on the egress port. This is found in **srcPortFilter**. The source port filter on the egress port allows a user to decide whether packets from a certain source port are allowed to be sent out on an egress port. The outcome of the filtering options are either to drop a packet, or to allow it.

Since the source port table, vlan table and egress port configuration can all have VLAN operations which changes the packet, it is important to understand on which packet the filtering is actually done.

- The source port filtering is done on the packet as it enters the switch without any packet modifications.
- The ingress egress port filtering is done on the packet after the source port and VLAN table VLAN operations. The L2 Multicast is calculated in the same way as MBSC register L2 Multicast Handling.
- The egress port filtering is done after all the VLAN operations has been carried out including the egress ports
 own VLAN operations.

Note that if a user defined VLAN tag is pushed, it will always be regarded as a C-VLAN tag by the filtering.

Chapter 16

Hashing

Hashing is used to enable the use of SRAM memories instead of using CAMs for lookups.

16.1 Hashing Functions

This section describes the hash functions used in this core.

16.1.1 MAC Table Hashing

The hash function receives the destination MAC address and GID as an input and it returns a hash with the same bit width as the address for the L2 DA Hash Lookup Table divided by number of buckets (4). The table is divided into equal sized parts/buckets which are readout in parallel.

Hash Function for MAC Table

The XOR hash function splits the key into 6 parts, each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

When learning random MAC addresses the hash function results in an average utilization of the L2 table of 40% (including/excluding multicast addresses does not change this). When learning sequential MAC addresses (such as in the RFC2889) the utilization is 100%.

Python code for the hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_l2_hash( key ):
  """ key: 60 bits hash key
          key[59:48] = GID
          key[47:0] = MAC
      fold\ count = 6
      returns: 10 bits hash value
  hashval = key \& 0b11111111111
  hashval = hashval ^ (key >> 10)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 20)
  hashval = hashval \& 0b1111111111
  hashval = hashval^
                       (key >> 30)
  hashval = hashval \& 0b11111111111
  hashval = hashval ^ (key >> 40)
  hashval = hashval \& 0b11111111111
  hashval = hashval ^ (key >> 50)
  hashval = hashval \& 0b1111111111
  return hashval
def mac_str2int( mac_adr ):
    """ Convert Ethernet MAC address from string format, e.g.'46:61:62:bc:84:dd'
```

16.1.2 IP Table Hashing

The hash function receives the destination IP address and VRF as key and returns a hash with the same number of bits as the address for the **Hash Based L3 Routing Table**.

Hash Function for IPv4

The XOR hash function splits the key into parts, each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

When learning random IPv4 addresses the hash function results in an average utilization of the hash table of 20%

Python code for the IPv4 hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_l3_ipv4_hash( key ):
  """ key: 34 bits hash key
          key[33:32] = VRF
          key[33:0] = IP \ address
      fold\ count = 4
      returns: 9 bits hash value
  hashval = key \& 0b1111111111
  hashval = hashval ^ (key >> 9)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 18)
  hashval = hashval & 0b111111111
  hashval = hashval ^ (key >> 27)
  hashval = hashval \& 0b1111111111
  return hashval
def ipv4_str2int( ip_addr ):
     "" Convert IPv4 address from string format, e.g. 192.168.0.123,
        to integer """
    parts = ip_addr.split('.')
    res = 0
    for p in parts:
        res <<= 8
        res = int(p)
    return res
```



```
def l3_ipv4_hash( vrf, ip_addr ):
  """ Calculate index into L3 hash table from VRF and IP address.
      Both parameters must be integers. """
  key = (vrf \& 0x3) << 32
  key |= ip_addr
  return calc_l3_ipv4_hash( key )
def ipv4_hash_test():
   \# Simple test of the hash function to clarify how the key is calculated.
   # IP: 70.119.98.188 (leftmost byte is first byte received)
   # VRF:3
    vrf = 3
    ip = 0 \times 467762bc
    key = ( vrf \ll 32 ) | ip
   \# the hash value is used as index into the Hash Based L3 Routing Table
    hashval = calc_l3_ipv4_hash(key)
    assert hashval == 248
```

Hash Function for IPv6

The XOR hash function splits the key into parts, each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

When learning random IPv6 addresses the hash function results in an average utilization of the hash table of 20%

Python code for the IPv6 hashing function is shown below as well as a test case to clarify how the key is calculated

```
def calc_l3_ipv6_hash( key ):
  """ key: 130 bits hash key
           key[129:128] = VRF
           key[129:0] = IP \ address
      fold\ count = 15
      returns: 9 bits hash value
  hashval = key \& 0b1111111111
  hashval = hashval ^ (key >> 9)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 18)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 27)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 36)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 45)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 54)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 63)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 72)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 81)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 90)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 99)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 108)
  hashval = hashval \& 0b111111111
```



```
hashval = hashval ^ (key >> 117)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 126)
  hashval = hashval \& 0b1111111111
  return hashval
def | 13_ipv6_hash( vrf, ip_addr ):
   " Calculate index into L3 hash table from VRF and IP address.
      Both parameters must be integers. """
  key = (vrf \& 0x3) << 128
  key |= ip_addr
  return calc_l3_ipv6_hash( key )
def ipv6_hash_test():
   \# Simple test of the hash function to clarify how the key is calculated.
   # IP: d8a7:da8b:: (leftmost byte is first byte received)
   # VRF:3
    vrf = 3
    \mathsf{key} = (\mathsf{vrf} << 128) \mid \mathsf{ip}
    hashval = calc_l3_ipv6_hash(key)
   # the hash value is used as index into the Hash Based L3 Routing Table
    assert hashval == 294
```

16.1.3 MPLS Table Hashing

The hash function receives the outermost MPLS label, source port number and VRF as key and returns a hash with the same number of bits as the address for the **Hash Based L3 Routing Table**

Hash Function for MPLS

The XOR hash function splits the key into parts , each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

When storing random MPLS labels the hash function results in an average utilization of the hash table of 20%

Python code for the MPLS hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_l3_mpls_hash( key ):
  """ key: 26 bits hash key
           key[25:24] = VRF
           key[23:4] = MPLS \ label
           key[3:0] = source port
       fold\ count = 3
       returns: 9 bits hash value
  hashval = key \& 0b1111111111
  hashval = hashval ^ (key >> 9)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 18)
  hashval = hashval \& 0b1111111111
  return hashval
def I3_mpls_hash( vrf, source_port, label ):
  key = (vrf \& 0xfff) << 24
  key |= label & 0xfffff << 4
  \mathsf{key} \ | = \ ( \ \mathsf{source\_port} \ \& \ \mathsf{0xf} \ )
  return calc_l3_mpls_hash( key )
```



```
def mpls_hash_test():
    # Simple test of the hash function to clarify how the key is calculated.
    # MPLS label: 28213 (leftmost byte is first byte received)
    # VRF:2
    # source port:3
    mpls_label = 28213
    vrf = 2
    srcport = 3
    key = (vrf << (4 + 20) |
        srcport << 20 |
        mpls_label)
    hashval = calc_l3_mpls_hash(key)
    # the hash value is used as index into the Hash Based L3 Routing Table
    assert hashval == 142</pre>
```

16.1.4 Hash function for Ingress Configurable ACL 0

The hash function recevies the lookup key created by selecting the fields from the packet determined by the **Ingress Configurable ACL 0 Rules Setup** The lookup key is up to 330 bits wide. The XOR hash function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_confAcl_small0_hash( key ):
  """ key: 330 bits hash key
      fold count = 55
      returns: 6 bits hash value
  hashval = key \& 0b111111
  hashval = hashval ^ (key >> 6)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 12)
  \verb|hashval| = \verb|hashval| \& 0b111111
  hashval = hashval ^ (key >> 18)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 24)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 30)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 36)
  hashval = hashval & Ob111111
  hashval = hashval ^ (key >> 42)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 48)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 54)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 60)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 66)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 72)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 78)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 84)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 90)
```



```
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 96)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 102)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 108)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 114)
hashval = hashval \& 0b1111111
hashval = hashval ^ (key >> 120)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 126)
\verb|hashval| = \verb|hashval| \& 0b111111
hashval = hashval ^ (key >> 132)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 138)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 144)
hashval = hashval \& 0b1111111
hashval = hashval ^ (key >> 150)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 156)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 162)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 168)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 174)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 180)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 186)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 192)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 198)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 204)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 210)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 216)
hashval = hashval \& 0b1111111
hashval = hashval ^ (key >> 222)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 228)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 234)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 240)
hashval = hashval \& 0b1111111
hashval = hashval ^ (key >> 246)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 252)
hashval = hashval \& 0b111111
hashval = hashval ^ (key >> 258)
hashval = hashval \& 0b1111111
hashval = hashval ^ (key >> 264)
hashval = hashval \& 0b1111111
hashval = hashval ^ (key >> 270)
hashval = hashval \& 0b1111111
hashval = hashval ^ (key >> 276)
```



```
hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 282)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 288)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 294)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 300)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 306)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 312)
  \mathsf{hashval} \ = \ \mathsf{hashval} \ \& \ \mathsf{0b111111}
  hashval = hashval ^ (key >> 318)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 324)
  hashval = hashval \& 0b111111
  return hashval
def confAcl_small0_hash( destination_address ):
     Calculate index into confAcl_smallO hash table from
      the Destination Address. The parameter must be an integer. """
  return calc_confAcl_small0_hash( key )
def calc_confAcl_largeO_hash( key ):
  """ key: 330 bits hash key
      fold count = 37
      returns: 9 bits hash value
  hashval = key & 0b111111111
  hashval = hashval ^ (key>>9)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 18)
  hashval = hashval & 0b1111111111
  hashval = hashval ^ (key >> 27)
  hashval = hashval & 0b1111111111
  hashval = hashval ^ (key >> 36)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 45)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 54)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 63)
  hashval = hashval & 0b1111111111
  hashval = hashval ^ (key >> 72)
  hashval = hashval & 0b1111111111
  hashval = hashval ^ (key >> 81)
  hashval = hashval & 0b111111111
  hashval = hashval ^ (key >> 90)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 99)
  hashval = hashval \& 0b1111111111
  hashval = hashval ^ (key >> 108)
  hashval = hashval \& 0b1111111111
```



```
hashval = hashval ^ (key >> 144)
 hashval = hashval \& 0b1111111111
 hashval = hashval ^ (key >> 153)
 hashval = hashval & 0b1111111111
 hashval = hashval ^ (key >> 162)
 hashval = hashval & 0b111111111
 hashval = hashval ^ (key >> 171)
 hashval = hashval & 0b111111111
 hashval = hashval ^ (key >> 180)
 hashval = hashval \& 0b1111111111
 hashval = hashval ^ (key >> 189)
 \mathsf{hashval} \ = \ \mathsf{hashval} \ \& \ \mathsf{0b111111111}
 hashval = hashval ^ (key >> 198)
 hashval = hashval & 0b1111111111
 hashval = hashval ^ (key >> 207)
 hashval = hashval & 0b1111111111
 hashval = hashval ^ (key >> 216)
 hashval = hashval & 0b1111111111
 hashval = hashval ^ (key >> 225)
 hashval = hashval \& 0b1111111111
 hashval = hashval ^ (key >> 234)
 hashval = hashval \& 0b1111111111
 hashval = hashval ^ (key >> 243)
 hashval = hashval & 0b111111111
 hashval = hashval ^ (key >> 252)
 hashval = hashval & 0b1111111111
 hashval = hashval ^ (key >> 261)
 hashval = hashval & 0b1111111111
 hashval = hashval ^ (key >> 270)
 hashval = hashval & 0b1111111111
 hashval = hashval ^ (key >> 279)
 hashval = hashval \& 0b1111111111
 hashval = hashval ^ (key >> 288)
 hashval = hashval \& 0b1111111111
 hashval = hashval ^ (key >> 297)
 hashval = hashval \& 0b1111111111
 hashval = hashval ^ (key >> 306)
 hashval = hashval & 0b1111111111
 hashval = hashval ^ (key >> 315)
 hashval = hashval \& 0b1111111111
 hashval = hashval ^ (key >> 324)
 hashval = hashval \& 0b1111111111
 return hashval
def confAcl_largeO_hash( destination_address ):
  """ Calculate index into confAcl_largeO hash table from
     the Destination Address. The parameter must be an integer. """
 return calc_confAcl_largeO_hash( key )
def confAclO_hash_test():
   hashval = confAcl_small0_hash(key)
   assert hashval == 4
   hashval = confAcl_large0_hash(key)
   assert hashval == 364
```


16.1.5 Hash function for Ingress Configurable ACL 1

The hash function recevies the lookup key created by selecting the fields from the packet determined by the Ingress Configurable ACL 1 Rules Setup The lookup key is up to 135 bits wide. The XOR hash function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_confAcl_small1_hash( key ):
    " key: 135 bits hash key
      fold count = 68
      returns: 2 bits hash value
  hashval = key \& 0b11
  hashval = hashval ^ (key >> 2)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 4)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 6)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 8)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 10)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 12)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 14)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 16)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 18)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 20)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 22)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 24)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 26)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 28)
  hashval = hashval & 0b11
  hashval = hashval ^ (key >> 30)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 32)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 34)
  hashval = hashval \& 0b11
  hashval = hashval ^
                       (key >> 36)
  hashval = hashval \& 0b11
  hashval = hashval ^
                       (key >> 38)
  hashval = hashval \& 0b11
  hashval = hashval^
                       (key >> 40)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 42)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 44)
  hashval = hashval & 0b11
  hashval = hashval ^ (key >> 46)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 48)
  hashval = hashval \& 0b11
```



```
hashval = hashval ^ (key >> 50)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 52)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 54)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 56)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 58)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 60)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 62)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 64)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 66)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 68)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 70)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 72)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 74)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 76)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 78)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 80)
\verb|hashval| = \verb|hashval| \& 0b11
hashval = hashval ^ (key >> 82)
\verb|hashval| = \verb|hashval| \& 0b11
hashval = hashval ^ (key >> 84)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 86)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 88)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 90)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 92)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 94)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 96)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 98)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 100)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 102)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 104)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 106)
hashval = hashval \& 0b11
hashval = hashval ^ (key >> 108)
hashval = hashval & 0b11
hashval = hashval ^ (key >> 110)
hashval = hashval & 0b11
```



```
hashval = hashval ^ (key >> 112)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 114)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 116)
  hashval = hashval & 0b11
  hashval = hashval ^ (key >> 118)
  hashval = hashval & 0b11
  hashval = hashval ^ (key >> 120)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 122)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 124)
  hashval = hashval & 0b11
  hashval = hashval ^ (key >> 126)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 128)
  hashval = hashval & 0b11
  hashval = hashval ^ (key >> 130)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 132)
  hashval = hashval \& 0b11
  hashval = hashval ^ (key >> 134)
  hashval = hashval \& 0b11
  return hashval
def confAcl_small1_hash( destination_address ):
  """ Calculate index into confAcl_small1 hash table from
      the Destination Address. The parameter must be an integer. """
  return calc_confAcl_small1_hash( key )
def calc_confAcl_large1_hash( key ):
  """ key: 135 bits hash key
      fold count = 23
      returns: 6 bits hash value
  hashval = key & 0b111111
  hashval = hashval ^ (key >> 6)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 12)
  \verb|hashval| = \verb|hashval| \& 0b111111
  hashval = hashval ^ (key >> 18)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 24)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 30)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 36)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 42)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 48)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 54)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 60)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 66)
  \verb|hashval| = \verb|hashval| \& 0b111111
  hashval = hashval ^ (key >> 72)
```



```
hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 78)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 84)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 90)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 96)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 102)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 108)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 114)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 120)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 126)
  hashval = hashval & Ob111111
  hashval = hashval ^ (key >> 132)
  hashval = hashval \& 0b111111
  return hashval
def confAcl_large1_hash( destination_address ):
     Calculate index into confAcl_large1 hash table from
      the Destination Address. The parameter must be an integer. """
  return calc_confAcl_large1_hash( key )
def confAcl1_hash_test():
    \mathsf{key} \ = \ 29723643405823719671790198330458276051124
    hashval = confAcl_small1_hash(key)
    assert hashval == 2
    hashval = confAcl_large1_hash(key)
    assert hashval == 2
```

16.1.6 Hash function for Ingress Configurable ACL 2

This ACL engine only has TCAM.

16.1.7 Hash function for Ingress Configurable ACL 3

This ACL engine only has TCAM.

16.1.8 Hash function for Egress Configurable ACL 0

The hash function recevies the lookup key created by selecting the fields from the packet determined by the **Egress Configurable ACL 0 Rules Setup** The lookup key is up to 135 bits wide. The XOR hash function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

114

Python code for the hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_confAcl_small0_hash( key ):
    """ key: 135 bits hash key
    fold count = 23
    returns: 6 bits hash value
    """
hashval = key & 0b111111
```



```
hashval = hashval ^ (key >> 6)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 12)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 18)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 24)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 30)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 36)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 42)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 48)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 54)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 60)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 66)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 72)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 78)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 84)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 90)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 96)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 102)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 108)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 114)
  hashval = hashval \& 0b111111
  hashval = hashval ^ (key >> 120)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 126)
  hashval = hashval \& 0b1111111
  hashval = hashval ^ (key >> 132)
  hashval = hashval \& 0b111111
  return hashval
def confAcl_smallO_hash( destination_address ):
   "" Calculate index into confAcl_small0 hash table from
      the Destination Address. The parameter must be an integer. """
  return calc_confAcl_small0_hash( key )
def calc_confAcl_largeO_hash( key ):
  """ key: 135 bits hash key
      fold count = 17
      returns: 8 bits hash value
  hashval = key \& 0b111111111
  hashval = hashval ^ (key >> 8)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 16)
```



```
hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 24)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 32)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 40)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 48)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 56)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 64)
  hashval = hashval \& 0b11111111
  hashval = hashval ^ (key >> 72)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 80)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 88)
  hashval = hashval & 0b111111111
  hashval = hashval ^ (key >> 96)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 104)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 112)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 120)
  hashval = hashval \& 0b111111111
  hashval = hashval ^ (key >> 128)
  hashval = hashval \& 0b111111111
  return hashval
def confAcl_largeO_hash( destination_address ):
  """ Calculate index into confAcl_largeO hash table from
      the Destination Address. The parameter must be an integer.
  return calc_confAcl_largeO_hash( key )
def confEgressAcl0_hash_test():
    \mathsf{key} \ = \ 16262582278559983677033900345199968940099
    hashval = confEgressAcl_smallO_hash(key)
    assert hashval == 51
    hashval = confEgressAcl_largeO_hash(key)
    assert hashval == 187
```

16.1.9 Hash function for Egress Configurable ACL 1

This ACL engine only has TCAM.

16.1.10 Hash function for Tunneling

The tunneling exit lookups consits of two lookups. First the tunnel exit lookup and secondly the second tunnel exit lookup.

First Tunnel Exit Hash

Uses only TCAM in this design. Located in table Tunnel Exit Lookup TCAM.

Second Tunnel Exit Hash

Uses only TCAM in this design. Located in table **Second Tunnel Exit Lookup TCAM**.

D-left Lookup

D-left is a hash table search algorithm that reduces the risk of hash collisions by using two hash tables each indexed by a separate hash key.

This implementation uses two hash tables, one smaller and one larger, combined with a synthesized TCAM to resolve hash collisions. This is shown in figure 17.1.

The hash search is done by taking a hash key and calculating two hashes from that. The two hash values are used as index into the small and large hash tables.

Each table has a number of buckets for each hash index. All buckets for the selected index are read out in parallel. The hash key is then compared with the compareData from each bucket. There is a hit if one of the buckets compareData matches the hash key. If multiple buckets matches then the highest numbered bucket is used.

This is done in parallel for both the small and the large table.

In addition the hash key is also searched in the TCAM. In the TCAM search all entries are compared with the hash and if there are multiple matches then the lowest numbered entry is used.

Since a single search can result in multiple hits in all three tables there is configuration that selects which table shall be used in this case.

The two hash tables have separate masks which allows some bits to be masked away. For the TCAM there is a mask per entry.

17.1 Functions using D-left

The following functions use D-left Lookup.

17.1.1 Egress VLAN Translation

In this design the Egress VLAN translation only uses TCAM located in register Egress VLAN Translation TCAM Answer

17.1.2 Ingress Configurable ACL

The ingress configurable ACL is setup by using the following registers and tables.

- The search data/hash key is the selected packet header fields (see Selectable Packet Fields).
- Hash tables
 - The hash functions used to index the hash tables are described in section Hash function for Configurable ACL.
 - Ingress Configurable ACL 0 Small Table
 - Ingress Configurable ACL 0 Large Table
 - Ingress Configurable ACL 1 Small Table
 - Ingress Configurable ACL 1 Large Table

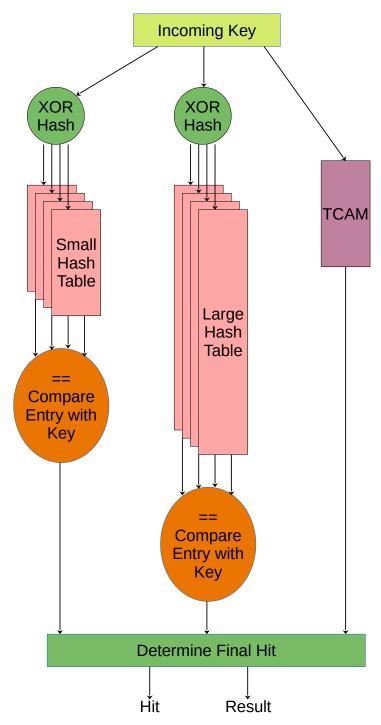


Figure 17.1: D-left Function

- TCAM
 - Ingress Configurable ACL 0 TCAM
 - Ingress Configurable ACL 1 TCAM
 - Ingress Configurable ACL 2 TCAM
 - Ingress Configurable ACL 3 TCAM
- Masks for the hash tables
 - Ingress Configurable ACL 0 Search Mask
 - Ingress Configurable ACL 1 Search Mask

- Configuration for resolving multiple hits
 - Ingress Configurable ACL 0 Selection
 - Ingress Configurable ACL 1 Selection
- The ACL actions are stored in the hash tables but the actions for TCAM hits are stored in a separate tables
 - Ingress Configurable ACL 0 TCAM Answer
 - Ingress Configurable ACL 1 TCAM Answer
 - Ingress Configurable ACL 2 TCAM Answer
 - Ingress Configurable ACL 3 TCAM Answer

17.1.3 Egress Configurable ACL

The ingress configurable ACL is setup by using the following registers and tables.

- The search data/hash key is the selected packet header fields (see Selectable Packet Fields).
- Hash tables
 - The hash functions used to index the hash tables are described in section Hash function for Configurable ACL.
 - Egress Configurable ACL 0 Small Table
 - Egress Configurable ACL 0 Large Table
- TCAM
 - Egress Configurable ACL 0 TCAM
 - Egress Configurable ACL 1 TCAM
- Masks for the hash tables
 - Egress Configurable ACL 0 Search Mask
- Configuration for resolving multiple hits
 - Egress Configurable ACL 0 Selection
- The ACL actions are stored in the hash tables but the actions for TCAM hits are stored in a separate tables
 - Egress Configurable ACL 0 TCAM Answer
 - Egress Configurable ACL 1 TCAM Answer

17.1.4 Tunnel Exit

The first tunnel exit lookup uses only TCAM. Located in table Tunnel Exit Lookup TCAM.

The second tunnel exit lookup uses only TCAM. Located in table Second Tunnel Exit Lookup TCAM.

Learning and Aging

The switch supports automatic hardware learning and aging as well as software controlled learning and aging.

- With hardware learning the switch can be functional after reset without any software setup. The hardware learning engine saves the source port number, the source MAC address with a Global Identifier (GID) from the VLAN Table in the forwarding information base.
- If the destination MAC address and the GID of a packet is in the L2 forwarding information base, the L2 forwarding process will know the destination port of this packet.
- If a learned {GID, MAC} has not been hit by a source or destination MAC address for a while, the hardware aging engine will remove this entry from the table.
- When a learned MAC address is received as MAC SA on a different port than it was setup in the L2
 Destination Table, it is considered a port move.
- When the hardware aging is enabled, all non-static entries will be aged out after a certain silent period.
 Hardware Learning Configuration configures the initial status of the newly learned entries.
- The software learning and aging feature allows users to fully control the L2 forwarding information base.
- The hardware learning and aging functions are by default turned on and can be turned off through the Learning And Aging Enable register.
- When the hardware learning is enabled, all source ports are allowed to get their unknown source MAC address learned. By setting learningEn field in the Source Port Table to 0 the learning process can be disabled on the corresponding source port.
- For an unknown MAC DA, dropUnknownDa field in the Source Port Table determines either to drop the packet or allow it to be flooded.

18.1 L2 Forwarding Information Base (FIB)

Multiple tables in groups are involved in the learning and aging functions when making L2 forwarding decisions:

18.1.1 Tables for MAC DA lookup

- 1. L2 Hash tables.
 - (a) L2 DA Hash Lookup Table
 - (b) L2 Aging Status Shadow Table
- 2. L2 Collision tables.
 - (a) L2 Lookup Collision Table
 - (b) L2 Aging Collision Shadow Table
- 3. L2 Destination Table.
- 4. L2 Multicast Table.

MAC DA lookups are used to find L2 forwarding destinations and the related tables are written as results from learning or aging functions. The forwarding function relies on a hash algorithm described in Section MAC Table Hashing and a search algorithm described in Section L2 Destination Lookup. In this core, destination MAC addresses and GIDs are combined together to create a 60-bit hash key and the hash function returns a 10-bit hash value.

18.1.2 Tables for MAC SA lookup

- 1. L2 SA Hash Lookup Table. Holding the same contents as L2 DA Hash Lookup Table.
- 2. L2 Aging Status Shadow Table Replica. Holding the same contents as L2 Aging Status Shadow Table.
- 3. L2 Destination Table Replica. Holding the same contents as L2 Destination Table.

The MAC SA lookups are used to create new learning requests and requiring the same tables as MAC DA lookups. Due to the fact that the core mostly uses tables with single read port towards the ingress processing pipeline, there are three MAC DA tables duplicated to MAC SA tables listed above to support one read per cycle from the ingress processing pipeline (one MAC DA lookup and one MAC SA lookup at every clock cycle). No matter when the MAC DA/MAC SA lookup tables are updated, the corresponding SA/DA lookup tables need to be filled with the same updates. The L2 collision tables are built to support parallel read by both DA and MAC SA lookups and therefore are not duplicated.

The MAC SA lookups form a key-hash pair by {GID,MAC SA} and do a two step check:

- 1. Hit or not. Hit is given in two cases:
 - (a) The key-hash pair is found in the L2 SA Hash Lookup Table and the related entry in L2 Aging Status Shadow Table Replica is valid.
 - (b) The key is found in the L2 Lookup Collision Table and the related entry in L2 Aging Collision Table is valid.
- 2. The source port number matches the port number in the L2 destination table.

Based on the lookup result there are three possible learning decisions:

- 1. Learn a new entry: Not hit.
- 2. Port move request: Hit with port number mismatching.
- 3. SA hit update operation: Hit with port number matching.

Figure 6.1 demonstrates how the FIB addressing looks like.

18.1.3 Status Tables

- 1. L2 Aging Table
- 2. L2 Aging Collision Table

The status tables are located inside the learning and aging engine to monitor and maintain the status of all entries in the FIB. An FIB entry has three status bits:

- 1. valid: Indicate if a hit in the FIB is valid.
- 2. stat: Indicate if an entry is static. Static entries cannot be modified by hardware.
- 3. hit: Indicate either MAC SA or DA has successfully hit this entry since the last aging scan.

When the hardware learning or aging updates the status table, the **valid** bit will be copied to the shadow tables in the ingress processing pipeline.

As in Figure 18.1 the FIB can be accessed from three units:

- 1. From software through the configuration interface: read and write.
- 2. Learning and aging unit: read and write.
- 3. Ingress processing pipeline: read only.

Notice that shadow tables in the FIB have to be updated simultaneously with status tables. MAC SA lookup tables have to be updated simultaneously with MAC DA lookup tables. Unexpected behavior will occur if the tables do not have the same content.

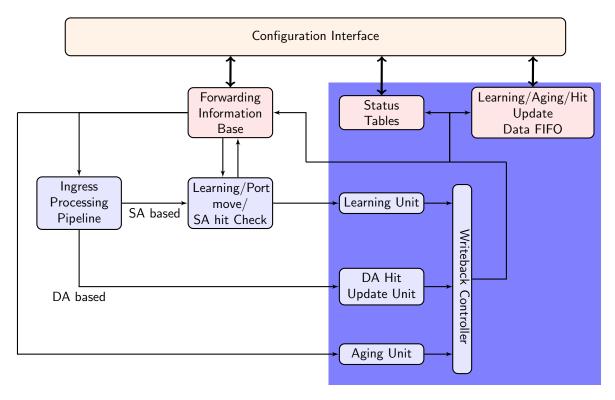


Figure 18.1: Learning and Aging Engine

18.1.4 Hash Collision Accommodation

In order to solve hash collisions, the L2 DA Hash Lookup Table has 4 buckets each with 1,024 entries. A given key-hash pair can search in the 4 buckets in parallel by reading from the address that equals the hash value. The 4 buckets entries are all compared with the {GID,MAC DA} key and if one entry is equal to the key that entry is considered a match.

Besides the L2 DA Hash Lookup Table, there is an extra L2 Lookup Collision Table in case the number of hash collisions is more than the L2 DA Hash Lookup Table can handle. For instance, if the hash function calculated the same hash value for more than 4 keys, the first 4 keys can be accommondated in the 4 buckets of L2 DA Hash Lookup Table while the rest are stored in the L2 Lookup Collision Table. Searching in the L2 Lookup Collision Table will return the first entry index that holds the corresponding key.

Addressing into the L2 Destination Table is based on the hit index from either the L2 DA Hash Lookup Table or the L2 Lookup Collision Table.

- Hit in the L2 DA Hash Lookup Table: get a 12-bit hit index with the hash value in the lower 10 bits and
 the bucket number in the higher 2 bits. The corresponding L2 Destination Table address equals the hit
 index.
- Hit in the L2 Lookup Collision Table: get a 5-bit hit index from the hit entry address. The corresponding L2 Destination Table address is (hit index + 4,096).

18.2 Hardware Learning and Aging

18.2.1 Learning Unit

The core has a dedicated learning unit in hardware, which is tasked with learning L2 MAC addresses combined with GIDs as entries to do L2 destination port lookups. A new learning request is created and processed in several steps:

1. For every packet a learning check is performed based on its MAC SA and GID and issues learning requests to the learning unit.

- 2. If it is a known entry but the hit bit in the status table is 0, the hit bit will be refreshed to 1.
- If the learning request is to learn a new entry, Hardware Learning Counter will be checked against the learnLimit in Hardware Learning Configuration. learnLimit limits the maximum number of entries can be learned on a port.
- 4. If the maximum learning limit is not reached on a port, the status table lookup will try to provide an available entry in a certain order:
 - (a) Find a free entry.
 - i. Select a free bucket for this hash value.
 - ii. If all hash buckets are used, select a free collision table entry.
 - (b) If there is no free entry and **Iru** in the **Learning And Aging Enable** register is 0, the learning unit will search in the collision table and overwrite the non-static entries in a round robin order.
 - (c) If there is no free entry and Iru in the Learning And Aging Enable register is 1, the learning unit will overwrite a least recently used non-static entry as follows:
 - i. Search in hash buckets for a bucket with hit=0 and stat=0. Return the last match.
 - ii. If all buckets have **hit**=1 or **stat**=1, search in the collision table for an entry with **hit**=0 and **stat**=0. Return the first match.
 - (d) If all entries are static or have been hit since the last aging scan, overwrite a non-static entry.
 - i. Search in hash buckets for a bucket with **stat**=0. Return the last match.
 - ii. If all buckets are static, search in the collision table for an entry with **stat**=0 in a round robin order
- 5. If the learning unit failed to accommodate the unknown MAC SA and GID combination, or the learning limit on a port is reached, the learning request will be ignored and the corresponding MAC SA, GID and port number will be updated to the **Learning Overflow** register.
- 6. If a valid entry is found, the learning unit will link it to the port number from the learning request as a L2 unicast entry.
- 7. If the learning request is for a port move, the process will operate on existing non-static entries directly. For static entries, the **Port Move Options** register gives optional operations for each previously learned port.
- 8. If the learning unit failed to execute port move due to immutable static entry or the learning limit is reached, the learning request will be ignored and the corresponding MAC SA, GID and port number will be updated to the **Learning Conflict** register.
- 9. A valid learning decision is sent to a writeback bus which manages all decisions from different learning and aging units. The learning decisions have the highest priority to use the writeback bus.
- 10. The writeback bus pushes the learning decision to the Learning Data FIFO. By default the writeback bus is allowed to send decisions to the FIB, but there is also an option to block the table updates from the configuration interface.
- 11. By setting the hwLearningWriteBack field in the Learning And Aging Writeback Control to 0, table updates from the hardware learning unit is blocked. In this case the software shall maintain the hardware learning decision from the Learning Data FIFO, and updates the FIB as described in Section Software Learning and Aging.

18.2.2 Hardware Learning Exceptions

The switch support fine granular control to allow certain packets with unknown MAC SA address to not be learned. These settings described below enables a varity of different ways to turn it off on a per packet basis.

- Source port exceptions.
 - If uniqueCpuMac is set to 1, the CPU port cannot be learned.
 - If the packet from the CPU port has a from CPU tag, it will bypass L2 lookup hence bypass the learning process.
 - For any source port if its learning En is set to 0 the learning process is disabled.
- To CPU packet. If the packet is sent to the CPU port with a non-zero reason code. ¹
- Classification.
 - If the packet hit in a classification rule that override L2 lookup (i.e. force the destination port), it will not be learned.

¹Check all reason codes in Table 30.2

- If the packet hit in the Configurable ACL Engine with noLearning enabled.
- Routed. A routed packet will not be learned.
- Dropped. If the ingress processing drops the packet (post-ingress processing is not counted), the packet will
 not be learned unless it is due to the ingress spanning tree drop and the state says Learning.
- Multicast MAC SA. In the switch core a MAC address with the least-significant bit of the first octet equals 1
 (e.g. 01:80:c2:00:00:00) but not equals to ff:ff:ff:ff:ff:ff is marked as Ethernet multicast address. By default
 a MAC SA that matches an Ethernet multicast address will not be learned. This can be configured per port
 through the learnMulticastSaMac field in the Source Port Table.

18.2.3 Aging Unit

When a new L2 entry is learned by the hardware learning unit, the initial entry status is from the **Hardware Learning Configuration** register. A valid non-static entry will be aged out if no L2 MAC SA/DA lookup hit it within a certain time and static entries must have software interactions to get aged/changed. By default a non-static entry will be learned with both **hit** and **valid** set to 1 to prevent it from being aged out immediately. Static entries can be established on a per source port basis by setting the **stat** field in **Hardware Learning Configuration** to 1.

The hardware aging function does a periodic check of the L2 entry status in the L2 Aging Table and the L2 Aging Collision Table. The waiting period between two checks is tick based ³ and configurable via the Time to Age register. During an aging check period, the aging unit loops through all entries in the L2 Aging Table and L2 Aging Collision Table to get the current status. The possible updates are listed in Table 18.1. If the valid bit (bit 0) is turned to 0 the entry is aged out. An aged out entry can be learned again.

If the **Time to Age** register is reconfigured during runtime, the updated **tickCnt** will not be available to aging unit until the current aging period is complete. In order to load new values immediately, the aging unit needs to be restarted via the **agingEnable** field in the **Learning And Aging Enable** register. However, changes to the **tick** selection are always applied immediately.

Current Status	Update Status
0b101	0b001
0b001	0b000(entry cleared)
Other values	No update

Table 18.1: Hardware Aging Operations

18.2.4 MAC DA Hit Update Unit

The learning unit has a built-in MAC SA hit update unit to refresh the **hit** bit while another MAC DA hit update unit can operate in parallel. The MAC DA hit update unit can be turned on or off by the **daHitEnable** field in the **Learning And Aging Enable** register and works as such:

- 1. A packet with L2 MAC DA lookup returns a valid and non-static entry issues a hit update request for the corresponding MAC DA.
- 2. A hit update FIFO is prepared to buffer the update requests.
- 3. A hit update request is popped from the FIFO when the writeback bus is free.
- 4. If the writeback bus keeps busy with learning decisions and causes a buildup in the hit update FIFO, new hit update requests will be ignored when the FIFO is full.
- The writeback bus forwards the hit update request to both the Hit Update Data FIFO and the FIB, optionally the FIB updates could be turned off by the hwHitWriteBack field in the Learning And Aging Writeback Control register.

According to Table 18.1, the automatic **hit** bit update for an non-static L2 entry will keep the hardware aging unit away from setting the **valid** bit to 0, hence avoid aging out the entry.

18.3 Software Learning and Aging

Instead of automatic learning and aging, the switch provides two options for software to manipulate learning and aging behaviors.

³The system ticks are described in Chapter Tick.

²See more in Chapter Spanning Tree.

18.3.1 Injection of Learning Packets

The switch features a learning protocol to let all ports accept special learning packets to fully control the FIB. The learning packet format is shown in Figure 18.2. The MAC DA of a learning packet must match the address configured in the **Learning DA MAC** register. With a compliant MAC DA the packet is dropped inside the switch but the carried learning tag will be decoded and sent to the learning unit.

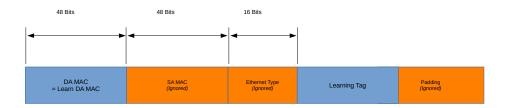


Figure 18.2: Learning Frame

The following table describes the fields which will be in the learning tag.

Name	
GID gid 16 [63:48] Bit [15:12] Reserved. Bit [11:0] Global identifier to lead	
Unicast Port portOrPtr 32 [95:64] Bit [31:10] Reserved. or Multicast Pointer Bit [9:0] destPort or mcAddr fi Destination Table. Unicast uc 8 [103:96] Bit [7:1] Reserved.	
Unicast Port portOrPtr 32 [95:64] Bit [31:10] Reserved. or Multicast Pointer Destination Table. Unicast uc 8 [103:96] Bit [7:1] Reserved.	
or Multicast Pointer Bit [9:0] destPort or mcAddr find Destination Table. Unicast uc 8 [103:96] Bit [7:1] Reserved.	eld in the L2
PointerDestination Table.Unicastuc8[103:96]Bit [7:1] Reserved.	eid iii tile LZ
Unicast uc 8 [103:96] Bit [7:1] Reserved.	
DILIUI II CHEM IN THE 17 DESTIN	otion Toblo
	ation rable.
	Destination
Bit [0] pktDrop field in the L2 Table.	Destination
L2 Destination daDestAddr 32 [143:112] When the value is within the range	~~ 0 +~ 4107
Table Address	- 1
corresponding entry in the L2 Table. An out-of-range value	
learning unit to provide an ava	
and fill it with the data from	
tag.	the learning
Valid valid 8 [151:144] Bit [7:1] Reserved.	
Bit [0] valid field in the L2 Agi	ng Table
Static stat 8 [159:152] Bit [7:1] Reserved.	ing Table.
Bit [0] stat field in the L2 Agin	or Table
Hit hit 8 [167:160] Bit [7:1] Reserved.	ig Table.
Bit [0] hit field in the L2 Aging	r Table
L2 Action Ta- I2ActDa 8 [175:168] Bit [7:1] Reserved.	Tubic.
ble DA Status Bit [0] 12ActionTableDaStatus	field in the
L2 Destination Table.	neid iii tiie
L2 Action Ta- I2ActSa 8 [183:176] Bit [7:1] Reserved.	
ble SA Status Bit [0] I2ActionTableSaStatus	field in the
L2 Destination Table.	
Meta Data meta 16 [199:184] metaData field in the L2 Desi	tination Ta-
ble.	

Table 18.2: Learning Header

The fields in the learning tag consist of FIB fields and one 32-bit field for the L2 destination table address. Based on the different values, the learning tag can either directly update an entry in the FIB or ask the learning unit for an available entry. When the value is less than 4,128, the corresponding table entry will be updated directly, regardless of its current state. According to Section Hash Collision Accommodantion, the first 4,096 entries in the L2 Destination Table are reserved for L2 DA Hash Lookup Table hits and the rest are for L2 Lookup Collision Table hits, hence the L2 destination table address implies the address to the two search tables.

When the field value exceeds the range of the L2 Destination Table, the learning unit will excute the task to find an available FIB entry, and update it with the corresponding information from the learning tag fields.

18.3.2 Direct Access to FIB

All tables in the FIB allow direct software writes through a configuration interface. However, the learning and aging engine may constantly update the FIB. Before updating the FIB from the configuration interface the learning and aging engine needs to be turned off through the **Learning And Aging Enable** register to avoid hazards. An alternative approach is to use reserved static entries as described in Section Software Reserved Entry.

If the hardware learning unit needs to be turned on again after software setups, it is important to write to both L2 aging tables and the corresponding shadow tables while setting valid entries. Partial validation will cause inconsistencies between the L2 forwarding process and the learning and aging engine. Since the FIB consists of multiple tables it is recommended that the shadow tables are updated in the last step, to ensure the data consistency.

18.3.3 Software Reserved Entry

If the stat field in the L2 Aging Table is set to 1 and the valid field is set to 0, the corresponding entry in the FIB is considered as a reserved static entry and can be used for future software configuration. A reserved static entry is not used for L2 forwarding and is not available as a hardware learning entry.

A typical use case is to pre-allocate entries for L2 multicast. The hardware learning unit can automatically learn L2 unicast but not L2 multicast. One way to reserve entries for L2 multicast is to create a reserved static bucket, i.e. choose one bucket from the L2 hash table and make all entries reserved static. This approach allows the software to update entries in the reserved bucket during traffic without checking hash collisions, and without turning off the hardware learning and aging engine.

18.3.4 Software Aging

The aging unit has a software aging mode which can take over the automatic aging turned on in the **Software Aging Enable** register. Under software aging mode the aging steps will then be:

- 1. Software determines the time to age and responsible to periodically trigger the aging process.
- 2. Software writes 1 to the Software Aging Start Latch register to trigger an aging check period.
- 3. The same procedure as the automatic aging is done, **hash_aging** and **cam_aging** interrupts listed in Table 31.7 are raised.

18.4 Software And Hardware Interaction

The three units in the learning and aging engine (learning unit, aging unit, hit update unit) share the same writeback bus to the FIB as in Figure 18.1, the learning unit has the highest priority, followed by the hit update unit and then the aging unit. In order to let software keep track of FIB updates from the learning and aging engine, the writeback bus is snooped and transactions are made available in three FIFOs. The FIFOs are accessible from the configuration interface.

- Learning Data FIFO (LDF)
- Aging Data FIFO (ADF)
- Hit Update Data FIFO (HDF)

18.4.1 Data FIFO Interrupts

For each of the three FIFOs there are two interrupts:

- High watermark interrupt: Idf_level/adf_level/hdf_level interrupt in Table 31.7. The threshold is configurable through:
 - Learning Data FIFO High Watermark Level
 - Aging Data FIFO High Watermark Level
 - Hit Update Data FIFO High Watermark Level
- Overflow interrupt: Idf_full/adf_full/hdf_full interrupt in Table 31.7

The LDF/ADF/HDF are all tail drop FIFOs, if new entries are to be pushed to a full LDF/ADF/HDF they will not be written but ignored and cause ldf_full/adf_full interrupt. The HDF holds the hit update result which does not change L2 forwarding behaviors, but if software is unable to keep up reading out the LDF/ADF and cause ldf_full/adf_full interrupt, then software is no longer in sync with hardware tables. A way to recover from this would be:

- 1. Turn off the learning and aging engine.
- 2. Read out all the entries in the LDF/ADF/HDF to make sure they are empty.
- 3. Read out all tables in the FIB to compare between software tables. Update whatever the difference is to make tables become synchronized again.
- 4. Turn on the learning and aging engine.

18.4.2 Writeback Bus Control

As mentioned in Section Hardware Learning and Aging, the writeback bus can be configured through the Learning And Aging Writeback Control register to block the hardware learning/aging/hit-update decisions to the FIB. By doing so the automatic hardware learning/aging/hit-update units cannot do any changes to the FIB. If needed, the software is able to inspect the hardware decisions from LDF/ADF/HDF and update the FIB either through learning packets or direct table accesses.

Spanning Tree

Spanning-Tree Protocol (STP) and Multiple Spanning-Tree Protocol (MSTP) support is provided in order to create loop-free logical topology when several ethernet switches are connected. Through registers the STP state of the ports can be controlled by the host SW. The default behavior at power up is that spanning tree is not enabled and spanning tree functionality must therefore be configured by SW before it can be used. A switch running the spanning-tree protocols utilizes BPDU (Bridge Protocol Data Unit) frames to exchange information with other switches in order to decide how to configure it's ports to get a loop-free (tree) logical network topology.

BPDUs are forwarded to the CPU based on the used destination address. By default the MAC multicast addresses 01:80:C2:00:00:00 and 01:00:0C:CC:CC:CD are forwarded to the CPU. Modifications of this is possible through the register **Send to CPU**.

In order to be able to forward BPDU frames from the CPU to other switches on egress ports where general forwarding is currently not allowed, the bit **enable** in register **Forward From CPU** shall be set.

More information on the forwarding features to and from the CPU port is available in Chapter 30

19.1 Spanning Tree

The Spanning-Tree Protocol (STP) state for a port can be independently configured for source and egress behaviors to allow precise management. For ingress in the **spt** field of **Source Port Table**. Similarly for egress, the STP state can be configured in the **sptState** in the **Egress Spanning Tree State**. When STP is used on a port, all the port's associated MSTP instance states (ingress and egress) shall be **Forwarding**, i.e. MSTP is not enabled for this port. The behavior of the different STP states. The difference between Ingress and Egress STP state is only that learning is not affected by the Egress state.

- Blocking and Listening
 Learning is disabled and no frames are forwarded except BPDU which will be forwarded to the CPU. Frames
 that are not forwarded is counted in a drop counter.
- Learning
 Learning is enabled but no frames are forwarded except BPDU which will be forwarded to the CPU. Frames
 that are not forwarded is counted in a drop counter.
- Forwarding and Disabled

 Normal operation, learning is enabled and normal switching. BPDU frames will be forwarded to the CPU.

19.2 Multiple Spanning Tree

When VLANs are used in a network there is a need for the Multiple Spanning Tree Protocol (MSTP) to manage the individual spanning-tree instances for the different VLANs. If an incoming frame doesn't have an assigned VLAN membership it will get a default VLAN membership automatically as described in Chapter 5. VLAN membership decides which MSTP instance (MSTI) the frame belongs to. Hence, all frames will belong to an MSTI. The msptPtr in the register VLAN Table is an index to the MSTI tables which the packet shall be assigned to. The port's states of this MSTI are available in the tables Ingress Multiple Spanning Tree State and Egress Multiple Spanning Tree State for ingress and egress respectively. When a port uses MSTP it's STP states (source and egress) shall be set to Disabled, i.e. STP is not enabled for this port.

19.3 Spanning Tree Drop Counters

When a port's ingress or egress spanning tree states causes a frame to be dropped, the frames direction and spanning-tree state are used to select which drop counter to increase with one. The available drop counter registers are:

- Ingress Spanning Tree Drop: Listen
- Ingress Spanning Tree Drop: Learning
- Ingress Spanning Tree Drop: Blocking
- Egress Spanning Tree Drop

The ingress registers are common for all ports. There is one egress register per port.

The registers above are also used to count MSTI-state caused frame drops. A port's ingress-MSTI drop-causing state is mapped as follows: The state Learning is mapped to the register Ingress Spanning Tree Drop: Learning and Discarding to Ingress Spanning Tree Drop: Blocking. For a port's egress MSTI, both the states Learning and Discarding are mapped to the port's generic egress drop counter Egress Spanning Tree Drop.

Token Bucket

This core provides a rich set of QoS functions, and when a function needs to compare the internal packet or byte rate to a configurable rate, we use token bucket as the basic measurement component. A token bucket is usually combined with packet classifications, packet colorings or the shared buffer memory to achieve metering, marking, policing or shaping with different granularities.

A token bucket has four key parameters:

- bucket capacity
- bucket threshold
- initial tokens in the bucket
- token fill in rate

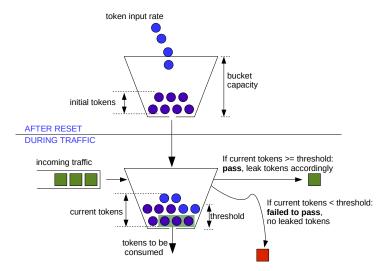


Figure 20.1: General Token Bucket Illustration

Figure 20.1 shows a token bucket with adjustable bucket threshold, the remaining tokens below the threshold can be used to handle the burst. This type of token bucket is used by:

- multicast broadcast storm control
- queue shaper
- prio shaper
- egress port shaper

In different QoS functions, tokens are represented as packets or bytes. The token fill in rate is achieved by periodically adding a certain number of tokens to the bucket and the fill in frequency is determined by one of the five core ticks.

Egress Queues and Scheduling

The order of packet output on each egress port is decided by a complex interaction of back-pressure and different QoS functions, but at the heart of the matter is the the egress queue. The egress queues are the lists of packet pointers created by the queue manager when packets have been written to the packet buffer. Each egress port has eight such queues.

When a packet has been written in full to the packet buffer, the queue manager will add pointers to the packet to the end of at least one egress queue¹.

More than one egress port may get the packet linked (due to multicast), but on any single port the same packet may only be linked once. You cannot have the same packet in more than one egress queue on any single egress port.

The order in each egress queue is fixed. Once the packets are linked, the order cannot be changed. What QoS functions and back-pressure can affect is the order in which the packets in different queues are output.

Each egress queue has a *priority* (or prio) attribute, ranging from zero to seven. There are no limitations to how the priorities are assiged. All egress queues may have the same priority, or they may all have different priorities (if there are enough priorities to go around). If at all possible, an egress queue with a higher² priority will always get to output a packet before a queue with a lower priority. Egress queues with the same priority will be selected in a round robin manner by the DWRR scheduler.

The egress queue is determined by the ingress packet processing. If a packet is forwarded to multiple egress ports, each packet instance will have the same egress queue assigned.

21.1 Determine Egress Queue

Figure 21.1 describes how the egress queue is determined. If a configuration in the diagram includes a reference number in the end, the related field or register to setup can be found in the list below:

- 1. Configurable ACL Engine has a forceQueue action enabled.
- 2. forceQueue in Reserved Source MAC Address Range
- 3. forceQueue in Reserved Destination MAC Address Range
- 4. prioFromL3 in Source Port Table
- 5. IPv4 TOS Field To Egress Queue Mapping Table
- 6. IPv6 Class of Service Field To Egress Queue Mapping Table
- 7. MPLS EXP Field To Egress Queue Mapping Table
- 8. eQueue in Force Unknown L3 Packet To Specific Egress Queue
- 9. forceQueue in Force Non VLAN Packet To Specific Queue

This process is completed only once per packet, and the result is applied to all destination ports for the packet. The input to the process can come from:

¹That is unless the packet is to be dropped, because then the pointer is instead added to the end of the throw queue.

²Priorities are numbered backward, so zero is the highest priority

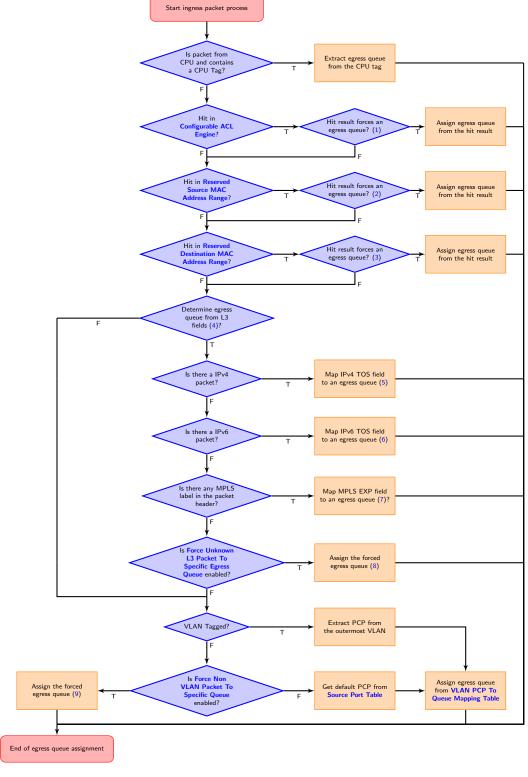


Figure 21.1: Egress Queue Selection Diagram

- Packet L2 headers
- Packet L3 headers
- Packet L4 ports
- Classification results

The available classification engines are described in the Classification chapter.

Egress queue from packet headers is operated under either trust L2 mode, to map egress queues from L2 headers, or trust L3 mode, to map egress queues from both L2 and L3 headers. In trust L2 mode, the egress queue can be mapped from:

- Priority code point(PCP) field from the outermost VLAN tag
- Source port default PCP when packet is non-VLAN tagged
- Optionally force non-VLAN tagged packets to the same egress queue, ignores source port based default mapping.

In trust L3 mode, a packet first tries to get its egress queue by mapping from:

- Type of Service (TOS)/DiffServ field from IPv4
- Traffic Class(TC) field from IPv6
- Traffic Class(TC)/EXP field from MPLS
- When none of the above are executed, the egress queue mapping under trust L3 mode will fall back on the trust L2 mode and get the egress queue from L2 headers of the packet.

21.2 Determine a packets outgoing QoS headers PCP, DEI and TOS fields

21.2.1 Remap Egress Queue to Packet Headers

This core supports remapping determined egress queues to outgoing packets' headers. These remappings are done first then if field useEgressQueueRemapping is set to one the remapping described in 21.2.2.

- Egress queue to next hop router VLAN PCP remapping:
 For routed packets, packets' original VLAN tags are removed and at most two next hop router VLANs are added. Egress queue can be mapped to the PCP field in these VLAN tags through the Router Egress Queue To VLAN Data table when:
 - 1. innerVlanAppend is set and its PCP field selection(innerPcpSel) chooses mapping from egress queue.
 - 2. outerVlanAppend is set and its PCP field selection(outerPcpSel) chooses mapping from egress queue.
- Egress queue to next hop router VLAN CFI/DEI remapping:
 Similar with next hop router VLAN PCP mapping, egress queue can be mapped to the CFI/DEI field in next hop router VLANs through the Router Egress Queue To VLAN Data table when:
 - innerVlanAppend is set and its CFI/DEI field selection(innerCfiDeiSeI) chooses mapping from egress
 queue.
 - outerVlanAppend is set and its CFI/DEI field selection(outerCfiDeiSeI) chooses mapping from egress queue.
- Egress queue to outgoing outermost VLAN PCP remapping:
 Egress port VLAN push or swap operation provides an option to map egress queue to the outgoing outermost VLAN PCP field. The mapping table is Egress Queue To PCP And CFI/DEI Mapping Table and the required configurations are:
 - 1. vlanSingleOp in Egress Port Configuration is push or swap.
 - 2. pcpSel in Egress Port Configuration selects mapping from egress queue.
- Egress queue to outgoing outermost VLAN CFI/DEI remapping:
 Similar with outgoing outermost VLAN PCP mapping, egress port VLAN push or swap operation provides an option to map egress queue to the outgoing outermost VLAN CEI/DEI field. The mapping table is Egress Queue To PCP And CFI/DEI Mapping Table and the required configurations are:
 - 1. vlanSingleOp in Egress Port Configuration is push or swap.
 - 2. cfiDeiSel in Egress Port Configuration selects mapping from egress queue.

- Egress queue to MPLS TC/EXP remapping:
 Packets with MPLS labels have an option to map their egress queues to MPLS TC/EXP field when egressing the core. The mapping table is Egress Queue To MPLS EXP Mapping Table and the required configura-
 - 1. mplsOperation is push or swap.
 - 2. expSel in Next Hop MPLS Table selects mapping from egress queue.

21.2.2 Using Packet Type, Destination Port and Switching/Routing to do QoS Mappings

This core supports remapping determined by egress queues to outgoing packets' headers using the information if the packet was switched, routed, forwarded by classification rules, if the packet type was IP or MPLS and packets outgoing PCP, DEI, TOS and EXP fields. The steps to remap the packet are described below. The input values for PCP, DEI comes from the remapping tables described in 21.2.1. The TOS values comes from the Color Remap From Ingress Admission Control or Color Remap From Egress Port.

- 1. Determine Which Mapping Table To Use
 - The mapping table to use to map the internal state to a the outgoing packet is determined by the table **Select Which Egress QoS Mapping Table To Use**. The packets destination port, packet type and packet forwarding type is used to calculate which entry to read out from the table. This table then points to the one of the QoS remapping tables which remapps the internal state to the outgoing packets PCP,DEI and potentially L3 fields such as TOS field . Since the address takes egress port, forwarding type and packet type into consideration there can be seperate rules setup for how to remap the fields in the outgoing packet.
- 2. Mapping Tables

tions are:

Use the Mapping tables to map into outgoing packets PCP,DEI, TOS and EXP values.

- (a) L2 QoS Mapping Table
 - This table can be used for all packets being sent out. There exists 2which the field whichTablePtr points to which to use.
- (b) IP QoS Mapping Table
 - This table can be used for IPv6 and IPv4 packets. There exists 2L3 mapping tables. This remaps part of the TOS byte which has to do with ECN and uses the higher TOS bits [7:2] from the coloring tables (Color Remap From Ingress Admission Control or Color Remap From Egress Port).
- (c) TOS QoS Mapping Table
 - This table can be used for IPv6 and IPv4 packets. There exists 2TOS mapping tables. This remaps the whole of the TOS byte from Color Remap From Ingress Admission Control or Color Remap From Egress Port to a new TOS bytes along with PCP and DEI information. There is a support to remap to EXP values which can be used if the packet enters a MPLS tunnel in the Next Hop Tables
- (d) MPLS QoS Mapping Table
 - This table can be used for MPLS packets. This remaps the outgoing packets PCP, DEI and EXP values. There exists 2TOS mapping tables.

21.3 Priority Mapping

Each queue is mapped to one of eight egress priorities in the Map Queue to Priority register. Thus each priority will have between none and all queues as members. The priority mapping affects the scheduling of the packets. See Section 21.6, below for the details.

The priorities are ranked in descending order, from the highest priority (zero), to the lowest (seven).

Note that the priority mapping must not be changed for any queue that has packets queued. Doing so would make the ERM counters irrevocably corrupted, necessitating a reset for the core to continue normal operation.

21.4 Shapers

For a queue to be eligable for sending a packet there has to be a packet available in the queue and the average bandwidth for the queue, as measured by the token buckets in the queue shaper, has to be below the threshold set up in the **Queue Shaper Rate Configuration** registers.

Additionaly the average bandwidth of the priority to which the queue is mapped has to be below the threshold set up in the **Prio Shaper Rate Configuration** registers.

21.4.1 Queue Shaper

The egress queue rates are shaped by token buckets configured in the Queue Shaper Rate Configuration registers. While the token bucket level is below the threshold configured in the Queue Shaper Bucket Threshold Configuration register, no new packets are scheduled for the corresponding egress queue. Ongoing packets are not affected by the shaping bucket status.

The queue shapers are enabled using the Queue Shaper Enable register, and the saturation level of the queue shaper buckets is controlled by the Queue Shaper Bucket Capacity Configuration register.

21.4.2 Prio Shaper

The egress prio rates are shaped by token buckets configured in the **Prio Shaper Rate Configuration** registers. While the token bucket level is below the threshold configured in the **Prio Shaper Bucket Threshold Configuration** register, no new packets are scheduled for the corresponding egress prio. Ongoing packets are not affected by the shaping bucket status.

The prio shapers are enabled using the **Prio Shaper Enable** register, and the saturation level of the prio shaper buckets is controlled by the **Prio Shaper Bucket Capacity Configuration** register.

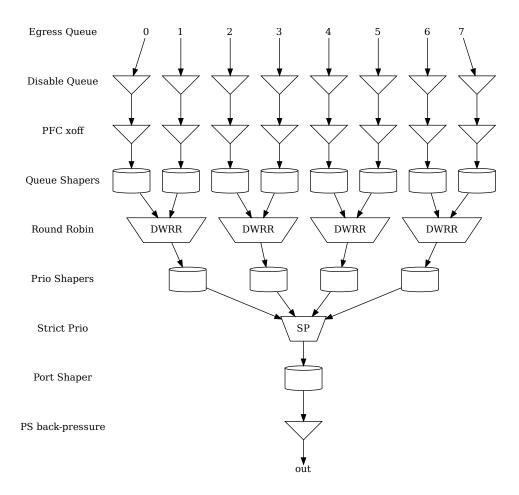


Figure 21.2: Egress Queue Scheduling example. Here using half the priorities, with two queues mapped to each.

21.5 Scheduling

The egress queue scheduling is accomplished by a combination of strict priority schedulers for the priorities and round robin queue schedulers for the queues mapped to the same priority. A visual representation of this is can be found in Figure 21.2. This figure is an example where half the priorities are used and two queues map to each priority³.

For a priority to be allowed to output a packet it must have mapped queues with available packets. It must also:

- be allowed to send by the prio shaper
- not be paused
- not be halted

From the priorities getting through the above needle's eye the highest priority is selected, and then the available queues mapped to that priority are selected by a byte-based deficit weighted round robin scheduler (described below).

21.6 DWRR Scheduler

The DWRR scheduler only acts on queues mapped to the same priority. Within each group of such queues it selects the most appropriate queue to output by comparing the number of bytes output for each queue with the weights set up for the queues.

This is accomplished using one byte counting bucket per queue and port. The non-empty queue with the highest bucket count in the group is selected. Bytes are subtracted from the corresponding bucket when a packet is sent out. Whenever the value in a bucket goes below the value configured in the **threshold** field of the **DWRR Bucket Misc Configuration** register, the buckets for all the queues belonging to the same priority will be replenished. The number of bytes added to each bucket is **weight** << X, where weight is taken from the **DWRR Weight Configuration** register, and X is a multiplier (for all queues) that is calculated to make sure that at least one cell worth of bytes is added to the queue that went below the threshold.

X = max(0, highestSetBit(cellBytes) - highestSetBit(weigth))

If a queue has no data to send, its bucket will eventually saturate at the cap set in the **DWRR Bucket Capacity Configuration** register.

The value in the **ifg** field of the **DWRR Bucket Misc Configuration** is additionally subtracted from the buckets for each packet.

21.7 Queue Management

This core features a set of queue management operations which can be used by the CPU to monitor, redirect and disable queues and ports. The current size of the queues can be readout by using the Egress Port Depth and Egress Queue Depth registers, while the current total number of cells left available can be seen in the Buffer Free register. The minimum level reached since core was initialized is available in Minimum Buffer Free. From this status the CPU can take active actions to determine what the core shall do with the packets on the ports. The optional operations are listed below.

- Disable scheduling to port: Disable the core from scheduling a new packet for transmission on a specific port and queue. This is setup in the **Output Disable** register. This allows per-queue granularity of what packets gets scheduled on a specific port. The packets are still kept in the queues until the port or queue is enabled again.
- Disable queueing to port: Disable the enqueueing of packets to a specific port and queue. Once the
 corresponding bit in the Enable Enqueue To Ports And Queues register is cleared, no new packets will be
 queued to that egress queue. New packets destined to that specific queue will be dropped and the Queue
 Off Drop counter for the egress port will be incremented.
- Drain port: Drop all packets in all queues on one specific port. This allows the user to clear all packets which have been queued on a port. The register **Drain Port** is used to control this functionality. Statistics for this operation is collected in the **Drain Port Drop** counter.

³So other similar diagrams would result with different settings in the Map Queue to Priority register.

21.8 How To Make Sure A Port Is Empty

First, so that no new packets are queued to the port, use the **Enable Enqueue To Ports And Queues** to disable all the queues on the port. If the already queued packets should not be sent out, then use the **Drain Port** functionality. Once this is done start to read out the **Packet Buffer Status** and check the bit which corresponds to the port. When the port bit is high, this means that all the queues on this port are empty.

Now, there may still be a few cells of data being processed in the egress packet processing pipeline, or stored in the parallel-to-serial memories. This data will be drained at the speed of the port, so the time from the port-bit going high in the **Packet Buffer Status** register to the port being truly empty will depend on the port speed.

Packet Architects AB

Packet Coloring

22.1 Ingress Packet Initial Coloring

This core marks packets with 3 colors internally to represent packet drop precedences. The three colors are coded as in Table 22.1.

Color	Code
Green	0
Yellow	1
Red	2

Table 22.1: Code for Colors

A packet's initial color is assigned according to L2/L3 protocols or classification results. It follows similar process steps as the egress queue assignment described in Section 21.1.

- 1. Configurable ACL Engine has a forceColor action enabled.
- 2. forceColor in Reserved Source MAC Address Range
- 3. forceColor in Reserved Destination MAC Address Range
- 4. colorFromL3 in Source Port Table
- 5. IPv4 TOS Field To Packet Color Mapping Table
- 6. IPv6 Class of Service Field To Packet Color Mapping Table
- 7. MPLS EXP Field To Packet Color Mapping Table
- 8. forceColor in Force Unknown L3 Packet To Specific Color
- 9. forceColor in Force Non VLAN Packet To Specific Color

A diagram in Figure 22.1 describes how initial colors are determined. All classification engines which can force egress queues also have an option to force packet initial colors. If none of the engines force the color and the initial color marking is operating under trust L2 mode, the color is mapped from:

- Priority Code Point(PCP) field with Drop Eligible Indicator(DEI) field from the ingress outermost VLAN tag.
- Source port default PCP with default DEI when packet is non-VLAN tagged.
- Optionally force non-VLAN tagged packets to the same specific initial color, ignores source port based default
 marking.

Otherwise, the initial color marking will be working under trust L3 mode and the color is mapped from:

- Type of Service(TOS)/DiffServ field from IPv4
- Traffic Class(TC) field from IPv6
- Optionally force non-IP packets to the same initial color.

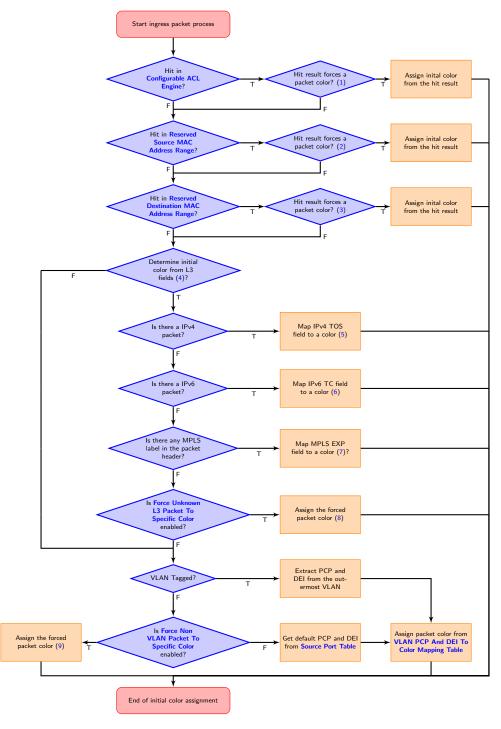


Figure 22.1: Packet Initial Color Selection Diagram

• When none of the above markings are executed, the initial color marking under trust L3 mode falls into processes in trust L2 mode.

By default, green marked packets have low drop probability, yellow marked packets have medium drop probability and red marked packets have high drop probability. But the remarking process has its own configurable settings to decide if packets with a certain remarked color shall be dropped.

22.2 Remap Packet Color to Packet Headers

During egress packet processing, each egress port can be set as color aware or color blind through the **colorRemap** field in the **Egress Port Configuration** table. If an egress port is color blind, packets to that port will not have its color represented in packet headers. If an egress port is color aware, a color remap process is executed to optionally remap the egress packet color to outgoing packet headers.

When an egress port is color aware, the default remap options for that port are configured in the Color Remap From Egress Port table. If a packet to a color aware egress port has ingress admission control applied, its meter-marker-policer pointer can also provide color remap options from the Color Remap From Ingress Admission Control table. The enable field in the table determines whether to perform a color remap operation for each pointer.

The color remap has four modes:

- Skip/Disable:
 Color is not remapped to packet headers. This includes overriding previous color remap decisions.
- Remap to L3 only:
 Color is remapped to IPv4 TOS field or IPv6 TC field with an AND mask (tosMask). For each bit in the TOS/TC field, the update requires the corresponding bit in the mask set to one. i.e.

```
tos[i] = (color2Tos[i] & tosMask[i]) | (tos[i] & ("tosMask[i]))
```

Remap to L2 only:
 A valid color remap updates the DEI bit in the VLAN tag of the outgoing packet. The updated DEI bit will not be changed during further egress packet processes. If there are more than one VLAN tag in the

transmitted packet, the color to DEI mapping will be operated on the outermost VLAN.

Remap to L2 and L3:
 Color is remapped to both L2 and L3 fields as listed above.

Admission Control

23.1 Ingress Admission Control

This core features an ingress admission control unit to control the bandwidth of certain traffic types. If the traffic flow in a group exceeds the configured bandwidth it may get the packet color changed or get denied to be enqueued in the buffer memory.

Ingress admission control includes two main functions. The first function creates admission control groups to classify packets based on source information in packet headers or ACL matches. The second function measures the classified traffic rate against a certain policy to make permit/deny decisions. The decision may take the given packet color into account.

23.1.1 Traffic Groups

The traffic group is classified based on source port number and L2 or L3 packet headers. Initially packets are grouped by their source port numbers and L2 priorities, but during the subsequent admission control processes they may fall into other traffic groups. For each potential traffic group, three configurations are given to validate a policy:

- 1. mmpValid: Determine if there is a valid Meter-Marker-Policer(MMP) pointer. If there is no valid pointer through the entire process, the packet will not be classified to any traffic group.
- 2. mmpOrder: Order of the pointer. If a valid pointer exists, its order needs to be higher than the order of previously assigned pointers to override them.
- 3. mmpPtr: MMP pointer for this traffic group.

The process to set the MMP pointer is illustrated in Figure 23.1. A packet can only belong to one traffic group so hierarchical traffic groups are not possible.

The order of the classification sequence is:

- 1. Source port number and L2 priority:
 - First assignment for traffic groups and MMP pointers. For VLAN tagged packet, L2 priority is from its outermost VLAN PCP field. For non-VLAN tagged packet, L2 priority is the default PCP based on the source port number (defaultPcp in the Source Port Table). Lookup in the Ingress Admission Control Initial Pointer table gives a base pointer and its order, also indicates if it is a valid pointer.
- 2. Source MAC:
 - Source MAC hit an entry in the Reserved Source MAC Address Range.
- 3. Destination MAC:
 - Destination MAC hit an entry in the Reserved Destination MAC Address Range.
- 4. ACL rules:
 - Hit in the Configurable ACL Engine.
- 5. Ingress VID:
 - Lookup in VLAN Table based on the ingress VID.
- VRF:

For a routed packet, lookup in Ingress Router Table based on its VRF.

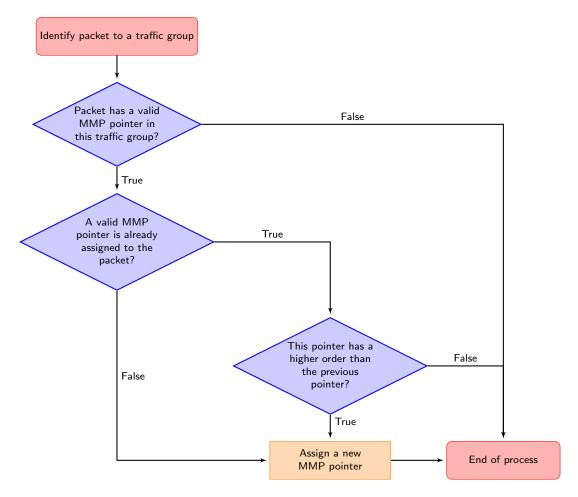


Figure 23.1: MMP pointer Selection Diagram

When a packet arrives to ingress packet processing, it walks through ingress admission control classifications in the order above. A hit in one of the above groups will result in a pointer and a matching order. The pointer is linked to a policy/entry in a meter-marker-policer engine, which will measure the byte rate belonging to this entry. Although a packet can have multiple hits in traffic groups, it will finally fall into one pointer according to the order of the pointers. Later matches only win when they have a higher order than the previous ones.

23.2 Meter-Marker-Policer

An admission control unit contains a meter-marker-policer (MMP) bank where each MMP refers to one admission control policy. An MMP is based on token buckets, and each entry includes two configurable buckets.

The MMP bank used by ingress admission control consists of 32 policies/entries with three related tables.

- 1. Ingress Admission Control Token Bucket Configuration
- 2. Ingress Admission Control Reset
- 3. Ingress Admission Control Current Status

While only one ingress admission control policy is applied to any single packet, the same policy/entry can be pointed to from several different traffic types.

In the Ingress Admission Control, an MMP entry is configured through the Ingress Admission Control Token Bucket Configuration register to perform either a single rate three color marker (RFC2697: srTCM) or a two rate three color marker (RFC2698: trTCM). The selected marker is operated in either color-aware or color-blind mode, and the packet is marked with a new color when the rate exceeds a certain bandwidth. Based on the updated

packet color, dropMask from register Ingress Admission Control Token Bucket Configuration decides whether the packet is allowed to be enqueued in the buffer memory.

An MMP entry has a **Ingress Admission Control Mark All Red Enable** option to permanently block the metering process and drop all packets with the corresponding MMP pointer. When **Ingress Admission Control Mark All Red Enable** is set to one, a packet drop on this entry will raise the **Ingress Admission Control Mark All Red** to one, then further packets to that entry will be dropped before metering. The blocking status can be cleared by writing zero to one of the two registers.

When an MMP is selected to be either srTCM or trTCM, it still requires configurations of the two token buckets to make it work properly.

- srTCM: Only the length, not the peak rate of the burst determines service eligibility.
 - Committed Information Rate (CIR): Combining tokens 0 and tick 0 to achieve the target rate. Details for tick is described in the Tick chapter. Configuration examples are shown in Table 23.1. Under srTCM mode, rate settings for the second token bucket (tokens 1 and tick 1) will not take effect.
 - Committed Burst Size (CBS): bucketCapacity 0.
 - Excess Burst Size (EBS): bucketCapacity 1.
- trTCM: Enforce peak rate separately from the committed rate.
 - Committed Information Rate (CIR): tokens 0 and tick 0.
 - Committed Burst Size (CBS): bucketCapacity 0.
 - Peak Information Rate (PIR): tokens 1 and tick 1.
 - Peak Burst Size (PBS): bucketCapacity 1.
- Runtime configuration update:

Any update to register Ingress Admission Control Token Bucket Configuration requires writing 1 to register Ingress Admission Control Reset. This will reset the buckets to the initial state.

• Status update from hardware:

Besides Ingress Admission Control Reset, MMP has a another status register: Ingress Admission Control Current Status. It shows the number of tokens in each bucket. Hardware updates these two registers only when a metering process is done, hence Ingress Admission Control Current Status shows the number of tokens left in the bucket since the last token consumption in this bucket. Ingress Admission Control Reset is always changed back to 0 again after token consumptions.

Bandwidth	Token Bucket Update Frequency	Tick Index	Added Tokens Per Tick (bytes)
8000 bit/s	1KHz	3	1
16000 bit/s	1KHz	3	2
N*64000 bit/s	1KHz	3	N*8
N*1544000 bit/s	1KHz	3	N*193
N*56000 bit/s	1KHz	3	N*7
10M bit/s	10KHz	2	125
250M bit/s	10KHz	2	3125
N*1G bit/s	1Mhz	0	N*125

Table 23.1: Rate Configuration Example (Assume tickFreqList = [1MHz, 100KHz, 10KHz, 1KHz, 100Hz])

Tick

All token buckets - and all other functions dependent on measuring time - in the core are basing their time measurements on the system ticks.

Tick number zero is the master tick. It is created by dividing the core clock by the number configured in the clkDivider field of the **Core Tick Configuration** register. The following tick signals (five in total) are created by dividing the previous tick by a factor set up in the stepDivider field of the **Core Tick Configuration** register, so tick1 is clkDivider slower than tick0, tick2 is clkDivider slower than tick1, and so on.

If the Core Tick Configuration is updated during runtime, all features relying on the core tick need to be updated accordingly. Meanwhile, inaccurate time measurement will be performed until the first tick after the reconfiguration is generated.

By default the input to the Core Tick divider is the core clock, but using the Core Tick Select register the input to the tick divider can be disabled, or chosen to be driven from <code>debug_write_data</code> pin 0.

Multicast Broadcast Storm Control

The multicast/broadcast storm control (MBSC) unit is used to make sure that a switch does not flood the network with too much multicast/broadcast traffic. The MBSC unit prevents several traffic types from transmitting to an egress port if the corresponding traffic rate on that egress port has exceeded a certain limit.

The basic component of the MBSC unit is a token bucket (illustrated in Figure 20.1). For each egress port there is one token bucket per inspected traffic type. In principle a token bucket controls the traffic rate (packet rate or byte rate) on an egress port. A token bucket operates as follows:

- 1. A configurable number of tokens are periodically added to the token bucket. The bucket level will saturate at the configured capacity.
- 2. When a packet of the traffic type is received a configurable number of tokens are consumed, i.e. the bucket level is decreased. The number of tokens consumed per packet is either packet length plus IFG adjustment or one per packet.
- 3. As long as the bucket level is at or above the threshold the bucket will accept all given traffic.
- 4. When the bucket level drops below the threshold all packets of the inspected traffic type, destined for the corresponding egress port, are dropped. Note that instances of the same packet destined for other egress ports are not affected and have their own token buckets to check the traffic rate.
- 5. The MBSC Drop counter will be incremented once for each egress port where the packet is dropped.

In this core three kinds of traffic are checked by the MBSC unit:

- L2 Broadcast
- L2 Flooding
- L2 Multicast

For each type of traffic there is an individual control unit, consisting of one token bucket per egress port. Every token bucket can be turned on or off separately through a control register (listed in the next section).

25.1 Inspected Traffic

- L2 Broadcast: A Packet with DA = ff:ff:ff:ff:ff.
 - Token bucket configurations:
 - * L2 Broadcast Storm Control Enable
 - * L2 Broadcast Storm Control Bucket Capacity Configuration
 - * L2 Broadcast Storm Control Bucket Threshold Configuration
 - * L2 Broadcast Storm Control Rate Configuration
- L2 Flooding: A packet that will be L2 switched but the DA is unknown. In this case the packet is flooded to all VLAN member ports.
 - Token bucket configurations:
 - * L2 Flooding Storm Control Enable
 - * L2 Flooding Storm Control Bucket Capacity Configuration

- * L2 Flooding Storm Control Bucket Threshold Configuration
- * L2 Flooding Storm Control Rate Configuration
- L2 Multicast: A packet that will be L2 switched and has a known multicast DA MAC in the L2 tables. (The DA MAC has Ethernet multicast bit set to 1). The core can optionally include or exclude certain packets as L2 multicast traffic. The configuration is through the L2 Multicast Handling register.
 - Token bucket configurations:
 - * L2 Multicast Storm Control Enable
 - * L2 Multicast Storm Control Bucket Capacity Configuration
 - * L2 Multicast Storm Control Bucket Threshold Configuration
 - * L2 Multicast Storm Control Rate Configuration

25.2 Rate Configuration

From the configuration registers a token bucket can be shaped with its capacity, threshold and token settings. The L2 broadcast storm control is here used as an example to demonstrate the operations.

From the L2 Broadcast Storm Control Rate Configuration register a user can configure how tokens are consumed by a packet, and how new tokens are supplemented to the bucket.

- Token consumption
 - 1. The token bucket can be set to count either packets or bytes by the **packetsNotBytes** field. This setting puts a token bucket in either packet or byte mode to control the maximum packet rate or byte rate on an egress port respectively.
 - 2. In packet mode, every L2 broadcast packet instance to an egress port will consume one token and the bucket value will be decreased by one.
 - In byte mode, every L2 broadcast packet instance to an egress port will consume as many tokens
 as there are bytes in the packet plus the specified IFG correction in the ifgCorrection field.
- Token Injection
 - The token injection frequency is tick ¹ based. The tick timer determines the time period between token injections. The tick field from the L2 Broadcast Storm Control Rate Configuration register selects which tick timer to use.
 - 2. When it is time to inject new tokens, the number of tokens that will be added is configured in the tokens field
- Token bucket capacity and threshold. The two configuration registers L2 Broadcast Storm Control Bucket
 Capacity Configuration and L2 Broadcast Storm Control Bucket Threshold Configuration are used to
 setup how the token bucket handles traffic bursts.

By default the MBSC unit is operating in packet mode, and all token buckets are set to allow the inspected traffic to have at most 5% of the full packet rate for 64-byte packets. Python example code to configure the maximum packet rate to 5% follows:

```
#!/usr/bin/python
rate
        = 0.05
minLen = 64 \# bytes
slice
        =1~\# switch slices
        = 20 \# bytes
ifg
pnb
        =1 \# = packet mode
portBW = 25000 # Mbits/s
tickFreqList = [1.44]
                 0.144,
                 0.0144.
                 0.00144.
                 0.000144] # Mhz
fullByteRate
                        = portBW/8.0
fullPktRate
                        = fullByteRate/(minLen+ifg)
```

¹The system ticks are described in Chapter 24.

154 Packet Architects AB

```
pktRate = fullPktRate*rate
pktTokenIn
                   = 10*slice
tick = len(tickFreqList)-1
for i in range(len(tickFreqList)):
    if \ tickFreqList[i] \ * \ pktTokenIn <= \ pktRate:
       tick = i
       break
pktCap = pktTokenIn * 20
pktThr = pktTokenIn * 10
# Field settings for the rate configuration register
settings = {
    'packetsNotBytes' : pnb, 'tokens' : pktT
                : pktTokenIn ,
    'tick' : tick,
'ifgCorrection' : ifg,
'capacity' : pktCap,
'threshold' : pktThr}
    'tick'
```


156

Egress Resource Manager

The core includes an Egress Resource Manager (ERM) unit for controlling the shared buffer memory occupancy of egress ports and queues. The primary objective of the egress resource manager is to avoid persistent buildup of queue length in the buffer memory and prevent the blockage of enqueuing at other ports and queues. Additionally, during buffer memory congestion, ERM facilitates prioritized enqueuing of egress queues with higher priorities.

The resource management granularity is cells and there are 1024 cells, each 192 byte wide, available in the buffer memory. A packet is written to the buffer memory with the original packet data plus a 28 byte ingress to egress header, thus a 1600 byte packet will have 1628 bytes and occupy eight cells. A packet plus the ingress to egress header longer than n cells but shorter than (n+1) cells will require (n+1) cells for storage. For example, a 165 byte packet will use two cells. ERM traces the buffer memory occupancy and decides if a cell is allowed to be written to the buffer memory.

The ERM determines the congestion of the buffer memory based on the amount of free space (number of free cells) available. The ERM classifies the congestion levels into Green (no congestion), Yellow (slightly congested) or Red (heavily congested). When the buffer memory is in the yellow or red zone, **Resource Limiter Set** gives four sets of limits to check the queue length for different egress ports and queues. An egress port chooses limit sets for each of its queues from the **Egress Resource Manager Pointer** lookup.

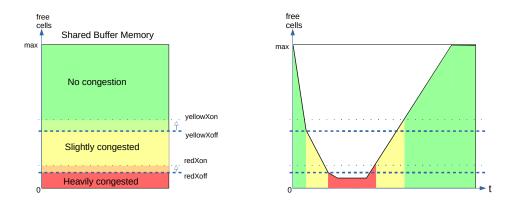


Figure 26.1: Buffer memory congestion zones

26.1 Yellow Zone

ERM Yellow Configuration defines how to enter and exit the yellow zone. The yellow zone is entered when the number of free cells goes below **yellowXoff**. To leave the yellow zone, the number of free cells need to go above **yellowXon**.

ERM checks

The buffer memory is considered partially congested when it is in the yellow zone. The ERM allows moderate buildups in all queues to a certain limit. An incoming cell of a packet is not allowed to be enqueued under two conditions:

- 1. The number of enqueued cells in the assigned egress queue is more than **yellowLimit**, while the total number of enqueued cells in the same queue and higher priority queues is more than **yellowAccumulated**.
- ERM Yellow Configuration offers an optional check on a per egress port basis. A port can be considered
 as a red port in the yellow zone if the enqueued cells on that port are above redPortXoff. An incoming cell
 to a red port is not allowed if the length of the assigned queue is larger than redLimit.

26.2 Red Zone

ERM Red Configuration defines how to enter and exit the red zone. The red zone is entered when the number of free cells goes below **redXoff**. To leave the red zone, the number of free cells need to go above **redXon**.

ERM checks

The buffer memory is considered severely congested when it is in the red zone and the ERM shall only accept enqueuing to nearly empty queues. An incoming cell of a packet is not allowed to be enqueued in two cases:

- 1. The number of enqueued cells in the assigned egress queue is more than redLimit.
- 2. The ongoing packet length in cells has exceeded redMaxCells.

26.3 Green Zone

When the buffer memory is neither in the yellow zone nor in the red zone, the ERM considers the buffer memory to be uncongested and all incoming cells are accepted and stored in their assigned queues.

26.4 Configuration Example

A commonly used non-default ERM configuration involves allowing a queue to grow up to length G without packet drops (guarantees), and preventing new packets from being enqueued when the queue length is beyond L (limits). Between queue length G and L the enqueuing decision is made based on the overall free space in the buffer memory. This configuration imposes the following requirements:

- 1. $redXon \ge redXoff \ge sum(redLimit)$
 - The red zone is used as guarantees, its configuration needs to ensure that **redXon** is large enough so that the buffer memory does not get full before all queues reach their **redLimit**. Set **redLimit** a few cells more than the desired guarantee size to have a margin for the latency.
- 2. Set yellowAccumulated to 0, ensuring that yellowLimit is always checked in the yellow zone.
- 3. yellowXon ≥ yellowXoff ≥ maxBufferFree
 Put the ERM in the yellow zone even when the buffer memory is empty hence keep yellowLimit check under an always on state.

26.5 Restrictions

Be aware that the Map Queue to Priority settings need to be done when there is no traffic on any port. Update with ongoing traffic may provide a wrong enqueuing snapshot to the ERM and cause inconsistencies that can not be recovered without a reset.

158

Flow Control

The purpose of flow control is to give access to storage in the packet buffer in an fair manner between the ports sending packets to this switch. No single source port or, if configured for it, traffic class, shall be able to behave in a way that punishes other source ports (or traffic classes). For this purpose flow control has two tools at its disposition: Pausing and tail-drop.

27.1 Pausing

Pausing, or Ethernet flow control, is a method of remote controlling the far-end interface's transmissions to this switch using dedicated pause frames. Hence, for successful pause operation the far-end interface also needs to be set up properly. The remote control is done by regularly sending pause frames (by this switch's MACs) to the far-end interfaces

The switch core will only provide the MACs with a vector of the current pause state. It is up to the MAC to detect state changes and send the appropriate pause frames. The interface for the pause state vector is described in Section 31.5.

The pause frames are entirely handled by the MAC. It both creates frames and consumes incoming frames. The switch does not expect any pause frames on the packet interface from MAC, and the switch will not create any pause frames.

The beauty of pausing is that it can be used to set up flow control without packet drops. If the size of the packet buffer is large enough to cope with the data in flight from all the far end interfaces, and they all support pausing, it is possible to configure a completely drop-less system.

If, however, some far end interfaces do not support pausing, or the amount of data in flight is too large, it is necessary to make use of tail dropping.

27.2 Tail-Drop

Tail-drop is an implicit flow-control scheme. By deliberately dropping incoming packets (tail refers to the tail of the queue) there is an induced limitation of flows by Layer 3 transport protocols with flow control (e.g. TCP). So in contrast to Pausing, Tail-drop is not reliant on features of neighboring interfaces, but on features of higher level protocols. Transport protocols without flow control (e.g. UDP) will not limit their flows due to drops, but tail-drop will still prevent those flows, when misbehaving, from interfering with traffic from other source ports (or traffic classes).

Note that for flow control to function correctly all source ports have to be set up for either pausing or tail-drop (or both). If a single source port is not configured properly, it can starve all the others of buffering resources.

27.2.1 Tail-drop as police for Pausing

Even on Pause-enabled ports it may be useful to set up tail dropping as back-up for Pausing. By setting the tail-drop threshold at a level where we would have stopped receiving data from a Pausing-enabled source port, had it observed our pause frame, we can protect our packet buffering resources even in the case that a remote interface fails to act on the pause frame.

27.3 Buffer partitioning

The packet buffer space is partitioned into reserved and free-for-all (FFA) areas. Properly configured tail-drop will never drop a packet so long as only the reserved areas are used. Below I will use "resource" to mean "source port" on a non-PFC port and "source port/traffic class" on a PFC-enabled port.

The number of FFA cells that are are allowed to be consumed by each resource before it will be hit by flow control is configured individually per resource. When the number of used free-for-all cells reaches the configured Xoff threshold, the pause state will be set to Xoff. And when the tail-drop threshold is exceeded a packet may be dropped (depending on whether there are reserves left).

The flow control decision will only be made once the last cell of a packet is about to be written to the packet buffer. Thus the thresholds need to be set so that there is space for one maximum packet per source port set aside.

27.3.1 Reserves

The tail-drop and the pausing share the reserved settings and the counters but the meaning of reserve is different between them. For tail-drop a reserve is really a reserve. Meaning that if, for instance, a source port still has reserves left it will not drop even if the global threshold is exceeded. For pausing, when an Xoff threshold is reached it will cause pausing whether or not there are reserves left. So when the global Xoff threshold is reached all ports with pausing enabled will be paused. Even those that have reserves left.

The reason that tail drop and pausing work differently is that pausing needs hysteresis between Xoff and Xon, and tail drop does not. It would be difficult to maintain the hysteresis if the reserves were observed for pausing.

Each port can be set up to work in either PFC-mode, and non-PFC-mode. In PFC-mode the accounting is done per port and traffic class, while in non-PFC-mode the accounting is only per port.

27.4 Non-PFC mode

In non-PFC mode the traffic class is disregarded, and accounting is only done per source port. The mode is controlled individually per source port by the **Port Pause Settings:mode** fields for pausing and by the **Port Tail-Drop Settings:mode** fields for tail-drop. The **Port Reserved** registers define the number of cells reserved per source port.

These counters are used in non-PFC mode:

- FFA Used PFC: The total number of free-for-all cells occupied by ports in PFC-mode
- FFA Used non-PFC: Total number of free-for-all cells occupied by ports in non-PFC-mode
- Port Used: Number of cells occupied by each source port

Note that the global threshold is for the sum of FFA cells, that is the sum of FFA Used PFC and FFA Used non-PFC

27.5 PFC-mode

In PFC mode accounting is additionally done per traffic class. The Port/TC Reserved registers define the number of cells reserved for each specific source port and traffic class combination.

Figure 27.1 illustrates the partitioning of reserved and FFA areas.

These counters are used in PFC mode:

- FFA Used PFC: The total number of free-for-all cells occupied by ports in PFC-mode
- FFA Used non-PFC: Total number of free-for-all cells occupied by ports in non-PFC-mode
- Port FFA Used: The number of free-for-all cells occupied for each source port
- TC FFA Used: The number of free-for-all cells occupied for each traffic class
- PFC Inc/Dec Counters: The cell counters per Port/TC are comprised of separate increment and decrement counters per Port/TC. The current counter value is calculated by taking the increment minus the decrement modulo the counter size.

160

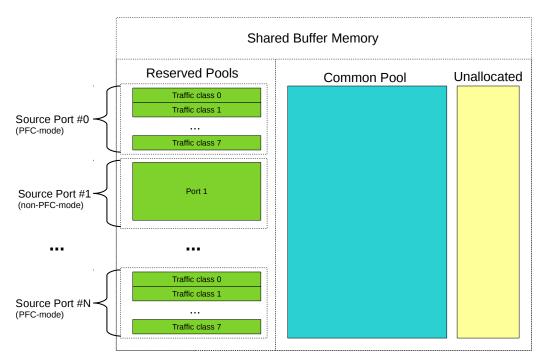


Figure 27.1: The buffer memory is partitioned into Reserved and FFA areas. The unallocated area is the space set aside for the currently incoming packets.

27.5.1 Pausing Thresholds

For tail-drop there is a single set of thresholds above which packets are dropped. For pausing there are two sets of thresholds, Xon thresholds and Xoff thresholds, thus forming a hysteresis area to avoid bursts of pause frames at the threshold. Going above the Xoff threshold will produce a pause frame turning off the packet flow at the remote interface, but to produce a pause frame turning it back on requires going all the way down below the Xon threshold.

These are the pausing thresholds:

- Xoff FFA Threshold: When the total number of used FFA cells is at or above this threshold the global pause state is set to paused.
- Xon FFA Threshold: When the total number of used FFA cells goes below this threshold the global pause state is set to un-paused.
- TC Xoff FFA Threshold: When the total number of used FFA cells for a traffic class is at or above this threshold the traffic class state is set to paused
- TC Xon FFA Threshold: When the total number of used FFA cells for a traffic class goes below below this threshold the traffic class state is set to un-paused.
- Port Xoff FFA Threshold: When the total number of used FFA cells for a source port is at or above this threshold the source port state will be set to paused.
- Port Xon FFA Threshold: When the total number of used FFA cells for a source port goes below this threshold the source port state is set to un-paused.
- Port/TC Xoff Total Threshold: When the sum of the FFA and Reserved cells used for a specific source port and traffic class combination is at or above this threshold, the state of this specific source port and traffic class combination will be set to paused.
- Port/TC Xon Total Threshold: When the sum of the FFA and Reserved cells used for a specific source
 port and traffic class combination goes below this threshold the state for this specific source port and traffic
 class combination is set to un-paused

Note that all thresholds are for the number of FFA cells used, except for the Port/TC threshold which is for the total number of cells used.

C

In non-PFC-mode each resource is affected by two thresholds: The source port threshold and the global threshold. Both need to be in the un-paused state for the source port to the set to un-paused.

In PFC-mode each resource (source port and traffic class) is affected by four thresholds:

- Source Port/Traffic Class
- Source Port
- Traffic Class
- Global

All four need to be in the un-paused state for the source port and traffic class combination to be set to un-paused.

27.5.2 Tail-drop Thresholds

For tail-drop there is no hysteresis so there is only a single set of thresholds:

- Tail-Drop FFA Threshold: When the total number of used FFA cells is above this threshold all packets will be dropped from the tail-drop-enabled ports that have no reserved cells left to spend
- Port Tail-Drop FFA Threshold: When the total number of used FFA cells for a source port is above this threshold incoming packets from this source port will be dropped unless the port is in PFC-mode and there are reserved cells left to spend
- TC Tail-Drop FFA Threshold: When the total number of used FFA cells for a traffic class is above this threshold any incoming packet belonging to the traffic class will be dropped unless the port/TC has reserved cells left to spend. Only valid in PFC-mode
- Port/TC Tail-Drop Total Threshold: When the sum of the FFA and Reserved cells used for a specific source port and traffic class combination is above this threshold any incoming packet from this source port assigned to this traffic class will be dropped. Only valid in PFC-mode

The Tail-Drop FFA Threshold, TC Tail-Drop FFA Threshold and Port Tail-Drop FFA Threshold are not obeyed strictly. The first packet exceeding the threshold may be accepted, causing a one-packet over-shoot.

27.6 Enabling Tail-Drop

Tail-drop is enabled per source port using the **Port Tail-Drop Settings:enable** fields. The individual thresholds are enabled using the enable fields in each threshold register. See Section 27.5.1 above.

27.7 Enabling Pausing

Pausing is enabled per source port using Port Pause Settings:enable fields. The individual thresholds are enabled using the enable fields in each threshold register. See Section 27.5.1 above.

27.8 Dropped packets

Packets that are dropped will still consume resources while they are waiting for deallocation. This applies even to broken packets, for instance packets with CRC errors.

The packets dropped due to exceeding the Tail-Drop thresholds are counted in the **Ingress Resource Manager Drop** register.

27.9 Reconfiguration

The Xon, Xoff and tail-drop thresholds can be reconfigured at any time. The reserved settings, however, cannot be changed on any source port on which there is traffic. The reserved settings also cannot be changed for any source port that has packets queued. If the reserved settings are changed in these cases the flow control counters will be irrevocably corrupted, necessitating a reset for the core to continue normal operation.

27.10 Debug Features

Each threshold can be forced to trigger using the trip fields of the threshold registers. For tail-drop only drop can be forced this way, but accept can of course be assured by disabling the threshold using the enable field.

For pausing a specific pause state can be forced using the force and pattern fields of the **Port Pause Settings** register.

163

Egress Port Shaper

The egress port rates are shaped by token buckets configured in the Port Shaper Rate Configuration registers. While the token bucket level is below the threshold configured in the Port Shaper Bucket Threshold Configuration register, no new packets are scheduled for the corresponding egress port. Ongoing packets are not affected by the shaping bucket status.

The port shapers are enabled using the **Port Shaper Enable** register, and the saturation level of the port shaper buckets is controlled by the **Port Shaper Bucket Capacity Configuration** register.

An illustration of a token bucket can be seen in Figure 20.1 (despite what the illustration says the shaper will of course never drop any packets).

Statistics

Short Name	Register Name	
1. rxlf	MAC Interface Counters For RX	
3. macBrokenPkt	MAC RX Broken Packets	
4. macRxMin	MAC RX Short Packet Drop	
4. macRxMax	MAC RX Long Packet Drop	
5. spOverflow	SP Overflow Drop	
11. ipppDrop	Unknown Ingress Drop	
	Empty Mask Drop	
	Ingress Spanning Tree Drop: Listen	
	Ingress Spanning Tree Drop: Learning	
	Ingress Spanning Tree Drop: Blocking	
	L2 Lookup Drop	
	Ingress Packet Filtering Drop	
	Reserved MAC DA Drop	
	Reserved MAC SA Drop	
	VLAN Member Drop	
	Minimum Allowed VLAN Drop	
	Maximum Allowed VLAN Drop	
	Invalid Routing Protocol Drop	
	Expired TTL Drop	
	L3 Lookup Drop	
	IP Checksum Drop	
	Second Tunnel Exit Drop	
	Tunnel Exit Miss Action Drop	
	Tunnel Exit Too Small Packet Modification Drop	
	Learning Packet Drop	
	L2 Reserved Multicast Address Drop	
	Ingress Configurable ACL Drop	
	Egress Configurable ACL Drop	
	ARP Decoder Drop	
	RARP Decoder Drop	
	L2 IEEE 1588 Decoder Drop	
	L4 IEEE 1588 Decoder Drop	
	IEEE 802.1X and EAPOL Decoder Drop	
	SCTP Decoder Drop	
	LACP Decoder Drop	
	AH Decoder Drop	
	ESP Decoder Drop	
	DNS Decoder Drop	
	BOOTP and DHCP Decoder Drop	
	CAPWAP Decoder Drop	
	IKE Decoder Drop	
	GRE Decoder Drop	
	NAT Action Table Drop	

Short Name	Register Name
	L2 Action Table Special Packet Type Drop
	L2 Action Table Drop
	L2 Action Table Port Move Drop
	Source Port Default ACL Action Drop
11. smon	SMON Set 0 Packet Counter
	SMON Set 1 Packet Counter
	SMON Set 2 Packet Counter
	SMON Set 3 Packet Counter
	SMON Set 0 Byte Counter
	SMON Set 1 Byte Counter
	SMON Set 2 Byte Counter
	SMON Set 3 Byte Counter
11. ippAcl	Ingress Configurable ACL Match Counter
11. vrfln	Received Packets on Ingress VRF
11. nextHop	Next Hop Hit Status
11. eppAcl	Egress Configurable ACL Match Counter
11. preEppDrop	Queue Off Drop
r · rr · · r	Egress Spanning Tree Drop
	MBSC Drop
	Ingress-Egress Packet Filtering Drop
	L2 Action Table Per Port Drop
11. ip	IP Unicast Received Counter
r	IP Multicast Received Counter
	IP Unicast Routed Counter
	IP Multicast Routed Counter
	IP Multicast ACL Drop Counter
11. ippDebug	Debug IPP Counter
The see of	Debug EPP Counter
12. ipmOverflow	IPP PM Drop
13. ippTxPkt	IPP Packet Head Counter
- 17	IPP Packet Tail Counter
14. eopDrop	IPP Empty Destination Drop
14. mmp	Flow Classification And Metering Drop
15. erm	Egress Resource Manager Drop
16. bmOverflow	Buffer Overflow Drop
16. irm	Ingress Resource Manager Drop
18. pbTxPkt	PB Packet Head Counter
20. ps 17 10	PB Packet Tail Counter
19. epppDrop	Unknown Egress Drop
13. срррвтор	Egress Port Disabled Drop
	Egress Port Filtering Drop
	Tunnel Exit Too Small Packet Modification To Small Drop
19. vrfOut	Transmitted Packets on Egress VRF
19. nat	Ingress NAT Hit Status
19. Hat	Egress NAT Hit Status
21. drain	Drain Port Drop
22. epmOverflow	EPP PM Drop
24. rqOverflow	Re-queue Overflow Drop
24. rqOvernow 24. eppTxPkt	EPP Packet Head Counter
24. EPPIXEKL	EPP Packet Head Counter EPP Packet Tail Counter
25 T. DI+	11 11 11 11 11
25. psTxPkt	PS Packet Head Counter
05 5	PS Packet Tail Counter
25. psError	PS Error Counter
28. txlf	MAC Interface Counters For TX

Table 29.1: Sequence of Statistics Counters

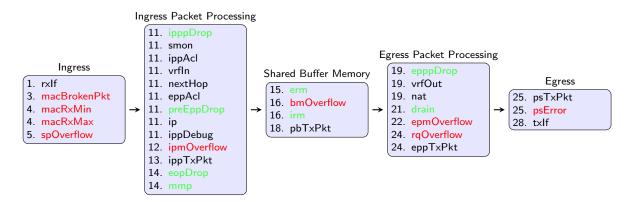


Figure 29.1: Location of Statistics Counters

This core supports full statistics with 32-bit wrap around counters. The statistics is divided into groups depending on the type of statistics and location in the switch. Figure 29.1 gives the location of the counters from ingress to egress, with a sequence number to show their process orders. The counters which are green are for packet drops based on forwarding decisions while the red counters are related to system errors. The details of the counters in Figure 29.1 can be found through Table 29.1.

29.1 Packet Processing Pipeline Drops

During the ingress/egress packet processing, the forwarding algorithm can drop a packet for various reasons. For each type of drop reason at least one drop counter is attached. The counter update is either based on received packets or to-be-transmitted packets.

• Statistics: IPP Ingress Port Drop.

Each drop reason has a unique drop identifier (drop ID). The IPP ingress port drop statistics has a counter for each drop ID. In two cases a corresponding drop ID counter can be updated:

- 1. When a received packet is dropped before any destination port is assigned.
- 2. When all targeting destination ports are filtered out the Empty Mask Drop counter is updated.
- Statistics: IPP Egress Port Drop.

This is a per drop ID and per egress port counter located in the ingress processing pipeline. When a packet has obtained one or more destination ports but the following ingress packet process filters out one of the obtained destination ports, a counter is updated for the corresponding egress port with the related drop ID. The **Empty Mask Drop** counter might be updated at the same time if no more destination port is set after the filtering.

• Statistics: EPP Egress Port Drop.

This is similar to IPP egress port drop statistics but located in the egress packet processing pipeline. Drops that occur in EPP will cause bubbles on the transmit interface.

29.2 ACL Statistics

When a packet matches an ACL rule as described in Chapter Classification, the result operation can be configured to update a counter. In this case the result operation has a pointer to which counter to update. All the related counters are in Section Statistics: ACL.

29.3 SMON Statistics

There are 4 sets of SMON counters located in the ingress packet processing pipeline, each equipped with one counter per PCP value. The combination of the ingress port number and packet VLAN ID will provide the target SMON set to update through the **SMON Set Search** register. Each SMON set counts both the number of packets and number of bytes as shown in Section Statistics: SMON.

29.4 Routing Statistics

Section Statistics: Routing has three routing related statistics:

- Received Packets on Ingress VRF. Update when a packet enters a VRF in the ingress processing pipeline.
- Transmitted Packets on Egress VRF. Update when a packet leaves a VRF in the egress processing pipeline.
- Next Hop Hit Status. Update when IPv4/IPv6/MPLS packets hit a next hop entry.

29.5 Ingress Port Receive Statistics

Section Statistics: IPP Ingress Port Receive lists available statistics for good received packets on a per ingress port basis.

- Good received IP packets
 - IP Unicast Received Counter
 - IP Unicast Routed Counter
 - IP Multicast Received Counter
 - IP Multicast Routed Counter
 - IP Multicast ACL Drop Counter

29.6 Packet Datapath Statistics

Section Statistics: Packet Datapath gives a list of start of packet and end of packet counters in the main blocks of the core. They act as datapath checkpoints and can be helpful in tracing unexpected packet drops or corruptions.

A packet will cross three clock domains on its way through the core:

• RX MAC clock domain.

Packet datapath statistics in the RX MAC clock domain are on the receive edge of the switch, counting received packets as well as illegal packet patterns. Clock crossing synchronizations are applied to these counters in order to share the same configuration bus in the core clock domain. The included counters are:

- 1. MAC Interface Counters For RX.
- TX MAC clock domain.

Packet datapath statistics in the TX MAC clock domain are on the transmit edge of the switch, counting transmitted packets as well as protocol errors on the TX interface of the switch. Clock crossing synchronizations are applied to these counters in order to share the same configuration bus in the core clock domain.

- 1. MAC Interface Counters For TX.
- Core clock domain.

Packet datapath statistics in the core clock domain are counting in different internal blocks. Each block has a pair of counters for packet heads and tails to identify the pass through of a complete packet. The datapath counting follows the order in Figure 1.1:

- 1. IPP Packet Head Counter and IPP Packet Tail Counter.
- 2. PB Packet Head Counter and PB Packet Tail Counter.
- 3. EPP Packet Head Counter and EPP Packet Tail Counter.
- 4. PS Packet Head Counter and PS Packet Tail Counter.

If a stage has unequal packet head and tail counters while the counters in the previous stages are identical, packets are corrupted in this stage.

29.7 Miscellaneous Statistics

The core is designed to have no silent packet drops and all missing packets on the transmit interface can be found in a dedicated drop counter. Besides the drop counters mentioned above, there are more counters located in all other places where a packet drop might occur. Detailed drop counter list is in Section Statistics: Misc.

29.8 Debug Statistics

Section Statistics: Debug lists a group of statistics prepared for debug purposes. These counters indicate possible locations when fatal errors occurred inside the core. Typical error events include inaccurate clock frequencies, unacceptable configurations, etc. The switch will try to remain functional after an error state, but a correct behaviour cannot be guaranteed.

29.8.1 Debug Statistics Accuracy

Some of the statistics counters are located in a different clock domain than the configuration bus. The values are therefore transferred through synchronization registers. In order to reduce the hardware cost of these debug counters the synchronization can result in reading incorrect values if readout is done while the counters are incrementing. The counter itself will always have the correct value. It's only the readout that, with a very low probability, can have incorrect value on bits that are toggling.

Packets To And From The CPU

The CPU port (number 10) has support for two special CPU tags in the packet header. In packets received by the switch on the CPU port, the tag can determine which port the packet shall be sent to. A tag can also be added to packets transmitted by the switch on the CPU port. This allows the software stack to determine where the packet came from and the reason why it was sent to the CPU port.

30.1 Packets From the CPU

Packets sent from the CPU are normally processed as any other packet that enters the switch, so the destination port is determined by the L2 lookup. When the CPU needs to direct a packet to a specific port, bypassing the normal L2 lookup, it is accomplished by adding a protocol header.

Byte	Contents of Byte
Number	
0-1	[10:0] port bit mask. Bit 0 is port number 0, bit 1 is port number 1 etc. Port 0 is located in bit 0 of byte number 1. The port numbers are physical ports, not link aggregation port numbers. The link aggregation will always be bypassed when sending packets with a From CPU Tag.
2	Bits [2:0] specifies which egress queue the packet shall use. Bit [3] Specifies if the packet shall go out un-modified or modified on the egress ports. If this bit is set to one all ACL actions are bypassed. 0 = Modified. 1 = Unmodified.
3	Bit [0] will set the <i>upd_ts</i> signal on the transmit MAC interface when the packet is transmitted. Bit [1] will set the <i>upd_cf</i> signal on the transmit MAC interface when the packet is transmitted. Bit [2] will set the <i>ts_to_sw</i> signal on the transmit MAC interface when the packet is transmitted.
4-11	PTP Timestamp that will be set on the transmit MAC interface when the packet is transmitted. The lowest numbered byte contains the msb of the timestamp value.
14-16	Reserved. Not used.

Table 30.1: From CPU tag format

The header consists of a specific Ethernet Type (39065) followed by a CPU Tag. The CPU tag has a 2 byte(s)

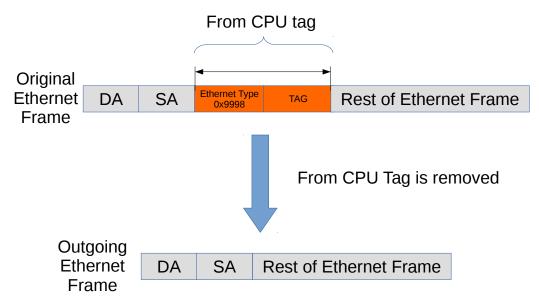


Figure 30.1: Packet from CPU with CPU tag

destination port mask field¹ and 1 byte egress queue field (encoded as specified in table 30.1). The switch core will remove the extra protocol header and send out the packet on the ports requested by the destination port mask in the protocol header. This is shown in the figure 30.1.

The port mask in the CPU Tag field determines which ports the packet shall be sent to. If multiple bits are set in the port mask, the packet is treated as a multicast packet in the resource limiters. The packet will be sent out on all ports with the corresponding bit set.

30.1.1 Identify the From CPU Tag

By default, only packets that are received on the CPU port will be able to support identifying the specific Ethernet type for the from CPU tag. This means that packets with this Ethernet type that are received on other ports of the switch will be treated as unknown and will not enter the packet processing based on the from CPU tag.

If non-CPU ports need to identify the from CPU tag, it can be achieved by the **enableFromCpuTag** from the **Source Port Table**. Notice the CPU port is not affected by this setting and always decode the from CPU tag.

30.1.2 From CPU Header and Packet Modification and Operations

There are a number of operations which are not carried out when a packet is sent in with the From CPU header. The following lists details this in greater detail what is done and what is not done.

- Link Aggregation is done.
- None of the VLAN operations are carried out.
- Mirroring is done. However with regards to ACL mirroring see below.
- Drops are ignored, example VLAN table , spanning tree / multiple spanning tree drops.
- L2 Lookup result is ignored.
- If the packet hits decoding rules for BPDU, Rapid Stanning Tree, Multiple Spanning tree, or other protocols such as 802.1X-EAPOL AH ARP AVTP DHCP CAPWAP DNS ESP GRE IKE L2 1588 L4 1588 LACP RARP SCTP then the packet will still send a extra copy to the CPU port. This can be disabled by setting the cpu port to zero in the send-to-cpu bitmask in each function.
- Routing is not carried out.
- SMON statistics is performed.
- Basic assignment of MMP is done.

¹The ordering described in 30.1 is the receive/transmit order.

174 Packet Architects AB

- Meter-Marker-Policer check is done.
- MBSC is bypassed.
- All spanning tree and multiple spanning treeperations are bypassed.
- No learning operation.
- If the From CPU tag has the Modified bit set to one (1) then the following happens:
- Check Reserved DMAC is bypassed.
- Check Reserved SMAC is bypassed.
- ACL operations are not done.
- ACL statistics are not done.
- Tunneling are not done (tunnel entry or tunnel exit).
- SMON statistics is not done.
- NAT operations are not done.
- If the From CPU tag has the Modified bit set to zero (0) then the following happens:
- Check Reserved DMAC is done.
- Check Reserved SMAC is done.
- ACL operations are done.
- ACL statistics are done.
- Tunneling is done (tunnel entry or tunnel exit).
- SMON statistics is done.
- NAT operations are done.

30.2 Packets To the CPU

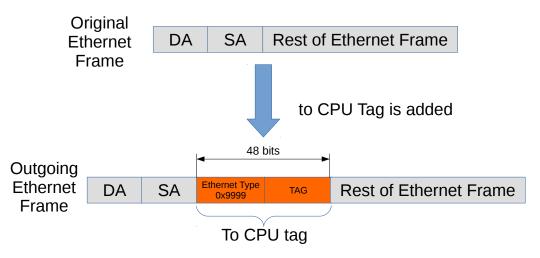


Figure 30.2: Packet to CPU with CPU tag

Packets can also be sent to the CPU port bypassing the normal L2 lookup. By default all packets to the CPU port have an extra protocol header (as shown in Figure 30.2). The header indicates the reason that the packet was sent to the CPU, and the port on which it was received. If the packets shall be the original copy as it came in on a source port or if they shall be the processed version depends first on a register called **Default Packet To CPU Modification**, at some places there also exists extra bits to change this setting.

When packets are sent to the CPU port (number 10 in this core), the packets are tagged with a specific Ethernet Type (type 39321). Figure 30.2 shows the Ethernet type field followed by a tag, and together these constitute the extra protocol header mentioned above. The unmodified incoming packet follows just after this header.

The insertion of the extra protocol header can be disabled by setting the register **Disable CPU tag on CPU Port** to 1.

30.3 To CPU Header format

The following table describes the fields which will be in the toCPU tag. The original bit is set when packets are modified by the egress packet processing, if the modification is the same as the original packet this modification bit will still be set.

Name	Short Name	Field Size	IETF bit index	Description
Ethernet Type	ethType	16	[15:0]	Ethernet Type, 0x9999
Length	length	16	[31:16]	Length of Packet
Packet Type	pktType	6	[37:32]	Packet Type, see table 30.3
IPv4	i	1	[38]	This is a IPv4 Packet.
				$egin{array}{ll} 0 &=& No \ 1 &=& Yes \end{array}$
IPv6	S	1	[39]	This is a IPv6 Packet. 0 = No 1 = Yes
IP Offset	ipo	8	[47:40]	IP Header Offset.
IPv4 length	41	4	[51:48]	IPv4 Header Length in 4 Octets.
TCP length	tl	4	[55:52]	TCP Header Length in 4 Octets. NOTE: If the packet is a IPv6 and has a segment routing header then this value will be set to zero.
Fragment	f	1	[56]	Fragment Indicator from IPv4 header.
Transmit Type	tt	2	[58:57]	The transmitt type. 0 = Unicast 1 = Multicast 2 = BroadCast 3 = Flooding
Nr Of Vlans	nv	2	[60:59]	The nr of VLANs. 0 = Zero 1 = One 2 = Two 3 = More than two
is_PPPoE	р	1	[61]	PPPoE Header exists in packet.
original	0	1	[62]	Original or modified packet. $0 = \text{Original}$ $1 = \text{Modified}$
Reserved	С	1	[63]	Reserved.
Outermost VID	outerVid	12	[75:64]	The outermost VLAN ID on the packet
L4 Type	l4t	4	[79:76]	The L4 Type of the packet. 0 = Not known. 1 = Is IPv4 or IPv6 but type is not any L4 type in this list. 2 = UDP 3 = TCP 4 = IGMP 5 = ICMP 6 = ICMPv6 7 = MLD 815 - Reserved.
Source Port	srcPort	8	[87:80]	Source Port, bits 3:0 Contains the source port number
Reason	reason	16	[103:88]	Reason Code, Byte 1 is the msb of the reason code. see table 30.4
Meta Data	meta	16	[119:104]	The meta data comes from the forwarding tables. It is setup by software to enable software to determine the reason why a entry was sent to the CPU port.
Reserved	resvd	6	[125:120]	Reserved.
Valid Times-	V	1	[126]	If set to one then the Timestamp field is valid.
tamp		1	[107]	
PTP	р	1	[127]	If set to one then the packet is a PTP packet.

176 Packet Architects AB

Name	Short	Field Size	IETF bit	Description
	Name		index	
Timestamp	timestamp	64	[191:128]	64-bit Timestamp of packet

Table 30.2: To CPU Header

30.3.1 To CPU Header in IETF format

The packets-to-CPU header expressed in a IETF header format below, using the short names from the 30.2 as field names. Bit 0, Byte0 is the first bit and byte which is being transferred out on the CPU port (see appendix B in RFC791):

0	1		2	3
0 1 2 3 4 5 6 7 8 9	0 1 2 3 4	5 6 7 8 9	0 1 2 3 4	5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+	+-+-+-+-+	-+-+-+-+-+
ethType		I	lengt	h
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+	+-+-+-+-+	-+-+-+-+-+
pktType i s	ipo	41	tl f	tt nv p o c
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+	+-+-+-+-+	-+-+-+-+-+
outerVid	14t	src	Port	reason
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+	+-+-+-+-+	-+-+-+-+-+
1		meta	1	resvd v p
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+	+-+-+-+-+	-+-+-+-+-+
1				
+	tir	nestamp		+
1				1
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+	+-+-+-+-+	-+-+-+-+-+

Packet Architects AB

178

30.3.2 Packet Type Table

As seen above there is a packet type field and this is determined by the packet decoder information to tell the receiving CPU what type of packet it is.

Packet	Name	Description
Туре		
ld		
0	ARP	The packet is a ARP packet. Decoding setup and options
		are avalible in register ARP Packet Decoder Options
1	RARP	The packet is a RARP packet. Decoding setup and options
		are avalible in register RARP Packet Decoder Options
2	LLDP	The packet is a LLDP packet. Decoding setup and options
		are avalible in register LLDP Configuration
3	L2_1588	The packet is a IEEE 1588 L2 packet. Decoding setup
		and options are avalible in register IEEE 1588 L2 Packet
4	00017/ EADOL	Decoder Options
4	8021X_EAPOL	The packet is a 802.1X or EAPOL packet. Decoding
		setup and options are availble in register IEEE 802.1X and
F	MDLC	EAPOL Packet Decoder Options
5	MPLS	The packet is a MPLS packet.
6	GRE	The packet is a GRE packet. Decoding setup and options are avalible in register GRE Packet Decoder Options
7	SCTP	The packet is a SCTP packet. Decoding setup and options
′	3017	are avalible in register SCTP Packet Decoder Options
8	IGMP	This is a IGMP packet.
9	MLD	This is a MLD packet.
10	ICMP	This is a ICMP packet.
11	LACP	The packet is a LACP packet. Decoding setup and options
	2,101	are avalible in register LACP Packet Decoder Options
12	AH	The packet is a IPsec AH packet. Decoding setup and op-
	,	tions are avalible in register AH Header Packet Decoder
		Options
13	ESP	The packet is a IPsec ESP packet. Decoding setup and op-
		tions are avalible in register ESP Header Packet Decoder
		Options
14	DNS	The packet is a DNS packet. Decoding setup and options
		are avalible in register DNS Packet Decoder Options
15	BOOTP_DHCP	The packet is a BOOTP or DHCP packet. Decoding setup
		and options are avalible in register BOOTP and DHCP
		Packet Decoder Options
16	L4_1588	The packet is a IEEE 1588 L4 packet. Decoding setup
		and options are avalible in register IEEE 1588 L4 Packet
17	CADIMAD	Decoder Options
17	CAPWAP	The packet is a CAPWAP packet. Decoding setup and
		options are avalible in register CAPWAP Packet Decoder Options
18	IKE	The packet is a IPsec IKE packet. Decoding setup and op-
10	IIXE	tions are availble in register IKE Packet Decoder Options
19	BPDU	The packet is a BPDU packet.
20	UDP_LARGER_THAN_1024	The packet is a UDP packet where destination port ¿ 1024.
21	TCP_LARGER_THAN_1024	The packet is a TCP packet where destination port <i>i</i> 1024.
22	CANCEL_TE	A tunnel exit was performed but then the original packet
		shall be sent to the CPU. Hence the inner packet type in-
		formation is lost. CPU needs to determine packet type by
		itselves.
63	default	When all above identifications fails.
	I	I .

Table 30.3: Packet Type Table

30.3.3 Reason Table

The reason codes why a packet was sent to the CPU. Reason code 0 means that the packet was switches or routed and the CPU port was part of the normal forwardings destination ports. If a packet can be directed to the CPU port with multiple reasons, the first hit in the check list below will give the reason code to the egress packet header.

Reason	Description
0	The MAC table, L2 MC table, ACL send to port action, MPLS table, the from-CPU-TAG
	contained the CPU port or routing tables sent the packet to the CPU port.
1	The packet decoder requires more than one cell.
2	This is a BPDU / RSTP frame.
3	The Unique MAC address to the CPU was hit.
4 + HitIndex	The Source MAC range sent the packet to the CPUIndex to rule.
8 + HitIndex	The Destination MAC range sent the packet to the CPUIndex to rule.
12 + HitIndex	The source port default ACL action sent the packet to the CPUIndex to source port
,	which sent the packet in.
23 + HitIndex	The TCAM in the configurable ingress ACL engine 0 sent the packet to the CPUIndex
·	to rule.
39 + HitIndex	The small table in the configurable ingress ACL engine 0 sent the packet to the CPUIndex
	to rule.
295 + HitIndex	The large table in the configurable ingress ACL engine 0 sent the packet to the CPUIndex
	to rule.
2343 + HitIndex	The TCAM in the configurable ingress ACL engine 1 sent the packet to the CPUIndex
	to rule.
2351 + HitIndex	The small table in the configurable ingress ACL engine 1 sent the packet to the CPUIndex
	to rule.
2359 + HitIndex	The large table in the configurable ingress ACL engine 1 sent the packet to the CPUIndex
	to rule.
2487 + HitIndex	The TCAM in the configurable ingress ACL engine 2 sent the packet to the CPUIndex
	to rule.
2511 + HitIndex	The small table in the configurable ingress ACL engine 2 sent the packet to the CPUIndex
	to rule.
2511 + HitIndex	The large table in the configurable ingress ACL engine 2 sent the packet to the CPUIndex
	to rule.
2511 + HitIndex	The TCAM in the configurable ingress ACL engine 3 sent the packet to the CPUIndex
	to rule.
2527 + HitIndex	The small table in the configurable ingress ACL engine 3 sent the packet to the CPUIndex
	to rule.
2527 + HitIndex	The large table in the configurable ingress ACL engine 3 sent the packet to the CPUIndex
	to rule.
2527 + HitIndex	The small table in the configurable egress ACL engine 0 sent the packet to the CPUIndex
	to rule.
2783 + HitIndex	The large table in the configurable egress ACL engine 0 sent the packet to the CPUIndex
	to rule.
3807 + HitIndex	The TCAM in the configurable egress ACL engine 0 sent the packet to the CPUIndex
2002 - 1111	to rule.
3823 + HitIndex	The small table in the configurable egress ACL engine 1 sent the packet to the CPUIndex
2022 11:1	to rule. The large table in the configurable egress ACL engine 1 sent the packet to the CPUIndex
3823 + HitIndex	to rule.
2022 []:+]]	The TCAM in the configurable egress ACL engine 1 sent the packet to the CPUIndex
3823 + HitIndex	to rule.
3839	This is an L2 1588 frame.
3840	This is an L2 1500 frame. This is an L4 1588 frame.
3841	This is an L4 1566 frame. This is an ARP frame.
3842	This is an ARP frame. This is an RARP frame.
3843	This is an KARP frame. This is an LLDP frame.
3844	This is an ELDP frame. This is an 802.1X EAPOL frame.
J044	THIS IS AN OUZ.IA EAFUL HAINE.

180 Packet Architects AB

Reason	Description
3845	This is an GRE frame.
3846	This is an SCTP frame.
3847	This is an LCAP frame.
3848	This is an AH frame.
3849	This is an ESP frame.
3850	This is an DNS frame.
3851	This is a BOOTP or DHCP frame.
3852	This is an CAPWAP frame.
3853	This is an IKE frame.
3854	The IP TTL field was expired in the packet.
3855	The router ports check about which IPv4/IPv6/MPLS packets was allowed in the router
	failed.
3856	The default routes send2cpu bit was set.
3857	The IP length exceeded the MTU setup.
3858	The entry in the Next Hop Table is invalid.
3859	The entry in Next Hop Packet Modifications pointed to from the Next Hop Table is
	invalid.
3860	The next hop entry had a send2cpu bit set.
3861	The IPv4 header size field was not equal to five.
3862	IPv4/IPv6 multicast was detected and redirected to CPU.
3863	The IPv6 routing header contained an unrecognized routing type
3864	The IPv6 segment routing header contained an unexpected routing header length
3865	The IPv6 segment routing header contained TLV field
3866	The maxium number of MPLS tags was detected in a packet.
3867	Packet matched an L2 Multicast Reserved Address
3868	Packet was suppose to do a two tunnel exits.
3869	The first tunnel exit lookup was a hit but the second tunnel exit lookup was a miss and
	the source port table said this packet shall then be sent to the CPU.
3870	Tunnel Exit result said send to CPU.
3871	After Tunnel entry the MTU was too small for this packet.
3872	The NAT Action Table has sent the packet to the CPU with this code.
3873	The NAT Action Table has sent the packet to the CPU wit this code.
3874	The L2 Action Table has determined that this packet shall be sent to the CPU.
3875	The SNAP LLC Decoding Options has determined that this packet shall be sent to the
	CPU.

Table 30.4: Reason for packet sent to CPU

The possible reasons are listed in Table 30.4.

- 1. Hit in the Reserved Source MAC Address Range with a sendToCpu action.
- 2. Hit in the Reserved Destination MAC Address Range with a sendToCpu action.
- Hit in the L2 Reserved Multicast Address Base with sendToCpuMask enabled for the corresponding source port.
- 4. Hit in the **LLDP Configuration**.
- 5. Hit in the **Send to CPU** register.
 - Notice that when **uniqueCpuMac** is enabled then unicast packet will not be switched to the CPU port. Instead packets from any source port with MAC DA equal to **cpuMacAddr** will be sent to the CPU. Other mechanism for sending to the CPU port are not affected (e.g. ACL's).
- 6. Hit in the Configurable ACL Engine with a sendToCpu action.

30.3.4 Reason Code Operations

If the packet is sent to the CPU port with a non-zero reason code, the CPU Reason Code Operation register allows extra actions based on the corresponding reason code. The reason code number is checked in 16 given

ranges from the first entry to the last entry. If the reason code has multiple hits, different operations can be done in parallel and the same operation in the latter one will override the previous hit.

- mutableCpu allows the packets that are sent to the CPU port use another port number for the CPU port. In this case the to CPU tag is always inserted to the packet and will not be controlled by **Disable CPU tag** on CPU Port.
- forceQueue alters the egress queue of the packets that are sent to the CPU port.

182

Core Interface Description

This chapter describes the interfaces to the core. An *input* is an input to the core, and an *output* is a signal driven by the core. In analogy *reception* refers to packets to the core and *transmission* means packets from the core.

31.1 Clock, Reset and Initialization interface

There is a core clock, mac clock signals for the packet interfaces, a global reset signal, mac reset signals for the packet interfaces, and a *doing_init* output (indicating when the core is in initialization and thus not ready to receive packets).

When the global reset, *rstn*, is asserted all packets buffered in the switch will be dropped, the learning and aging engines and all statistics counters will be reset to the initial status. Reset can be pulled at any time, but any ongoing transmit packets will be immidiately interrupted and no end of packet signal will be given.

The packet interface resets cannot be used independently. If one reset is asserted, all resets (including the core reset) have to be asserted before any reset can be released.¹

¹Thus the packet interface resets cannot be used to empty a specific packet interface. To do that, follow the procedure in Section 21.8, while making sure that the packet interface halt is kept low.

Signal Name	Size	In	Description
		Out	
clk	1	In	Core clock. For 140 Gbit/s wire-speed through-
			put use a core clock frequency of 225 MHz
rstn	1	In	Global asynchronous reset (active low)
clk_mac_rx_N	1	In	Clock for the RX packet interface for port N .
rstn_mac_rx_ N	1	In	Asynchronous reset (active low) for the RX
			packet interface for port N
clk_mac_tx_ N	1	In	Clock for the TX packet interface for port N .
rstn_mac_tx_ N	1	In	Asynchronous reset (active low) for the TX
			packet interface for port ${f N}$
assert₋reset	1	0ut	Signal indicating that the core has experienced
			an unrecoverable error, and should be reset.
consistency_check	1	In	When pulled high internal checks will be made.
			This is a simulation-only port, it shall be tied
			low in hardware.
idle	1	0ut	Indicates when the packet processing pipelines
			are empty.
doing_init	1	Out	Indicates that the core is in initialization. The
			operation of the core is undefined if packets are
			injected on the rx-interfaces when the core is in
			initialization

Table 31.1: Clock and Reset interfaces

Core Initialization

Before packets are sent to the core it needs to be initialized. The initialization is initiated when reset is released. Reset activation is asynchronous to any clock. The reset should be kept low at least one cycle of the slowest clock. Releasing reset must be done synchronously with respect to all clocks. During initialization doing_init is kept high. See Figure 31.1. The length of the initialization is dependent on the depth of the deepest initialized memory.

During initialization no activity is expected on the configuration interface or on the packet RX interfaces, and the operation of the core is undefined if any such activity occurs.

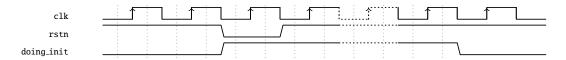


Figure 31.1: Core Initialization

31.1.1 Assert Reset

The assert_reset signal will go high, and stay high, if the core experiences an unrecoverable error. The behaviour of the core when assert_reset is high is undefined, and the only way to get back to normal operation is to reset the core.

The configuration bus will most likely still work when *assert_reset* is high, but to figure out what went wrong you will probably need to use the debug interface.

31.2 Packet Interface

There are 11 packet interfaces, or ports for short, each divided into a reception part and a transmission part. The ports are numbered from 0 to 10.

Pin	Size	Direction	Description
idata_sp_ N 128 In		In	Packet data.
ivalid_bytes_sp_ N	5	In	Indicates the number of valid data bytes.
			For all transactions where <i>last</i> is not high,
			this shall be equal to the data width in
			bytes.
ifirst_sp_ N	1	In	Start-of-packet flag.
ilast_sp_ N	1	In	End-of-packet flag. The <i>last</i> field is also
			used to signal broken packets. For a cor-
			rectly transmitted packet <i>last</i> is asserted
			for the last data transaction of the packet.
			If <i>last</i> is set high when <i>valid_bytes</i> is zero,
			the packet is marked as broken, and will
			be dropped by the core.
ivalid_ts_sp_ N	1	In	Validates the presence of the timestamp
			value. Valid when <i>last</i> is set.
its_sp_ N	64	In	PTP Timestamp value. Only available
			when <i>last</i> is set.

Table 31.2: Packet RX interface for ports 0 and 1. N is the ingress interface number.

The port interfaces are not all the same. There are two different port interface variants in this core, each with an RX and a TX direction:

- 1. Ports 0 and 1: RX-interface see Table 31.2 on page 185, TX-interface see Table 31.3 on page 186
- 2. Ports 2-10: RX-interface see Table 31.4 on page 187, TX-interface see Table 31.5 on page 188

Each direction of a packet interface consists of *first*, *last*, *valid_bytes*, and *data* fields. The transmit direction has an additional *halt* signal to allow the receiving end to moderate the data rate transmitted from the core. There is also a *ptp* flag on the transmit side that is only valid for the first cell. It is copied from the PTP bit in the CPU header, and is thus always zero for all ports except the CPU port.

Packet data is presented in order, i.e. the most recent byte is the, so far, highest numbered byte in the packet. The first valid byte on the bus is byte 0, and all bytes are valid up to the number indicated in *valid_bytes*. Unless the *last* flag is set all bytes or no bytes must be valid.

Sending and Receiving packets

Data transmission, either to or from the core, begins with a transaction where the *first* field is high and the *valid_bytes* field is non-zero, and ends with a data transmission where the *last* field is high. Idle transactions—where valid_bytes, *first* and *last* are all zero—are allowed at any time, but unless halted there will be no idle transactions on the transmission interfaces other than between packets.

By default, the core has a short packet size limit of 60 bytes. All shorter packets will be dropped. This assumes that the receiving MAC removes the FCS before sending the packet to the core.

Jumbo packets

The maximum packet length that this core can cope with is 32739 bytes. If this length was allowed to be exceeded either on the ingress or the egress it would corrupt the internal counters.

It should be noted that it is not guaranteed that a packet of that length will always be able to pass through the switch, even if the destination queue is not congested. Depending on the Egress Resource Management settings, and/or the congestion status of other ports, there may not be enough free cells in the packet buffer to store such a large packet. But the switch core will, when properly configured and reasonably uncongested, be able to switch 32739-byte packets.

Longest Packet for No-Overlap Mesh

The longest packet that can pass a no-overlap mesh test is highly dependent on the ERM settings. But with the default settings you can expect to pass a no-overlap mesh test with 7462-byte packets.

Pin	Size	Direction	Description
odata_ps_ N	128	Out	Packet data.
ovalid_bytes_ps_ N	5	Out	Indicates the number of valid data bytes.
			For all transactions where <i>last</i> is not high,
			this is equal to the data width in bytes.
ofirst_ps_ N	1	Out	Start-of-packet flag.
olast_ps_ N	1	Out	End-of-packet flag. For a correctly trans-
			mitted packet <i>last</i> is asserted for the last
			data transaction of the packet. If last
			is set high when <i>valid_bytes</i> is zero, the
			packet shall be dropped or terminated
		_	with an error by the MAC.
oupd_ts_ps_ N	1	0ut	The TX MAC should update the PTP
			Timestamp field in the current packet.
			Only valid when <i>first</i> is set.
oupd_cf_ps_ N	1	0ut	The TX MAC should update the PTP
			correction field in the current packet.
		•	Only valid when <i>first</i> is set.
ots_to_sw_ps_ N	1	Out	The TX MAC should take a timestamp of
	6.4		the current packet and send to software.
ots_ps_ N	64	Out	PTP Timestamp value. Only valid when
1 4 NI	4		first is set.
oudp4_ps_ N	1	Out	The packet is an IPv4/UDP packet. Only valid when <i>first</i> is set.
and a Comp N	1	0+	
oudp6_ps_N	9	Out	The packet is an IPv6/UDP packet.
oudp_csum_ps_ N	9	Out	Byte position of the start of the UDP
			checksum field. Only valid when first is
2+2 222 22 N	0	0+	set.
ots_pos_ps_ N	9	Out	Byte position of the start of the Timestamp field in a PTP packet. Only valid
			when first is set.
oudn conn no N	15	Out	Byte position of the start of the UDP
oudp_corr_ps_ N	12	Out	checksum correction position in a PTP
			·
tx_halt_ps_ N	1	In	packet. Only valid when <i>first</i> is set. Interrupt the data transmission from
CX_Hat C_ps_IN	1	III	egress port N .
			egress port iv.

Table 31.3: Packet TX interface for ports 0 and 1. **N** is the egress interface number.

Inter-frame gap

For small packets it is possible to feed the switch with more packets than it can handle. This will cause the SP to overflow, and packets to be dropped. To avoid packet drops an inter-frame gap (IFG) of at least 192 bits is needed between each packet. There is a small fifo in the SP, so a single smaller IFG is fine, but it needs to average at or above the minimum IFG over a window of a few packets.

On the output from the switch packets will be sent back to back, without IFG, and it is up to the receiver to halt the transmission using the *halt* interface to prevent overflows.

Broken packets

A packet ending with *last* set high and *valid_bytes* set to zero is considered a broken packet. Broken packets received by the core will never be output on the egress ports, but will be dropped at the earliest convenience. So any broken packets output from the switch are packet that were somehow corrupted in the core. There are no benign cases where this happens. Depending on the packet length a broken packet input to the core will be dropped either before or after ingress packet processing. Broken packets larger than a cell will pass through the packet processing pipeline and then been dropped, while packets shorter than a cell will be filtered out before the packet processing pipeline.

Pin	Size	Direction	Description
idata_sp_ N 32 In		In	Packet data.
ivalid_bytes_sp_ N	ivalid_bytes_sp_ N 3 In		Indicates the number of valid data bytes.
			For all transactions where <i>last</i> is not high,
			this shall be equal to the data width in
			bytes.
ifirst_sp_ N	1	In	Start-of-packet flag.
ilast_sp_ N	1	In	End-of-packet flag. The <i>last</i> field is also
			used to signal broken packets. For a cor-
			rectly transmitted packet <i>last</i> is asserted
			for the last data transaction of the packet.
			If <i>last</i> is set high when <i>valid_bytes</i> is zero,
			the packet is marked as broken, and will
			be dropped by the core.
ivalid_ts_sp_ N	1	In	Validates the presence of the timestamp
			value. Valid when <i>last</i> is set.
its_sp_ N	64	In	PTP Timestamp value. Only available
			when <i>last</i> is set.

Table 31.4: Packet RX interface for ports 2-10. **N** is the ingress interface number.

All broken packets are counted in the MAC RX Broken Packets.

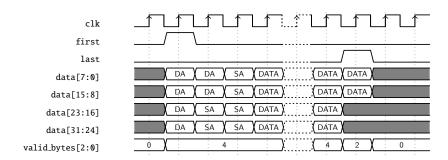


Figure 31.2: Sending and Receiving packets without error (32-bit)

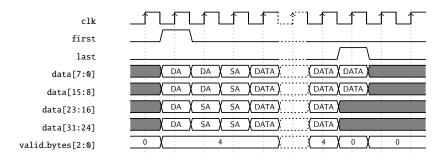


Figure 31.3: Sending and Receiving packets with error (32-bit)

Halts

Data transmission from the transmit interface of the core can be interrupted individually per egress port using the *halt* signals. A high halt signal on the positive edge of mac clock, will cause the transmission to be idle for the corresponding egress port on the same positive edge. Data transmission will resume on the next positive edge of mac clock when halt is again low.

Pin	Size	Direction	Description
odata_ps_ N	32	Out	Packet data.
ovalid_bytes_ps_ N	3	Out	Indicates the number of valid data bytes.
			For all transactions where <i>last</i> is not high,
			this is equal to the data width in bytes.
ofirst_ps_ N	1	Out	Start-of-packet flag.
olast_ps_ N	1	Out	End-of-packet flag. For a correctly trans-
			mitted packet <i>last</i> is asserted for the last
			data transaction of the packet. If last
			is set high when <i>valid_bytes</i> is zero, the
			packet shall be dropped or terminated
1 . Al			with an error by the MAC.
oupd_ts_ps_ N	1	0ut	The TX MAC should update the PTP
			Timestamp field in the current packet.
1 - C N	1	0	Only valid when <i>first</i> is set.
oupd_cf_ps_ N	1	Out	The TX MAC should update the PTP
			correction field in the current packet.
- 1 - 1 NI	1	0	Only valid when <i>first</i> is set.
ots_to_sw_ps_ N	1	Out	The TX MAC should take a timestamp of
ata na N	64	Out	the current packet and send to software. PTP Timestamp value. Only valid when
ots_ps_ N	04	Out	first is set.
oudp4_ps_ N	1	Out	The packet is an IPv4/UDP packet. Only
ouup4_ps_I v	1	out	valid when <i>first</i> is set.
oudp6_ps_ N	1	Out	The packet is an IPv6/UDP packet.
oudp_csum_ps_N	9	Out	Byte position of the start of the UDP
ouup_csum_ps_i	9	out	checksum field. Only valid when first is
			set.
ots_pos_ps_N	9	Out	Byte position of the start of the Times-
0.03_p03_p3_1 4	,	Juc	tamp field in a PTP packet. Only valid
			when <i>first</i> is set.
oudp_corr_ps_ N	15	Out	Byte position of the start of the UDP
			checksum correction position in a PTP
			packet. Only valid when <i>first</i> is set.
tx_halt_ps_ N	1	In	Interrupt the data transmission from
	_		egress port N .
L		l	<u> </u>

Table 31.5: Packet TX interface for ports 2-10. **N** is the egress interface number.

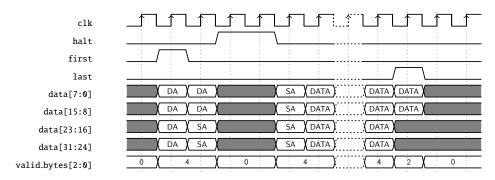


Figure 31.4: Halted transmit packet (32-bit)

Byte Order

We define the packet byte order by the first transmitted/received byte on the wire labeled byte 0, as in IEEE 802.3. On a packet interface wider than 8 bits the packets byte 0 is placed on the bits data[7:0] followed by byte 1 on bits

data[15:8] and so on.

The *valid_bytes* indicates how many of the bytes of the data field that holds valid packet data. From the start of a packet this must always be all bytes on the bus up till the last transfer. At the end of the packet on the last bus transfer the *valid_bytes* can indicate less than the full bus width. In this case the byte order is still the same as previous transfers. For example when *valid_bytes* is 1 the last byte of the packet is placed on bits [7:0] and with *valid_bytes* of 2 the last byte of the packet is placed on bits [7:0].

31.3 Configuration Interface

The CPU-accessible registers and tables in the core are accessed using the configuration interface.

Each transaction on the configuration interface consists of a request to the core and a resulting reply from the core.

The pins for the configuration interface are listed in Table 31.6 below.

Pin	Size	Direction	Description
apb_paddr	22	In	Address. This is the APB address bus. The
			highest address bit (21) on the APB bus is not
			a normal address bit and is referred to as the
			Accumulator Bit. This is described further in
			section 32.
apb_psel	1	In	Select.
apb_penable	1	In	Enable.
apb_pwrite	1	In	Direction. This signal indicates an APB write
			access when HIGH and an APB read access when
			LOW.
apb_pwdata	32	In	Write data.
apb_pready	1	Out	Ready. The slave uses this signal to extend an
			APB transfer.
apb_prdata	32	Out	Read Data.
apb_pslverr	1	Out	Error. This signal indicates a transfer failure.

Table 31.6: The APB interface signals

The *paddr* is a byte address, however the core only supports accessing complete 32-bit words. The lowest address bits, which addresses the byte within a bus word, will always be discarded. The register addresses described in this document always refer to word addresses, not byte addresses.

The core has a varying access latency and therefore an APB master should use pready.

The *pslverr* signal is set when a transaction is aborted due to an internal timeout. This can occur if the core clock is lower than required and there is a high traffic rate. It will also occur if the address is outside of any defined register.

For a detailed description of the APB interface see the AMBA APB Protocol Specification Version 2.0, available at developer.arm.com

31.4 Interrupt Interface

The interrupt interface is a vector of interrupt flags. When an interrupt occurs it will become a one cycle long pulse on an interrupt flag. I.e. an interrupt has occured whenever an interrupt flag is high on the positive edge of the clock.

There is no interrupt mask nor any interrupt status register to be cleared.

Pin	Function	Size	Direction	Description
interrupts[0]	ldf_level	1	Out	Raised when the level of Learning Data
				FIFO is not below Learning Data FIFO
				High Watermark Level and receives a
				push request.
interrupts[1]	ldf_full	1	Out	Raised when Learning Data FIFO is full
•				but still receives a push request.
interrupts[2]	adf_level	1	Out	Raised when the level of Aging Data
				FIFO is not below Aging Data FIFO
				High Watermark Level and receives a
				push request.
interrupts[3]	adf_full	1	Out	Raised when Aging Data FIFO is full but
				still receives a push request.
interrupts[4]	hdf_level	1	Out	Raised when the level of Hit Update
				Data FIFO is not below Hit Update
				Data FIFO High Watermark Level and
				receives a push request.
interrupts[5]	hdf_full	1	Out	Raised when Hit Update Data FIFO is
				full but still receives a push request.
interrupts[6]	hash_aging	1	Out	Indicating an aging process on the L2
				hash tables is done by either the hardware
				aging or the software aging. When Aging
				Engine is operating with Software Ag-
				ing Enable turned on, it will be silent till
				Software Aging Start Latch is pulled to
				one and trigger an aging process immedi-
				ately. L2 Aging Table entries are evenly
				divided to 4 buckets while the aging pro-
				cess loops through them in parallel. Each
				bucket is checked from the first entry to
				the last entry and in the end raise a cor-
		-		responding interrupt.
interrupts[7]	cam_aging	1	Out	Indicating an aging process on the L2 col-
				lision table is done by either the hard-
				ware aging or the software aging. When Software Aging Enable is turned on and
				Software Aging Start Latch is pulled to one, an aging process will loop through all
				L2 Aging Collision Table entries imme-
				diately from first to last. After it is done
				this interrupt will be raised.
interrupts[8:31]	reserved	24	Out	Reserved.
1111C111 uhr2[0:31]	T ESET VER	4	Jul	i Nesei veu.

Table 31.7: Interrupt interface

31.5 Pause Interfaces

There are separate pause interfaces for sending status information from the switch to the MAC, opfc_status, and from the MAC to the switch, <code>iext_pause</code>. Note that these interfaces are in the core clock domain, so they have to be syncronized to the MAC clock if connected to the MAC. However the interfaces can be though of as quasi static. With properly configured pausing thresholds there will never be a short high pulse (due to hysteresis), and losing a short low pulse due to synchronization will create no problems.

31.5.1 PFC Status

The ipfc_status interface is used to transfer pause status from the switch resource manager to the MAC, so the MAC can generate pause frames.

The switch will merely indicate its current pause status, it is up to the MAC to generate the necessary pause frames to keep the far end switch in the desired pausing state.

In port mode the status interface will send 0 in unpaused state, and 0xff in paused state.

31.5.2 External Pause

The <code>iext_pause</code> interface is used to transfer PFC pause status received by the MAC to the switch egress scheduler. When the status is XOFF the switch egress scheduler will not send any new packets. Ongoing packets are not affected. There is one <code>iext_pause</code> interface for each packet interface. Even when priority pause is not enabled the external pause interface is still operating per priority.

Pin	Direction	Size	Description
iext_pause_ N	In	8	Xoff=1, Xon=0 status for each PFC channel
			(07)
opfc_status_ N [7:0]	Out	8	Xoff=1, Xon=0 status for each PFC channel
			(07)

Table 31.8: ThePFC status and External Pause interfaces, where N is the packet interface number

31.6 Debug Read Interface

The debug read interface outputs internal debug signals on the *debug_read_data* port. Which signals to observe is selected with the *debug_read_select* port. The mapping between select value and debug signal is described in Table 31.10. Both these signals are pipelined.

Pin	Direction	Size	Description
debug_read_select	In	9	Selects the signal to monitor. See Table 31.10.
debug_read_data	In	32	The debug output data.

Table 31.9: The Debug Read interface

id	instance	signal
0	pa_top.switch.mactop	constant-0
1	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck10 {3'valid_bytes, 1'halt, 1'last, 1'first}
2	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck9 {3'valid_bytes, 1'halt, 1'last, 1'first}
3	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck8 {3'valid_bytes, 1'halt, 1'last, 1'first}
4	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck7 {3'valid_bytes, 1'halt, 1'last, 1'first}
5	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck6 {3'valid_bytes, 1'halt, 1'last, 1'first}
6	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck5 {3'valid_bytes, 1'halt, 1'last, 1'first}
7	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck4 {3'valid_bytes, 1'halt, 1'last, 1'first}
8	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck3 {3'valid_bytes, 1'halt, 1'last, 1'first}
9	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck2 {3'valid_bytes, 1'halt, 1'last, 1'first}
10	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck1 {5'valid_bytes, 1'halt, 1'last, 1'first}
11	—"—	pa.top.switch.mactop.iTxedgecheck.iProtocolcheck0 {5'valid_bytes, 1'halt, 1'last, 1'first}
12	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck10 {3'valid_bytes, 1'last, 1'first}
13	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck9 {3'valid_bytes, 1'last, 1'first}
14	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck8 {3'valid_bytes, 1'last, 1'first}
15	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck7 {3'valid_bytes, 1'last, 1'first}
16	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck6 {3'valid_bytes, 1'last, 1'first}
17	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck5 {3'valid_bytes, 1'last, 1'first}
18	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck4 {3'valid_bytes, 1'last, 1'first}
19	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck3 {3'valid_bytes, 1'last, 1'first}
20	_"_	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck2 {3'valid_bytes, 1'last, 1'first}
21	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck1 {5'valid_bytes, 1'last, 1'first}
22	—"—	pa.top.switch.mactop.iRxedgecheck.iProtocolcheck0 {5'valid_bytes, 1'last, 1'first}
23	_"_	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
24	—"—	tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
25	_"_	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
26	_"_	tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
27	—"—	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}

191

id	instance	signal
28	—"—	tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
29	—"—	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
30	—"—	tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
31	—"—	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
32	—"—	tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
33	_"_	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
34	_"_	tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
35	_"_	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
36	_"_	tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
37	_"_	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
38	_"_	tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
39	_"_	rx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'first}
40		tx_pkt_bus {27'data, 3'valid_bytes, 1'last, 1'list}
41		
42		rx_pkt_bus {25'data, 5'valid_bytes, 1'last, 1'first}
42		tx_pkt_bus {25'data, 5'valid_bytes, 1'last, 1'first}
43	_" <u>_</u>	rx_pkt_bus {25'data, 5'valid_bytes, 1'last, 1'first}
		tx_pkt_bus {25'data, 5'valid_bytes, 1'last, 1'first}
45		constant-45
46	pa_top.switch.ipp0	constant-46
47	_"_	ipp_ipkt_bus {18'data, 8'valid_bytes, 4'id, 1'last, 1'first}
48	_"_	ipp_opkt_bus {18'data, 8'valid_bytes, 4'id, 1'last, 1'first}
49	—"—	pass_da_0
50	_"_	pass_da_1
51	—"—	dut_ilpp_iDropper_dbg_drop
52	—"—	dut_ilpp_iDropper_dbg_ifirst
53	—"—	dut_ilpp_iDropper_dbg_ilast
54	-"-	pass_sa_0
55	-"-	pass_sa_1
56	—"—	constant-56
57	pa_top.switch.ipp0.pm	constant-57
58		pm_fifo_overflow
59	_"_	dut_dbg_fifo_full
60	_"_	halt_from_pm
61	_"_	dut_iFifoa_10_iF_iFifos_zFcnt_pop_empty
62	_"_	dut_iFifoa_10_iF_iFifos_zFcnt_push_full
63	_"_	dut_iFifoa_9_iF_iFifos_zFcnt_pop_empty
64	_"_	dut_iFifoa_9_iF_iFifos_zFcnt_push_full
65	_"_	dut_iFifoa_8_iF_iFifos_zFcnt_pop_empty
66	_"_	dut_iFifoa_8_iF_iFifos_zFcnt_push_full
67	_"_	dut_iFifoa_7_iF_iFifos_zFcnt_pop_empty
68	_"_	dut_iFifoa_7_iF_iFifos_zFcnt_push_full
69	_"_	dut_iFifoa_6_iF_iFifos_zFcnt_pop_empty
70		dut_iFifoa_6_iF_iFifos_zFcnt_push_full
71	_"_	dut_iFifoa_5_iF_iFifos_zFcnt_pop_empty
72		dut_iFifoa_5_iF_iFifos_zFcnt_push_full
73	_"_	dut_iFifoa_4_iF_iFifos_zFcnt_pop_empty
74		dut_iFifoa_4_iF_iFifos_zFcnt_push_full
75		·
		dut_iFifoa_3_iF_iFifos_zFcnt_pop_empty
76		dut_iFifoa_3_iF_iFifos_zFcnt_push_full
77		dut_iFifoa_2_iF_iFifos_zFcnt_pop_empty
78	_"_	dut_iFifoa_2_iF_iFifos_zFcnt_push_full
79		dut_iFifoa_1_iF_iFifos_zFcnt_pop_empty
80		dut_iFifoa_1_iF_iFifos_zFcnt_push_full
81	_"_	dut_iFifoa_0_iF_iFifos_zFcnt_pop_empty
82	_"_	dut_iFifoa_0_iF_iFifos_zFcnt_push_full
83	_"_	constant-83
84		constant-84
85	pa_top.switch.sp0	
	"	dut_iSpbridge_assert_reset_sp_bridge
86	_"_ _"_	dut_iSpbridge_assert_reset_sp_bridge
86 87		dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88	-"- -"- -"-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89	-"- -"- -"- -"-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88	-"- -"- -"-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89	-"- -"- -"- -"-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90	-"""""""-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90	"""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90 91 92	-"""""""-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90 91 92 93	-""""""""-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90 91 92 93 94	-""""""""""-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90 91 92 93 94 95	-""""""""""-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90 91 92 93 94 95	-""""""""""-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge constant-96
86 87 88 89 90 91 92 93 94 95 96	"""""""-	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge constant-96 constant-97 dut_iPbu_debug_refc_inc
86 87 88 89 90 91 92 93 94 95 96 97 98	""""""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90 91 92 93 94 95 96 97 98 99	""""""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	""""""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge cut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge constant-96 constant-97 dut_iPbu_debug_refc_inc dut_iPbu_debug_port_sch dut_iPbu_debug_port_sch dut_iPbu_debug_qenext
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101	""""""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge constant-97 dut_iSpbridge_assert_reset_sp_bridge dut_iPbu_debug_refc_inc dut_iPbu_debug_port_sch dut_iPbu_debug_qenext dut_iPbu_debug_qenext dut_iPbu_assert_qediff
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102	""""""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge constant-96 constant-97 dut_iPbu_debug_arefc_inc dut_iPbu_debug_port_sch dut_iPbu_debug_qenext dut_iPbu_assert_qediff dut_iPbu_assert_qediff dut_iPbu_assert_reque_sp
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	""""""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge constant-96 constant-97 dut_iPbu_debug_refc_inc dut_iPbu_debug_port_sch dut_iPbu_debug_port_sch dut_iPbu_debug_qenext dut_iPbu_assert_reque_sp Mask of currently receiving packets that have been broken due to BM full
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	""""""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iPbpridge_assert_reset_sp_bridge constant-96 constant-97 dut_iPbu_debug_refc_inc dut_iPbu_debug_refc_inc dut_iPbu_debug_oport_sch dut_iPbu_debug_qenext dut_iPbu_assert_reque_sp Mask of currently receiving packets that have been broken due to BM full dut_iPbu_follow_pfc_accept
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	""""""""	dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge dut_iSpbridge_assert_reset_sp_bridge constant-96 constant-97 dut_iPbu_debug_refc_inc dut_iPbu_debug_port_sch dut_iPbu_debug_port_sch dut_iPbu_debug_qenext dut_iPbu_assert_reque_sp Mask of currently receiving packets that have been broken due to BM full

id	instance	signal
108		dut_iPbu_iPortshaper_iBuckets_reg_stat
109	_"_ _"_	dut_iPbu_zPassdbgqeread_0_o
110		dut_iPbu_iRequeue_iReFifo_10_iF_iFifos_zFcnt_pop_empty
111 112		dut_iPbu_iRequeue_iReFifo_10_iF_iFifos_zFcnt_push_full dut_iPbu_iRequeue_iReFifo_9_iF_iFifos_zFcnt_pop_empty
113		dut_iPbu_iRequeue_iReFifo_9_iF_iFifos_zFcnt_push_full
114		dut_iPbu_iRequeue_iReFifo_8_iF_iFifos_zFcnt_pop_empty
115	_"_	dut_iPbu_iRequeue_iReFifo_8_iF_iFifos_zFcnt_push_full
116	_"_	dut_iPbu_iRequeue_iReFifo_7_iF_iFifos_zFcnt_pop_empty
117	_"_	dut_iPbu_iRequeue_iReFifo_7_iF_iFifos_zFcnt_push_full
118	_"_	dut_iPbu_iRequeue_iReFifo_6_iF_iFifos_zFcnt_pop_empty
119	_"_	dut_iPbu_iRequeue_iReFifo_6_iF_iFifos_zFcnt_push_full
120	-"-	dut_iPbu_iRequeue_iReFifo_5_iF_iFifos_zFcnt_pop_empty
121	—"—	dut_iPbu_iRequeue_iReFifo_5_iF_iFifos_zFcnt_push_full
122	—"—	dut_iPbu_iRequeue_iReFifo_4_iF_iFifos_zFcnt_pop_empty
123	_"_	dut_iPbu_iRequeue_iReFifo_4_iF_iFifos_zFcnt_push_full
124	_"_	dut_iPbu_iRequeue_iReFifo_3_iF_iFifos_zFcnt_pop_empty
125	_"_	dut_iPbu_iRequeue_iReFifo_3_iF_iFifos_zFcnt_push_full
126	"	dut_iPbu_iRequeue_iReFifo_2_iF_iFifos_zFcnt_pop_empty
127	_"_	dut_iPbu_iRequeue_iReFifo_2_iF_iFifos_zFcnt_push_full
128		dut_iPbu_iRequeue_iReFifo_1_iF_iFifos_zFcnt_pop_empty
129	"	dut_iPbu_iRequeue_iReFifo_1_iF_iFifos_zFcnt_push_full
130	"_ "_	dut_iPbu_iRequeue_iReFifo_0_iF_iFifos_zFcnt_pop_empty
131 132	<u></u>	dut_iPbu_iRequeue_iReFifo_0_iF_iFifos_zFcnt_push_full dut_iPbu_iRefc_refc_mem_debug
132		dut_iPbu_iRerc_rerc_mem_debug dut_iPbu_zPassqesp_zPasslist_0_o
134		Filter mask for packets dropped by ERM
135		dut_iPbu_debug_pb_drop
136		constant-136
137	pa_top.switch.pb0.erm.dut_iEgl	constant-137
138		red_zone
139	_"_	constant-139
140	pa_top.switch.pb0.pfc	constant-140
141		dut_debug_sp_above_rsv
142	—"—	constant-142
143	pa_top.switch.pb0.qe0	constant-143
144	_"_	dut_assert_dfifo
145	_"_	dut_assert_firstflag
146	_"_	dut_assert_reset_next
147		dut_drop_cnt
148	_"_ _"_	dut_send_cnt
149 150		dut_iDfifo_iF_iFifos_zFcnt_pop_empty dut_iDfifo_iF_iFifos_zFcnt_push_full
151		dut_ipkt_fifo_10_debug_in
152		dut_ipkt_fifo_10_debug_out
153	_"_	dut_ipkt_fifo_9_debug_in
154	_"_	dut_ipkt_fifo_9_debug_out
155	_"_	dut_ipkt_fifo_8_debug_in
156	_"_	dut_ipkt_fifo_8_debug_out
157	_"_	dut_ipkt_fifo_7_debug_in
158	_"_	dut_ipkt_fifo_7_debug_out
159	_"_	dut_ipkt_fifo_6_debug_in
160	—"—	dut_ipkt_fifo_6_debug_out
161	—"—	dut_ipkt_fifo_5_debug_in
162	_"_	dut_ipkt_fifo_5_debug_out
163	"	dut_ipkt_fifo_4_debug_in
164	_"_	dut_ipkt_fifo_4_debug_out
165	"_	dut_ipkt_fifo_3_debug_in
166	"	dut_ipkt_fifo_3_debug_out
167		dut_ipkt_fifo_2_debug_in
168	_"_	dut_ipkt_fifo_2_debug_out
169		dut_ipkt_fifo_1_debug_in
170 171	_"_	dut_ipkt_fifo_1_debug_out dut_ipkt_fifo_0_debug_in
172		dut_ipkt_fifo_0_debug_out
173		dut_pfifo_level
174		dut_pfifo_level
175		dut_pfifo_level
176	_"_	dut_pfifo_level
177	"	dut_pfifo_level
178	_"_	dut_pfifo_level
179	_"_	dut_pfifo_level
180	_"_	dut_pfifo_level
181	_"_	dut_pfifo_level
182	—"—	dut_pfifo_level
183	_"_	dut_pfifo_level
184	_"_	constant-184
185	pa_top.switch.pb0.wrr	constant-185
186	_"_	dut_debug_below
187	_"_	dut_zPassdebugbvalpipe_zPasslist_7_o

id	instance	signal
188		dut_zPassdebugbvalpipe_zPasslist_6_o
189	"	dut_zPassdebugbvalpipe_zPasslist_5_o
190	_" _	dut_zPassdebugbvalpipe_zPasslist_4_o
191	_"_	dut_zPassdebugbvalpipe_zPasslist_3_o
192	_"_	dut_zPassdebugbvalpipe_zPasslist_2_o
193	_"_	dut_zPassdebugbvalpipe_zPasslist_1_o
194	"	dut_zPassdebugbvalpipe_zPasslist_0_o
195	_"_	dut_reg_bval
196	_" _	dut_reg_bval
197	_"_	dut_reg_bval
198		dut_reg_bval
199	—"—	dut_reg_bval
200	_"_	dut_reg_bval
201		dut_reg_bval
202	_"_	dut_reg_bval
203	_"_	dut_reg_bval
204	_"_	dut_reg_bval
205	—"—	dut_reg_bval
206	_"_	dut_reg_bval
207	_"_	dut_reg_bval
208		dut_reg_bval
209	_"_	dut_reg_bval
210	_"_	dut_reg_bval
211	—"—	dut_reg_bval
212	—"—	dut_reg_bval
213	_"_	dut_reg_bval
214	—"—	dut_reg_bval
215	—"—	dut_reg_bval
216	_"_	dut_reg_bval
217	_"_	dut_reg_bval
218	—"—	dut_reg_bval
219	_"_	dut_reg_bval
220	_"_	dut_reg_bval
221	_"_	dut_reg_bval
222	"	dut_reg_bval
223		dut_reg_bval
224	_"_	dut_reg_bval
225	—"—	dut_reg_bval
226	_"_	dut_reg_bval
227	_" _	dut_reg_bval
228	—"—	dut_reg_bval
229	_"_	dut_reg_bval
230	_" _	dut_reg_bval
231	_"_	dut_reg_bval
232	_"_	dut_reg_bval
233	<u></u>	dut_reg_bval
234	"	dut_reg_bval
235	"	dut_reg_bval
236		dut_reg_bval
237	_"_	dut_reg_bval
238	"	dut_reg_bval
239		dut_reg_bval
240	"	dut_reg_bval
241	"	dut_reg_bval
242	_"_	dut_reg_bval
243	_"_ _"_	dut_reg_bval
244		dut_reg_bval
245		dut_reg_bval
246	—"— —"—	dut_reg_bval
247		dut_reg_bval
248	_"_ _"_	dut_reg_bval
249		dut_reg_bval
250	"	dut_reg_bval
251		dut_reg_bval
252		dut_reg_bval
253		dut_reg_bval
254		dut_reg_bval
255		dut_reg_bval
256	_"_	dut_reg_bval
257	_"_ _"_	dut_reg_bval
258		dut_reg_bval
259	"	dut_reg_bval
260	"	dut_reg_bval
261	_"_	dut_reg_bval
262	_"_	dut_reg_bval
263	"	dut_reg_bval
264		dut_reg_bval
265	"	dut_reg_bval
266	_"_	dut_reg_bval
267	_"_	dut_reg_bval

id	instance	signal
268	"_	dut_reg_bval
269		dut_reg_bval
270	"_ "_	dut_reg_bval
271 272		dut_reg_bval
273		dut_reg_bval
274		dut_reg_bval dut_reg_bval
275		dut_reg_bval
276		dut_reg_bval
277	_"_	dut_reg_bval
278	_"_	dut_reg_bval
279	_"_	dut_reg_bval
280	_"_	dut_reg_bval
281	_"_	dut_reg_bval
282	_"_	dut_reg_bval
283	_"_	dut_reg_rank
284	—"—	dut_reg_rank
285	—"—	dut_reg_rank
286	_"_	dut_reg_rank
287	_"_	dut_reg_rank
288		dut_reg_rank
289	"_	dut_reg_rank
290		dut_reg_rank
291	_"_ _"_	dut_reg_rank
292 293		dut_reg_rank
293		dut_reg_rank constant-294
294	pa_top.switch.pb0.qshp	constant-294
295	—"—	dut_iPrioshaper_reg_stat
297		dut_i_Queueshaper_reg_stat
298		constant-298
299	pa_top.switch.bm0	constant-299
300		dut_bm_ifree_debug_free
301	_"_	constant-301
302	pa_top.switch.ps0	constant-302
303	_"_	halt_from_ps
304	_"_	dut_iPs2_zPsAssert_item
305	_"_	dut_iPs2_iBridge_9_assert_reset
306	_"_	dut_iPs2_iBridge_8_assert_reset
307	"	dut_iPs2_iBridge_7_assert_reset
308	_"_	dut_iPs2_iBridge_6_assert_reset
309 310	_"_ _"_	dut_iPs2_iBridge_5_assert_reset dut_iPs2_iBridge_4_assert_reset
311		dut_iPs2_iBridge_4_assert_reset dut_iPs2_iBridge_3_assert_reset
312		dut_iPs2_iBridge_3_assert_reset
313		dut_iPs2_iBridge_1_assert_reset
314	_"_	dut_iPs2_iBridge_0_assert_reset
315	_"_	dut_iPs2_iSplitter_0_assert_noend
316	_"_	dut_iPs2_iSplitter_0_assert_ptr
317	_"_	dut_iPs2_iSplitter_0_used_mem
318	_"_	dut_iPs2_iSplitter_0_used_mem
319	_"_	dut_iPs2_iSplitter_0_used_mem
320	_"_	dut_iPs2_iSplitter_0_used_mem
321	_"_	dut_iPs2_iSplitter_0_used_mem
322	_"_	dut_iPs2_iSplitter_0_used_mem
323	"_	dut_iPs2_iSplitter_0_used_mem
324	"	dut_iPs2_iSplitter_0_used_mem
325		dut_iPs2_iSplitter_0_used_mem
326	_"_ _"_	dut_iPs2_iSplitter_0_used_mem
327 328		dut_iPs2_iSplitter_0_used_mem constant-328
328	pa_top.switch.epp0	constant-328
330	pa_top.switcn.eppu	dut_iEpp_assert_ipkt
331		dut_iEpp_assert_opkt
332		epp_ipkt_bus {18'data, 8'valid_bytes, 4'id, 1'last, 1'first}
333	"	epp_opkt_bus {18'data, 8'valid_bytes, 4'id, 1'last, 1'first}
334		dut_iEpp_iDropper_da_0
335	_"_	dut_iEpp_iDropper_da_1
336	_"_	dut_iEpp_iDropper_dbg_drop
337	_"_	dut_iEpp_iDropper_dbg_ifirst
338	—"—	dut_iEpp_iDropper_dbg_ilast
339	_"_	dut_iEpp_iDropper_sa_0
340	—"—	dut_iEpp_iDropper_sa_1
341	_"_	pa.top.switch.epp0.iPacketassertpm {8'valid_bytes, 4'port, 1'last, 1'first}
342	_"_	pa.top.switch.epp0.iPacketassertin {8'valid_bytes, 4'port, 1'last, 1'first}
343	_"_	constant-343
344	pa_top.switch.epp0.pm	constant-344
345	"_	pm_fifo_overflow
346	_"_	dut_dbg_fifo_full
347	—"—	halt_from_pm

id	instance	signal
348	—"—	dut_iFifoa_10_iF_iFifos_zFcnt_pop_empty
349	—"—	dut_iFifoa_10_iF_iFifos_zFcnt_push_full
350	_"_	dut_iFifoa_9_iF_iFifos_zFcnt_pop_empty
351	_"_	dut_iFifoa_9_iF_iFifos_zFcnt_push_full
352	—"—	dut_iFifoa_8_iF_iFifos_zFcnt_pop_empty
353	—"—	dut_iFifoa_8_iF_iFifos_zFcnt_push_full
354	_"_	dut_iFifoa_7_iF_iFifos_zFcnt_pop_empty
355	—"—	dut_iFifoa_7_iF_iFifos_zFcnt_push_full
356	—"—	dut_iFifoa_6_iF_iFifos_zFcnt_pop_empty
357	_"_	dut_iFifoa_6_iF_iFifos_zFcnt_push_full
358	_"_	dut_iFifoa_5_iF_iFifos_zFcnt_pop_empty
359	—"—	dut_iFifoa_5_iF_iFifos_zFcnt_push_full
360	—"—	dut_iFifoa_4_iF_iFifos_zFcnt_pop_empty
361	—"—	dut_iFifoa_4_iF_iFifos_zFcnt_push_full
362	_"_	dut_iFifoa_3_iF_iFifos_zFcnt_pop_empty
363	—"—	dut_iFifoa_3_iF_iFifos_zFcnt_push_full
364	—"—	dut_iFifoa_2_iF_iFifos_zFcnt_pop_empty
365	_"_	dut_iFifoa_2_iF_iFifos_zFcnt_push_full
366	—"—	dut_iFifoa_1_iF_iFifos_zFcnt_pop_empty
367	_"_	dut_iFifoa_1_iF_iFifos_zFcnt_push_full
368	—"—	dut_iFifoa_0_iF_iFifos_zFcnt_pop_empty
369	_"_	dut_iFifoa_0_iF_iFifos_zFcnt_push_full
370	_"_	constant-370
371	pa_top.switch.ingress_common	constant-371
372	_"_	dut_iLearnage_iHitUpdate_iFifo_0_iF_iFifos_zFcnt_pop_empty
373	_"_	dut_iLearnage_iHitUpdate_iFifo_0_iF_iFifos_zFcnt_push_full
374	_"_	dut_iLearnage_iConf_iFifo_2_iFifo_iF_iFifos_zFcnt_pop_empty
375	_"_	dut_iLearnage_iConf_iFifo_2_iFifo_iF_iFifos_zFcnt_push_full
376	_"_	dut_iLearnage_iConf_iFifo_1_iFifo_iF_iFifos_zFcnt_pop_empty
377	_"_	dut_iLearnage_iConf_iFifo_1_iFifo_iF_iFifos_zFcnt_push_full
378	_"_	dut_iLearnage_iConf_iFifo_0_iFifo_iF_iFifos_zFcnt_pop_empty
379	_"_	dut_iLearnage_iConf_iFifo_0_iFifo_iF_iFifos_zFcnt_push_full
380	"_	dut_iMbsc_iFlood_reg_stat
381	"	dut_iMbsc_iMc_reg_stat
382	"	dut_iMbsc_iBc_reg_stat
383	_"_	constant-383
384	pa_top.switch.interface_common	constant-384
385	"	dut_zFaii_iMf_zMf_1_item
386	_"_ _"_	dut_zFaip_iMf_zMf_1_item
387		dut_zFaie_iMf_zMf_1_item
388	"_ "_	dut_zFaiq_iMf_zMf_1_item
389		dut_zFais_iMf_zMf_1_item
390	"	constant-390

Table 31.10: Debug Selection Map

31.7 Debug Write Interface

The debug write interface is an input port to the Switch Core that can be used for debugging purposes. In normal operation the *debug_write_data* pins must be tied low. The function of the debug write interface is controlled by registers in the individual blocks. In this core only the tick dividers use the debug write interface. See **Core Tick Select**.

Pin	Direction	Size	Description
debug_write_data	In	1	The debug write input data. Must be tied low for normal switch operation.

Table 31.11: The Debug Write interface

Configuration Interface

The configuration interface is an AMBA APB interface used for monitoring the core and for configuration of internal registers and tables. The pins are described in Table 31.6 on page 189, but for a detailed description of the APB interface see the AMBA APB Protocol Specification Version 2.0, available at developer.arm.com

32.1 Response time

The response time may vary between registers, and even vary for the same register depending on how busy the core is switching packets. The response time is in the order of tens of core clock cycles.

32.2 Out of range accesses

There is no range check on the configuration interface, so an access to an address that is not mapped to any register will result in a internal timeout and raise the *pslverr* on the bus.

32.3 Atomic Wide Access

There are a few recommendations how to access wide registers (registers that are wider than the APB data bus). The interface does allow a more flexible access pattern than what is described here. If that is needed then see the next section.

The highest address bit (21) on the APB bus is not a normal address bit. It is used to control wide register access. It will be referred to as the Accumulator Bit in the following description.

- Wide Reads
 - always read wide register starting with the lowest address and ending with the highest address.
 - when reading the lowest address of the register the Accumulator Bit should be 0.
 - when reading the other addresses of the register the Accumulator Bit should be 1.
- Wide Writes
 - always write wide register starting with the lowest address and ending with the highest address.
 - when writing the highest address of the register the Accumulator Bit should be 0.
 - when writing the other addresses of the register the Accumulator Bit should be 1.
- Narrow reads and writes

If the register fits within the APB data bus width then the Accumulator Bit should be 0.

Note that if there are bridges between the CPU and the APB bus then they need to be set up to guarantee the order of accesses.

The software API implementation provided with the switch handles the Accumulator Bit thereby hiding it completely for the software that use the API.

32.4 Accumulator Accesses

Each table or register bank where the data is wider than the configuration data bus, will be equipped with a shadow-register called an accumulator. The accumulator allows the full data width to be updated atomically even though the bus width is narrower than the data. The accumulator is accessed by setting bit 21 of the address high during a normal register access. An access with bit 21 of the address low we call a DEFAULT access, while an access with bit 21 of the address high is called an ACCUMULATOR access. The register section of the datasheet will only list the addresses for DEFAULT access to the registers. Address bit 21 is considered an accumulator flag, and not a part of the address.

A DEFAULT read will return the requested data in the reply, and at the same time load the full data width into the accumulator. Thus following up the DEFAULT read with ACCUMULATOR reads will allow reading the state of the register at the time of the original DEFAULT read. If data consistency is not important, all the reads can be of the DEFAULT type, but there is no point because the read performance is the same. In fact reading a table will potentially be faster using the accumulator, because only the first access will have to wait for access to the physical memory.

Writes work similarly, but the other way around. The accumulator will first be loaded using ACCUMULATOR writes and then the contents of the accumulator is written to the register. The final DEFAULT write will use the data given as *wdata*, and fill it out with the data in the accumulator. Writing data wider than the bus cannot be done without taking the accumulator into account.

If only a part of a very wide register is to be written, the most efficient approach may be to do a DEFAULT read (loading the accumulator) followed by a DEFAULT write. But note that there is no way to do a truly atomic read-modify-write. Any write that the core slips in while the accumulator is loaded will be over-written by the following DEFAULT write.

When the data is wider than the bus the address is stepped by 2^n between table indexes or registers. For instance a 32-bit bus and a 65 bit wide table will result in index 1 starting at address 4, with address 3 unused and address 2 only containing a single valid bit.

198

Debugging the Design

The design contains debug points. They are available as registers in the design. For each debug point there is a a counter. The fields which are more than a single bit also have a comparison register. This register is used for updating the counter only for specific matching values.

33.1 Debug Counters in Ingress Packet Processing

The Cnt ld field in the table below points to the counter to be updated in the counter bank of the **Debug IPP Counter** register.

Register	Cnt Id	Bits	Description
IPP Debug finalVid	0	13	The VID used to lookup in the VLAN table The setup of mask and compare is located in register Debug Counter finalVid Setup . This register enables the user to see if a specific value has been seen.
IPP Debug vlanVidOp	1	3	The VLAN Table VID Operation The setup of mask and compare is located in register Debug Counter vlanVidOp Setup . This register enables the user to see if a specific value has been seen.
IPP Debug I2DaTcamHitsAndCast	2	15	If the L2 TCAM was hit and which type was returned. The setup of mask and compare is located in register Debug Counter I2DaTcamHitsAndCast Setup . This register enables the user to see if a specific value has been seen.
IPP Debug I2DaHashKey	3	60	The hash value for the packet. The setup of mask and compare is located in register Debug Counter I2DaHashKey Setup . This register enables the user to see if a specific value has been seen.
IPP Debug I2DaHash	4	10	The hash value for the packet. The setup of mask and compare is located in register Debug Counter I2DaHash Setup. This register enables the user to see if a specific value has been seen.
IPP Debug I2DaHashHitAndBucket	5	3	The L2 bucket used and hit bit. The setup of mask and compare is located in register Debug Counter I2DaHashHitAndBucket Setup . This register enables the user to see if a specific value has been seen.
IPP Debug I2DaHashHitAndBucket	5	3	The L2 bucket used and hit bit. The setup of mask and compare is located in register Debug Counter I2DaHashHitAndBucket Setup . This register enables the user to see if a specific value has been seen.
IPP Debug routerHit	6	1	The router was hit
IPP Debug nextHopPtrLpm	7	10	The LPM functions next hop pointer The setup of mask and compare is located in register Debug Counter nextHopPtrLpm Setup. This register enables the user to see if a specific value has been seen.
IPP Debug nextHopPtrHash	8	10	The L3 hash functions next hop pointer The setup of mask and compare is located in register Debug Counter nextHopPtrHash Setup . This register enables the user to see if a specific value has been seen.
IPP Debug nextHopPtrLpmHit	9	1	The LPM functions had a hit in the LPM table.
IPP Debug nextHopPtrHashHit	10	1	The L3 hash functions had a hit in the L3 hash table.

Register	Cnt	Bits	Description
	ld		•
IPP Debug nextHopPtrFinal	11	10	The final next hop pointer after ECMP and default route. The setup of mask and compare is located in register Debug Counter nextHopP-trFinal Setup . This register enables the user to see if a specific value has been seen.
IPP Debug srcPort	12	4	The source port which the packet came in on. The setup of mask and compare is located in register Debug Counter srcPort Setup . This register enables the user to see if a specific value has been seen.
IPP Debug dropPktAfterL2Decode	13	1	Packet was dropped after L2 packet decoder
IPP Debug nrVlans	14	2	The number of VLANs the incoming packet has The setup of mask and compare is located in register Debug Counter nrVlans Setup . This register enables the user to see if a specific value has been seen.
IPP Debug dropPktAfterL3Decode	15	1	Packet was dropped after L3 packet decoder
IPP Debug spVidOp	16	3	The Source port VID Operation The setup of mask and compare is located in register Debug Counter spVidOp Setup . This register enables the user to see if a specific value has been seen.
IPP Debug routed	17	1	The packet was routed
IPP Debug isFlooding	18	1	Was the packet flooded
IPP Debug isBroadcast	19	1	Was the packet broadcased
IPP Debug doL2Lookup	20	1	This packet shall do lookup in L2 tables.
IPP Debug dstPortmask	21	11	The packets final portmask The setup of mask and compare is located in register Debug Counter dstPortmask Setup . This register enables the user to see if a specific value has been seen.
IPP Debug debugMatchIPP0	22	22	This allows a user to match all the above debug registers to make a counter update. This allows a user to update a counter based on multiple events happening for the same packet. The Cnt bit indicates which bit is is in the bit-field. The setup of mask and compare is located in register Debug Counter debugMatchIPPO Setup . This register enables the user to see if a specific value has been seen.

Table 33.1: IPP Debug List

201

33.2 Debug Counters in Egress Packet Processing

The Cnt Id field in the table below points to the counter to be updated in the counter bank of the **Debug EPP Counter** register.

Register	Cnt Id	Bits	Description
EPP Debug delSpecificVlan	0	1	This packet has a vid which shall be viewed as a priority VID and it will be deleted from the outgoing packet.
EPP Debug updateTosExp	1	1	This packet shall have a updated TOS/EXP field.
EPP Debug isIPv4	2	1	Packet is a IPv4 packet.
EPP Debug isIPv6	3	1	Packet is a IPv6 packet.
EPP Debug addNewMpls	4	1	Packet shall add a new MPLS header.
EPP Debug isPPPoE	5	1	Packet has a PPPoE header.
EPP Debug imActive	6	1	This packet shall be input mirrored.
EPP Debug imActive	6	1	This packet shall be input mirrored by sending out a second copy to the same destination port.
EPP Debug imExtra	7	1	This packet will send a extra input mirrored packet copy since the packet is already going out on this port.
EPP Debug omEnabled	8	1	This packet shall be output mirrored.
EPP Debug omImActive	9	1	This packet shall be both input mirrored and output mirroed.
EPP Debug reQueue	10	1	This packet shall be requeued.
EPP Debug reQueuePortId	11	4	This packet shall be requeued to this port. The setup of mask and compare is located in Debug Counter reQueuePortId Setup . This register enables the user to see if a specific value has been seen.
EPP Debug reQueuePkt	12	1	This packet will be requeued one more time since on the same port there shall be multiple copies.
EPP Debug fromPort	13	11	The port which the packet is going to be sent out on. The setup of mask and compare is located in Debug Counter fromPort Setup . This register enables the user to see if a specific value has been seen.
EPP Debug debugMatchEPP0	14	14	This allows a user to match all or part of them. This allows a user to update a counter based on multiple events happening for the same packet. The Cnt bit indicates which bit is is in the bit-field. The setup of mask and compare is located in Debug Counter debugMatchEPPO Setup . This register enables the user to see if a specific value has been seen.

Table 33.2: EPP Debug List

203

Implementation

34.1 Floorplanning

The top of the core is the pa_top level, it wraps the switch core, pa_top_switch , and may also contain interface bridges.

The switch hierarchy is divided into six major blocks that we call floorplan blocks. These are: SP, IPP, BM, PB, EPP, and PS. There is also two smaller blocks: ingress_common, interface_common. In some configurations these are very small, but in some the ingress_common can be quite substantial.

Besides the configuration bus, which spreads it's tentacles to every corner of the core, the dataflow through the floorplan blocks is basically that of the path of a packet. The flow from ingress to egress is SP, IPP, BM/PB, EPP, and PS. The PB/BM are lumped together in the list because the packet data goes through the BM, and the control data through the PB. The ingress_common contains auxillary functions for the ingress packet processing and thus mainly talks to the IPP. The other small block, interface_common, is mostly comprised of shim logic for the external interfaces.

34.1.1 Pipelining

The number of pipeline stages in the data paths between the floorplan blocks can be set freely when the RTL is generated. The same goes for the number of input flops and output flops on each floorplan block. If you need to change the number of pipeline stages it is a trivial task, but the RTL has to be re-generated. It cannot be adjusted in the existing verilog files.

Connection	Pipeline stages
$SP \leftrightarrow IPP$	1
IPP ↔ PB/BM	1
$PB \leftrightarrow BM$	1
$BM \leftrightarrow EPP$	1
$EPP \leftrightarrow PS$	1

Table 34.1: The settings for pipeline flops between floorplan blocks

Floorplan block	Input flops	Output flops
SP	0	0
IPP	0	0
PB	0	1
BM	0	0
EPP	0	0
PS	1	1

Table 34.2: The settings for input and output flops for the floorplan blocks

The pipeline settings used when generating this core are shown in Table 34.1, and the input/output flops are listed in Table 34.2^1 .

34.1.2 Configuration and debug

The configuration and debug busses are in principle extremely flexible in how they can be pipelined. Flops can be added and removed anywhere so long as each bus is still in sync. This, as the other changes in pipelining, can only be done by generating new RTL.

34.2 Clock crossings

The bulk of the core is in a single clock domain, the core domain, driven by the *clk* clock. Each packet interface has separate clock domains for TX and RX. All paths between these domains are synchronized by either two synchronization flops, or by an asynchronous memory. The synchronization flops are always instantiations of the *verilog_sync_flops* verilog module, and the asynchronous memories are always instantiations of *verilog_memory_2c*.

34.2.1 IPP and EPP Structure

The IPP and EPP modules are both pipelines with a main dataflow from input to output. The floorplan is recommended to follow the pipeline dataflow. The logic input to a memory comes from the preceding pipeline stage and the output goes to the following pipeline stage. Which pipeline stage a specific memory belongs to is documented in the delivered files eppp0_raw_opt.ramstat and ippp0_raw_opt.ramstat.

In addition to the memory instances, the pipeline flipflops belonging to each pipeline stage is documented in ippp0_raw_opt.fflist and eppp0_raw_opt.fflist.

The exact Verilog instance names are not listed in these files but the names in the lists are part of the instance names and uniquely identify them.

In addition to the main dataflow there is also a configuration bus that has access to all memory instances and to the configuration registers. These paths are normally not in the critical path.

The configuration registers as opposed to the configuration memories can be accessed in multiple pipeline stages and therefore does not have a simple placement strategy.

34.3 Memory wrappers

The memories in the core are instantiated using the verilog_memory.v wrapper. It is expected that this wrapper is replaced, or modified, by the customer to instanciate appropriate memory macros. The macros needed are listed in Table 34.3. For memories with the *write_through* attribute set, simultaneous reading and writing the of same address is expected to yield the write data as read result. For memories with *write_through* set to 0 simultaneous reading and writing to the same address shall not occur.

type	width	depth	write	write	input	output
			through	mask	flops	flops
dp	3	1024	1	None	0	0
dp	107	32	1	None	0	0
dp	577	44	1	None	0	0
dp	184	16	1	None	0	0
dp	469	512	1	None	0	0
dp	469	64	1	None	0	0
dp	138	16	1	None	0	0
dp	323	64	1	None	0	0
dp	187	24	1	None	0	0

¹It should be noted that the input/output flops for the PS is not as clear cut as for the other blocks, due to the slightly more complex interface to the MAC.

dp	113	4096	1	None	0	0
dp	152	512	1	None	0	0
dp	47	1024	1	None	0	0
dp	51	1024	1	None	0	0
	60	1024	1		0	0
dp			1	None	0	0
dp	26	4128	1	None		
dp	19	128		None	0	0
dp	188	256	1	None	0	0
dp	188	64	1	None	0	0
dp	92	32	1	None	0	0
dp	120	32	1	None	0	0
dp	226	12	0	None	0	0
dp	224	20	0	None	0	0
dp	1312	20	0	None	0	0
dp	1855	46	0	None	0	0
dp	1536	11	1	None	0	0
dp	4	1024	1	None	0	0
dp	8	1024	0	None	0	0
dp	19	1024	0	None	0	0
dp	4	1024	0	None	0	0
dp	82	1024	0	None	0	0
dp	11	1024	0	None	0	0
dp	32	1024	1	None	0	0
dp	1536	1024	0	None	0	0
dp	10	1024	1	None	0	0
dp	640	16	1	None	0	0
dp	48	1024	1	None	0	0
dp	28	1024	1	None	0	0
dp	136	16	1	None	0	0
dp	28	128	1	None	0	0
dp	51	2048	1	None	0	0
dp	10	256	1	None	0	0
dp	18	256	1	None	0	0
dp	9	256	1	None	0	0
dp	1	2048	1	None	0	0
dp	2503	167	0	None	0	0
dp	614	121	0	None	0	0
dc	13	8	0	None	0	0
dc	193	8	0	None	0	0
dc	97	8	0	None	0	0
dc	14	16	0	None	0	0
dc	230	16	0	None	0	0
dc	134	16	0	None	0	0
	1 ,			1		

Table 34.3: The memory macros needed for this core. Types: dp=two ports, one read and one write, running on the same clock. dc=two ports, one read and one write, with separate clocks for read and write.

For this design all dual-clock memories are generated as memory instances, but for synchronous memories only those with 2048 bits or more have been generated as a memory instance. Smaller synchronous memories are created as arrays of flops in the verilog source code. To change the criterium for making a memory as an instance or as an array of flops, new RTL has to be generated².

²Although, any instantiated memory wrapper can of course be left as is, and thus be implemented as an array of flops in

34.4 Dual ported memories

All memories are dual ported. Some dual-ported memories have different clocks for the two ports, these are all instanciated using <code>verilog_memory_2c</code> wrapper. For these a real dual-port memory macro is the preferred choice. Most dual-port memories, however, are running on a single clock, and for these a better approch is to use a single-port memory macro clocked at twice the frequency. Unless, of course, the frequency would be prohibitively high. Note in the example timing diagram that the write is done in the first clock cycle to satisfy the <code>write_through</code> criterium. For memories that are not <code>write_through</code> it may be desirable for timing reasons to have the read in the first clock cycle.

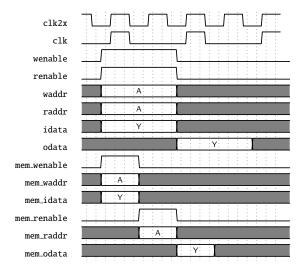


Figure 34.1: Timing diagram for a single ported memory used in the dual ported memory wrapper. In this case a concurrent read and write to the same address of a memory wrapper set for one cycle latency and with the write through attribute set.

There is no dedicated double frequency clock connected to the memories, it has to be provided using the *meminst_in busses to the memory wrappers.

34.5 Memory timing

All memories in the design can be selected to have either:

- One cycle latency
- Two cycles latency, with the flop added on the input to the memory
- Two cycles latency, with the flop added on the output from the memory
- Three cycles latency, with flops added on both the input and the output

Which setting is used for each memory instance can be seen in the *input flops* and *output flops* columns of Table 34.3.

34.6 Lint set up

For spyglass linting the following settings are assumed:

- set_parameter ignore_local_variables yes
- set_parameter handle_zero_padding "W362"

synthesis.

34.6.1 Waivers

Besides the inline waivers in the code these blanket waivers shall be applied:

- waive -rule STARC05-2.11.3.1 -comment "Case statements are used in the sequential blocks of state-machines. This is not an issue"
- waive -rule STARC05-2.2.3.3 -comment "Flip-flops may be written several times in the same sequential block. This is not an issue"
- waive -regexp -du "consistency_check.*" -rule "W240" -comment "consistency_check is guarded by SYNTHESIS, and is not used in hardware."
- waive -rule W415a -comment "Assigning multiple times in the same always block is a code style we use. This is not an issue"
- waive -rule W528 -comment "The way we pipeline will leave a lot of unread signals. This is not an issue"

Registers and Tables

Contents		
35.1	Address S	pace For Tables and Registers
35.2	Byte Orde	er
35.3	Register B	Banks
35.4	Registers a	and Tables in Alphabetical Order
35.5	Active Qu	eue Manager
	35.5.1	ERM Red Configuration
	35.5.2	ERM Yellow Configuration
	35.5.3	Egress Resource Manager Pointer
	35.5.4	Resource Limiter Set
35.6	Core Infor	mation
	35.6.1	Core Version
35.7	Egress Pag	cket Processing
	35.7.1	Beginning of Packet Tunnel Entry Instruction Table
	35.7.2	Color Remap From Egress Port
	35.7.3	Color Remap From Ingress Admission Control
	35.7.4	Debug Counter debugMatchEPP0 Setup
	35.7.5	Debug Counter fromPort Setup
	35.7.6	Debug Counter reQueuePortId Setup
	35.7.7	Disable CPU tag on CPU Port
	35.7.8	Drain Port
	35.7.9	$EPP\ Debug\ addNewMpls \ \ldots \ 243$
	35.7.10	EPP Debug debugMatchEPP0
	35.7.11	EPP Debug delSpecificVlan
	35.7.12	EPP Debug fromPort
	35.7.13	EPP Debug imActive
	35.7.14	EPP Debug imExtra
	35.7.15	EPP Debug isIPv4
	35.7.16	EPP Debug isIPv6
	35.7.17	EPP Debug isPPPoE
	35.7.18	EPP Debug omEnabled
	35.7.19	EPP Debug omlmActive
	35.7.20	EPP Debug reQueue
	35.7.21	EPP Debug reQueuePkt
	35.7.22	EPP Debug reQueuePortId
	35.7.23	EPP Debug updateTosExp
	35.7.24	Egress Ethernet Type for VLAN tag
	35.7.25	Egress MPLS Decoding Options

	35.7.26	Egress MPLS TTL Table	:8
	35.7.27	Egress Multiple Spanning Tree State	.9
	35.7.28	Egress NAT Operation	.9
	35.7.29	Egress Port Configuration	0
	35.7.30	Egress Port VID Operation	2
	35.7.31	Egress Queue To MPLS EXP Mapping Table	4
	35.7.32	Egress Queue To PCP And CFI/DEI Mapping Table	4
	35.7.33	Egress Router Table	4
	35.7.34	Egress Tunnel Exit Table	5
	35.7.35	Egress VLAN Translation TCAM	5
	35.7.36	Egress VLAN Translation TCAM Answer	6
	35.7.37	IP QoS Mapping Table	6
	35.7.38	Ingress NAT Operation	7
	35.7.39	L2 QoS Mapping Table	7
	35.7.40	L2 Tunnel Entry Instruction Table	
	35.7.41	L3 Tunnel Entry Instruction Table	8
	35.7.42	MPLS QoS Mapping Table	
	35.7.43	NAT Add Egress Port for NAT Calculation	
	35.7.44	Next Hop DA MAC	0
	35.7.45	Next Hop MPLS Table	
	35.7.46	Next Hop Packet Insert MPLS Header	1
	35.7.47	Output Mirroring Table	
	35.7.48	Router Port Egress SA MAC Address	
	35.7.49	Select Which Egress QoS Mapping Table To Use	
	35.7.50	TOS QoS Mapping Table	
	35.7.51	Tunnel Entry Header Data	
	35.7.52	Tunnel Entry Instruction Table	
35.8	Flow Contr	rol	
	35.8.1	FFA Used PFC	66
	35.8.2	FFA Used non-PFC	
	35.8.3	PFC Dec Counters for ingress ports 0 to 10	
	35.8.4	PFC Inc Counters for ingress ports 0 to 10	
	35.8.5	Port FFA Used	
	35.8.6	Port Pause Settings	
	35.8.7	Port Reserved	
	35.8.8	Port Tail-Drop FFA Threshold	
	35.8.9	Port Tail-Drop Settings	
	35.8.10	Port Used	
	35.8.11	Port Xoff FFA Threshold	
	35.8.12	Port Xon FFA Threshold	
	35.8.13	Port/TC Reserved	
	35.8.14	Port/TC Tail-Drop Total Threshold	
	35.8.15	Port/TC Xoff Total Threshold	
	35.8.16	Port/TC Xon Total Threshold	
	35.8.17	TC FFA Used	
	35.8.18	TC Tail-Drop FFA Threshold	
	35.8.19	TC Xoff FFA Threshold	
	35.8.20	TC Xon FFA Threshold	
	35.8.21	Tail-Drop FFA Threshold	
	35.8.22		
	35.8.23	Xoff FFA Threshold	
35.9	Global Con		
JJ.9	35.9.1	Core Tick Configuration	
	JJ.Y.I	Core fick Configuration $\dots \dots	O

	35.9.2	Core Tick Select	275
	35.9.3	MAC RX Maximum Packet Length	275
	35.9.4	Scratch	276
35.10	Ingress Pac	ket Processing	27 6
	35.10.1	AH Header Packet Decoder Options	276
	35.10.2	ARP Packet Decoder Options	277
	35.10.3	Aging Data FIFO	277
	35.10.4	Aging Data FIFO High Watermark Level	278
	35.10.5	Allow Special Frame Check For L2 Action Table	278
	35.10.6	BOOTP and DHCP Packet Decoder Options	280
	35.10.7	CAPWAP Packet Decoder Options	280
	35.10.8	CPU Reason Code Operation	281
	35.10.9	Check IPv4 Header Checksum	281
	35.10.10	DNS Packet Decoder Options	282
	35.10.11	Debug Counter debugMatchIPP0 Setup	282
	35.10.12	Debug Counter dstPortmask Setup	283
	35.10.13	Debug Counter finalVid Setup	283
	35.10.14	Debug Counter I2DaHash Setup	284
	35.10.15		284
	35.10.16		284
	35.10.17	Debug Counter I2DaTcamHitsAndCast Setup	285
	35.10.18	Debug Counter nextHopPtrFinal Setup	285
	35.10.19	Debug Counter nextHopPtrHash Setup	286
	35.10.20	Debug Counter nextHopPtrLpm Setup	286
	35.10.21		286
	35.10.22		287
	35.10.23		287
	35.10.24		288
	35.10.25		288
	35.10.26		288
	35.10.27		289
	35.10.28		290
	35.10.29	Egress Configurable ACL 0 Large Table	290
	35.10.30		291
	35.10.31		292
	35.10.32	Egress Configurable ACL 0 Selection	292
	35.10.33		293
	35.10.34		294
	35.10.35		294
	35.10.36		295
	35.10.37		296
	35.10.38		296
	35.10.39		297
	35.10.40		297
	35.10.41		298
	35.10.42		298
	35.10.43		299
	35.10.44		299
	35.10.45	•	299
	35.10.46		300
	35.10.47		300
	35.10.48		300
	25 10 40	·	901

35.10.50	Hardware Learning Configuration
35.10.51	Hardware Learning Counter
35.10.52	Hash Based L3 Routing Table
35.10.53	Hit Update Data FIFO
35.10.54	Hit Update Data FIFO High Watermark Level
35.10.55	IEEE 1588 L2 Packet Decoder Options
35.10.56	IEEE 1588 L4 Packet Decoder Options
35.10.57	IEEE 802.1X and EAPOL Packet Decoder Options
35.10.58	IKE Packet Decoder Options
35.10.59	IPP Debug debugMatchIPP0
35.10.60	IPP Debug doL2Lookup
35.10.61	IPP Debug dropPktAfterL2Decode
35.10.62	IPP Debug dropPktAfterL3Decode
35.10.63	IPP Debug dstPortmask
35.10.64	IPP Debug finalVid
35.10.65	IPP Debug isBroadcast
35.10.66	IPP Debug isFlooding
35.10.67	IPP Debug I2DaHash
35.10.68	IPP Debug I2DaHashHitAndBucket
35.10.69	IPP Debug I2DaHashKey
35.10.70	IPP Debug I2DaTcamHitsAndCast
35.10.71	IPP Debug nextHopPtrFinal
35.10.72	IPP Debug nextHopPtrHash
35.10.73	IPP Debug nextHopPtrHashHit
35.10.74	IPP Debug nextHopPtrLpm
35.10.75	IPP Debug nextHopPtrLpmHit
35.10.76	IPP Debug nrVlans
35.10.77	IPP Debug routed
35.10.78	IPP Debug routerHit
35.10.79	IPP Debug spVidOp
35.10.80	IPP Debug srcPort
35.10.81	IPP Debug vlanVidOp
35.10.82	IPv4 TOS Field To Egress Queue Mapping Table
35.10.83	IPv4 TOS Field To Packet Color Mapping Table
35.10.84	IPv6 Class of Service Field To Egress Queue Mapping Table
35.10.85	IPv6 Class of Service Field To Packet Color Mapping Table 314
35.10.86	Ingress Admission Control Current Status
35.10.87	Ingress Admission Control Initial Pointer
35.10.88	Ingress Admission Control Mark All Red
35.10.89	Ingress Admission Control Mark All Red Enable
35.10.90	Ingress Admission Control Reset
35.10.91	Ingress Admission Control Token Bucket Configuration
35.10.92	Ingress Configurable ACL 0 Large Table
35.10.93	Ingress Configurable ACL 0 Pre Lookup
35.10.94	Ingress Configurable ACL 0 Rules Setup
35.10.95	Ingress Configurable ACL 0 Search Mask
35.10.96	Ingress Configurable ACL 0 Selection
35.10.90	Ingress Configurable ACL 0 Selection
35.10.97	Ingress Configurable ACL 0 TCAM
35.10.99	Ingress Configurable ACL 0 TCAM Answer
35.10.100	Ingress Configurable ACL 1 Large Table
35.10.100	Ingress Configurable ACL 1 Pre Lookup
35.10.101	Ingress Configurable ACL 1 Rules Setup
JJ.1U.1UZ	- mgress comigurable ACL I Nuics Setub

35.10.103	Ingress Configurable ACL 1 Search Mask
35.10.104	Ingress Configurable ACL 1 Selection
35.10.105	Ingress Configurable ACL 1 Small Table
35.10.106	Ingress Configurable ACL 1 TCAM
35.10.107	Ingress Configurable ACL 1 TCAM Answer
35.10.108	Ingress Configurable ACL 2 Pre Lookup
35.10.109	Ingress Configurable ACL 2 Rules Setup
35.10.110	Ingress Configurable ACL 2 TCAM
35.10.111	Ingress Configurable ACL 2 TCAM Answer
35.10.112	Ingress Configurable ACL 3 Rules Setup
35.10.113	Ingress Configurable ACL 3 TCAM
35.10.114	Ingress Configurable ACL 3 TCAM Answer
35.10.115	Ingress Drop Options
35.10.116	Ingress Egress Port Packet Type Filter
35.10.117	Ingress Ethernet Type for VLAN tag
35.10.118	Ingress MMP Drop Mask
35.10.119	Ingress Multiple Spanning Tree State
35.10.120	Ingress Port Packet Type Filter
35.10.121	Ingress Router Table
35.10.122	Ingress VID Ethernet Type Range Assignment Answer
35.10.123	Ingress VID Ethernet Type Range Search Data
35.10.124	Ingress VID Inner VID Range Assignment Answer
35.10.125	Ingress VID Inner VID Range Search Data
35.10.126	Ingress VID MAC Range Assignment Answer
35.10.127	Ingress VID MAC Range Search Data
35.10.128	Ingress VID Outer VID Range Assignment Answer
35.10.129	Ingress VID Outer VID Range Search Data
35.10.130	L2 Action Table
35.10.131	L2 Action Table Egress Port State
35.10.132	L2 Action Table Source Port
35.10.133	L2 Aging Collision Shadow Table
35.10.134	L2 Aging Collision Table
35.10.135	L2 Aging Status Shadow Table
35.10.136	L2 Aging Status Shadow Table - Replica
35.10.137	L2 Aging Table
35.10.138	L2 DA Hash Lookup Table
35.10.139	L2 Destination Table
35.10.140	L2 Destination Table - Replica
35.10.141	L2 Lookup Collision Table
35.10.142	L2 Lookup Collision Table Masks
35.10.143	L2 Multicast Handling
35.10.144	L2 Multicast Table
35.10.145	L2 Reserved Multicast Address Action
35.10.146	L2 Reserved Multicast Address Base
35.10.147	L2 SA Hash Lookup Table
35.10.148	L2 Tunnel Decoder Setup
35.10.149	L3 LPM Result
35.10.150	L3 Routing Default
35.10.151	L3 Routing TCAM
35.10.152	LACP Packet Decoder Options
35.10.153	LLDP Configuration
35.10.154	Learning And Aging Enable
35.10.155	Learning And Aging Writeback Control

	35.10.156	Learning Conflict
	35.10.157	Learning DA MAC
	35.10.158	Learning Data FIFO
	35.10.150	Learning Data FIFO High Watermark Level
	35.10.160	Learning Overflow
	35.10.161	Link Aggregate Weight
	35.10.161	
	35.10.162	
		1
	35.10.164	Link Aggregation To Physical Ports Members
	35.10.165	MPLS EXP Field To Egress Queue Mapping Table
	35.10.166	MPLS EXP Field To Packet Color Mapping Table
	35.10.167	NAT Action Table
	35.10.168	NAT Action Table Force Original Packet
	35.10.169	Next Hop Packet Modifications
	35.10.170	Next Hop Table
	35.10.171	Port Move Options
	35.10.172	RARP Packet Decoder Options
	35.10.173	Reserved Destination MAC Address Range
	35.10.174	Reserved Source MAC Address Range
	35.10.175	Router Egress Queue To VLAN Data
	35.10.176	Router MTU Table
	35.10.177	Router Port MAC Address
	35.10.178	SCTP Packet Decoder Options
	35.10.179	SMON Set Search
	35.10.180	SNAP LLC Decoding Options
	35.10.181	Second Tunnel Exit Lookup TCAM
	35.10.182	Second Tunnel Exit Lookup TCAM Answer
	35.10.183	Second Tunnel Exit Miss Action
	35.10.184	Send to CPU
	35.10.185	Software Aging Enable
	35.10.186	Software Aging Start Latch
	35.10.187	Source Port Default ACL Action
	35.10.188	Source Port Table
	35.10.189	Time to Age
	35.10.190	Tunnel Entry MTU Length Check
	35.10.191	Tunnel Exit Lookup TCAM
	35.10.192	Tunnel Exit Lookup TCAM Answer
	35.10.193	VLAN PCP And DEI To Color Mapping Table
	35.10.194	VLAN PCP To Queue Mapping Table
	35.10.195	VLAN Table
35.11	MBSC	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot$
	35.11.1	L2 Broadcast Storm Control Bucket Capacity Configuration 40-
	35.11.2	L2 Broadcast Storm Control Bucket Threshold Configuration 40-
	35.11.3	L2 Broadcast Storm Control Enable
	35.11.4	L2 Broadcast Storm Control Rate Configuration
	35.11.5	L2 Flooding Storm Control Bucket Capacity Configuration 400
	35.11.6	L2 Flooding Storm Control Bucket Threshold Configuration 400
	35.11.7	L2 Flooding Storm Control Enable
	35.11.8	L2 Flooding Storm Control Rate Configuration
	35.11.9	L2 Multicast Storm Control Bucket Capacity Configuration 40'
	35.11.10	L2 Multicast Storm Control Bucket Threshold Configuration 40°
	35.11.11	L2 Multicast Storm Control Enable
	35.11.12	L2 Multicast Storm Control Rate Configuration

35.12	Scheduling	\ldots	9
	35.12.1	DWRR Bucket Capacity Configuration	19
	35.12.2	DWRR Bucket Misc Configuration	9
	35.12.3	DWRR Weight Configuration	9
	35.12.4	Map Queue to Priority	0
	35.12.5	Output Disable	0
35.13	Shapers .		1
	35.13.1	Port Shaper Bucket Capacity Configuration	.1
	35.13.2	Port Shaper Bucket Threshold Configuration	
	35.13.3	Port Shaper Enable	
	35.13.4	Port Shaper Rate Configuration	
	35.13.5	Prio Shaper Bucket Capacity Configuration	
	35.13.6	Prio Shaper Bucket Threshold Configuration	
	35.13.7	Prio Shaper Enable	
	35.13.8	Prio Shaper Rate Configuration	
	35.13.9	Queue Shaper Bucket Capacity Configuration	
	35.13.10	Queue Shaper Bucket Threshold Configuration	
	35.13.11	Queue Shaper Enable	
	35.13.12	Queue Shaper Rate Configuration	
35.14		fer Memory	
00.1.	35.14.1	Buffer Free	
	35.14.2	Egress Port Depth	
	35.14.3	Egress Queue Depth	
	35.14.4	Minimum Buffer Free	
	35.14.5	Packet Buffer Status	
35.15		ACL	
00.10	35.15.1	Egress Configurable ACL Match Counter	
	35.15.2	Ingress Configurable ACL Match Counter	
35.16		Debug	
55.10	35.16.1	Debug EPP Counter	
	35.16.2	Debug IPP Counter	
	35.16.3	EPP PM Drop	
	35.16.4	IPP PM Drop	
	35.16.5	PS Error Counter	
	35.16.6	SP Overflow Drop	
35.17		EPP Egress Port Drop	
55.11	35.17.1	Egress Port Disabled Drop	
	35.17.2	Egress Port Filtering Drop	
	35.17.3	Tunnel Exit Too Small Packet Modification To Small Drop	
	35.17.4	Unknown Egress Drop	
35.18		IPP Egress Port Drop	
33.10	35.18.1	Egress Spanning Tree Drop	
	35.18.2	Ingress-Egress Packet Filtering Drop	
	35.18.3	L2 Action Table Per Port Drop	
	35.18.4	MBSC Drop	
	35.18.5	Queue Off Drop	
35.19		IPP Ingress Port Drop	
55.19	35.19.1	AH Decoder Drop	
	35.19.1	ARP Decoder Drop	
	35.19.2	BOOTP and DHCP Decoder Drop	
	35.19.3	CAPWAP Decoder Drop	
	35.19.4	DNS Decoder Drop	
	35.19.6	ESP Decoder Drop	
	JJ.1J.U		··

	35.19.7	Egress Configurable ACL Drop
	35.19.8	Empty Mask Drop
	35.19.9	Expired TTL Drop
	35.19.10	GRE Decoder Drop
	35.19.11	IEEE 802.1X and EAPOL Decoder Drop
	35.19.12	IKE Decoder Drop
	35.19.13	IP Checksum Drop
	35.19.14	Ingress Configurable ACL Drop
	35.19.15	Ingress Packet Filtering Drop
	35.19.16	Ingress Spanning Tree Drop: Blocking
	35.19.17	Ingress Spanning Tree Drop: Learning
	35.19.18	Ingress Spanning Tree Drop: Listen
	35.19.19	Invalid Routing Protocol Drop
	35.19.20	L2 Action Table Drop
	35.19.21	L2 Action Table Port Move Drop
	35.19.22	L2 Action Table Special Packet Type Drop
	35.19.23	L2 IEEE 1588 Decoder Drop
	35.19.24	L2 Lookup Drop
	35.19.25	L2 Reserved Multicast Address Drop
	35.19.26	
		·
	35.19.27	L4 IEEE 1588 Decoder Drop
	35.19.28	LACP Decoder Drop
	35.19.29	Learning Packet Drop
	35.19.30	Maximum Allowed VLAN Drop
	35.19.31	Minimum Allowed VLAN Drop
	35.19.32	NAT Action Table Drop
	35.19.33	RARP Decoder Drop
	35.19.34	Reserved MAC DA Drop
	35.19.35	Reserved MAC SA Drop
	35.19.36	SCTP Decoder Drop 434
	35.19.37	Second Tunnel Exit Drop
	35.19.38	Source Port Default ACL Action Drop
	35.19.39	Tunnel Exit Miss Action Drop
	35.19.40	Tunnel Exit Too Small Packet Modification Drop
	35.19.41	Unknown Ingress Drop 436
	35.19.42	VLAN Member Drop
35.20	Statistics:	IPP Ingress Port Receive
	35.20.1	IP Multicast ACL Drop Counter
	35.20.2	IP Multicast Received Counter
	35.20.3	IP Multicast Routed Counter
	35.20.4	IP Unicast Received Counter
	35.20.5	IP Unicast Routed Counter
35.21	Statistics:	Misc
	35.21.1	Buffer Overflow Drop
	35.21.2	Drain Port Drop
	35.21.3	Egress Resource Manager Drop
	35.21.4	Flow Classification And Metering Drop
	35.21.5	IPP Empty Destination Drop
	35.21.6	Ingress Resource Manager Drop
	35.21.7	MAC RX Broken Packets
	35.21.8	MAC RX Long Packet Drop
	35.21.0	MAC RX Short Packet Drop
	35.21.10	
	JJ.21.1U	Re-queue Overflow Drop

35.22	Statistics:	NAT
	35.22.1	Egress NAT Hit Status
	35.22.2	Ingress NAT Hit Status
35.23	Statistics:	Packet Datapath
	35.23.1	EPP Packet Head Counter
	35.23.2	EPP Packet Tail Counter
	35.23.3	IPP Packet Head Counter
	35.23.4	IPP Packet Tail Counter
	35.23.5	MAC Interface Counters For RX
	35.23.6	MAC Interface Counters For TX
	35.23.7	PB Packet Head Counter
	35.23.8	PB Packet Tail Counter
	35.23.9	PS Packet Head Counter
	35.23.10	PS Packet Tail Counter
35.24	Statistics:	Routing
	35.24.1	Next Hop Hit Status
	35.24.2	Received Packets on Ingress VRF
	35.24.3	Transmitted Packets on Egress VRF
35.25	Statistics:	SMON
	35.25.1	SMON Set 0 Byte Counter 447
	35.25.2	SMON Set 0 Packet Counter
	35.25.3	SMON Set 1 Byte Counter 448
	35.25.4	SMON Set 1 Packet Counter
	35.25.5	SMON Set 2 Byte Counter 448
	35.25.6	SMON Set 2 Packet Counter
	35.25.7	SMON Set 3 Byte Counter 449
	35.25.8	SMON Set 3 Packet Counter

All registers and tables that are accessible from a configuration interface are listed in this chapter. A user guide for the configuration interface is found in Chapter 32, and the pins for the configuration interfaces are described in Section 31.3.

35.1 Address Space For Tables and Registers

All tables in the address space are linear. The size of a table entry is always rounded up to nearest power of two of the bus width. For example if the bus is 32 bits and a entry in a table is 33 bits wide, it will then use two addresses per entry. Second example, the bus is still 32 bits, but the entry is 181 bits wide, the entry will then use a address space of 8 addresses per table entry (181 bits fits within 6 bus words but is rounded up to nearest power of two). This is shown in figure 35.1. The total address space used by this core is 151678 addresses.

35.2 Byte Order

When a register field is wider than a byte and the field represents an integer value or the field is related to a packet header field, the order of the bytes needs to be defined.

Integer fields in the registers have a little endian byte order so that the lowest bits in a field will be at lowest bits on the configuration bus. When a field spans multiple configuration bus addresses the lowest address will hold the lowest bits of the field. If this is memory mapped and accessed by a host CPU it will be in the correct byte order for a little endian CPU.

In network byte order the first transmitted or received byte has byte number 0. One example is the Ethernet MAC address with the printed representation *a1-b2-c3-d4-e5-f6* where *a1* would be sent first and would be byte 0). When used in a register field the highest bits in the register field corresponds to the lowest

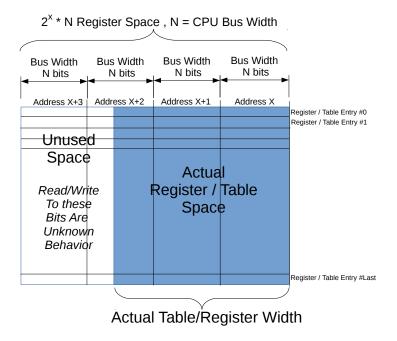


Figure 35.1: Address space usage by tables

network byte. Therefore the MAC address above would be the value 0xa1b2c3d4e5f6 and as seen by a little endian host CPU the byte 0xf6 would be at the lowest address.

A special case are IPv6 addresses. In the standard printed representation 0102:0304:0506:... the leftmost byte 01 is byte 0 in the network order followed by byte 02 as network byte 1. When configuring this in a register field the lowest bytes are from the lowest network byte numbers. However each pair of bytes are also swapped. The address above would therefore be the value 0x....050603040102.

35.3 Register Banks

A bank is a hardware unit which holds a number of registers or a single table. In a bank containing data wider than 32 bits, registers (or table entries) must be accessed one at a time, or the accesses will interfere with each other.

Bank Name	Connected Registers or Tables
switch_info_regbank	Core Version
top_regs	Buffer Free
	Core Tick Configuration
	Core Tick Select
	Scratch
pa top switch mactop iRxedgecheck iPro-	MAC Interface Counters For RX
tocolcheck0 table	
pa top switch mactop iRxedgecheck iPro-	MAC Interface Counters For RX
tocolcheck1 table	
pa top switch mactop iRxedgecheck iPro-	MAC Interface Counters For RX
tocolcheck2 table	
pa top switch mactop iRxedgecheck iPro-	MAC Interface Counters For RX
tocolcheck3 table	
pa top switch mactop iRxedgecheck iPro-	MAC Interface Counters For RX
tocolcheck4 table	
pa top switch mactop iRxedgecheck iPro-	MAC Interface Counters For RX
tocolcheck5 table	

Bank Name	Connected Registers or Tables
pa top switch mactop iRxedgecheck iProtocolcheck6 table	MAC Interface Counters For RX
pa top switch mactop iRxedgecheck iProtocolcheck7 table	MAC Interface Counters For RX
pa top switch mactop iRxedgecheck iPro-	MAC Interface Counters For RX
tocolcheck8 table pa top switch mactop iRxedgecheck iPro-	MAC Interface Counters For RX
tocolcheck9 table	
pa top switch mactop iRxedgecheck iProtocolcheck10 table	MAC Interface Counters For RX
rx_length_ref	MAC RX Maximum Packet Length[010]
rx_length_drop	MAC RX Broken Packets[010]
	MAC RX Short Packet Drop[010]
	MAC RX Long Packet Drop[010]
pa top switch mactop iTxedgecheck iProtocolcheck0 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck1 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck2 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck3 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck4 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck5 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck6 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck7 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck8 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck9 table	MAC Interface Counters For TX
pa top switch mactop iTxedgecheck iProtocolcheck10 table	MAC Interface Counters For TX
l2_broadcast_storm_control_rate_settings	L2 Broadcast Storm Control Rate Configuration
l2_broadcast_storm_control_bucket_settings	L2 Broadcast Storm Control Bucket Capacity Configuration L2 Broadcast Storm Control Bucket Threshold Configuration
l2_broadcast_storm_control_misc	L2 Broadcast Storm Control Enable
l2_multicast_storm_control_rate_settings	L2 Multicast Storm Control Rate Configuration
I2_multicast_storm_control_bucket_settings	-
l2_multicast_storm_control_misc	L2 Multicast Storm Control Enable
l2_flooding_storm_control_rate_settings	L2 Flooding Storm Control Rate Configuration
I2_flooding_storm_control_bucket_settings	L2 Flooding Storm Control Bucket Capacity Configuration L2 Flooding Storm Control Bucket Threshold Configuration
I2_flooding_storm_control_misc	L2 Flooding Storm Control Enable
le_ae_status	Learning Conflict
lo ao control	Learning Overflow
le_ae_control	Learning And Aging Enable Software Aging Enable
	Learning And Aging Writeback Control
	Learning Data FIFO High Watermark Level
	Aging Data FIFO High Watermark Level

Bank Name	Connected Registers or Tables
	Hit Update Data FIFO High Watermark Level
	Hardware Learning Configuration[010]
	Time to Age
age_cam_register_bank	L2 Aging Collision Table[031]
mac_cnt_register_bank	Hardware Learning Counter[010]
L2 Aging Table	L2 Aging Table
le_ae_control_latch	Software Aging Start Latch
ldf	Learning Data FIFO
adf	Aging Data FIFO
hdf	Hit Update Data FIFO
count_sp_ss0	SP Overflow Drop
count_broken_pkt_ss0	IPP PM Drop
•	IPP Empty Destination Drop
count_pa top switch ipp0 conf	Unknown Ingress Drop
	Empty Mask Drop
	Ingress Spanning Tree Drop: Listen
	Ingress Spanning Tree Drop: Learning
	Ingress Spanning Tree Drop: Blocking
	L2 Lookup Drop
	Ingress Packet Filtering Drop
	Reserved MAC DA Drop
	Reserved MAC SA Drop
	VLAN Member Drop
	Minimum Allowed VLAN Drop
	Maximum Allowed VLAN Drop
	Invalid Routing Protocol Drop
	Expired TTL Drop
	L3 Lookup Drop
	IP Checksum Drop
	Second Tunnel Exit Drop
	Tunnel Exit Miss Action Drop
	Tunnel Exit Too Small Packet Modification Drop
	Learning Packet Drop
	L2 Reserved Multicast Address Drop
	Ingress Configurable ACL Drop
	Egress Configurable ACL Drop
	ARP Decoder Drop
	RARP Decoder Drop
	L2 IEEE 1588 Decoder Drop
	L4 IEEE 1588 Decoder Drop
	IEEE 802.1X and EAPOL Decoder Drop
	SCTP Decoder Drop
	LACP Decoder Drop
	AH Decoder Drop
	ESP Decoder Drop
	DNS Decoder Drop
	BOOTP and DHCP Decoder Drop
	CAPWAP Decoder Drop
	IKE Decoder Drop
	GRE Decoder Drop
	NAT Action Table Drop
	L2 Action Table Special Packet Type Drop
	L2 Action Table Drop
	L2 Action Table Port Move Drop
	Source Port Default ACL Action Drop

Bank Name	Connected Registers or Tables
count_opkt_pa top switch ipp0 conf	IPP Packet Head Counter
count_opkt_pa top switch ippo com	IPP Packet Tail Counter
Tunnel Exit Lookup TCAM Answer	Tunnel Exit Lookup TCAM Answer
Ingress Admission Control Initial Pointer	Ingress Admission Control Initial Pointer
Ingress Configurable ACL 0 Large Table	Ingress Configurable ACL 0 Large Table
Ingress Configurable ACL 0 Small Table	Ingress Configurable ACL 0 Small Table
Ingress Configurable ACL 0 TCAM An-	Ingress Configurable ACL 0 TCAM Answer
swer	
Ingress Configurable ACL 1 Large Table	Ingress Configurable ACL 1 Large Table
Ingress Configurable ACL 1 Small Table	Ingress Configurable ACL 1 Small Table
Ingress Configurable ACL 1 TCAM An-	Ingress Configurable ACL 1 TCAM Answer
swer	
Ingress Configurable ACL 2 TCAM An-	Ingress Configurable ACL 2 TCAM Answer
swer	
Ingress Configurable ACL 3 TCAM An-	Ingress Configurable ACL 3 TCAM Answer
swer	
Source Port Default ACL Action	Source Port Default ACL Action
VLAN Table	VLAN Table
Ingress Multiple Spanning Tree State	Ingress Multiple Spanning Tree State
Ingress Router Table	Ingress Router Table
L3 LPM Result	L3 LPM Result
Hash Based L3 Routing Table	Hash Based L3 Routing Table
Next Hop Table	Next Hop Table
Next Hop Packet Modifications	Next Hop Packet Modifications
L2 Aging Status Shadow Table	L2 Aging Status Shadow Table
L2 DA Hash Lookup Table	L2 DA Hash Lookup Table
L2 Destination Table	L2 Destination Table
L2 SA Hash Lookup Table	L2 SA Hash Lookup Table
L2 Aging Status Shadow Table - Replica	L2 Aging Status Shadow Table - Replica
L2 Destination Table - Replica	L2 Destination Table - Replica
L2 Action Table	L2 Action Table
L2 Action Table Source Port	L2 Action Table Source Port
Egress ACL Rule Pointer TCAM Answer	Egress ACL Rule Pointer TCAM Answer
Egress Configurable ACL 0 Large Table	Egress Configurable ACL 0 Large Table
Egress Configurable ACL 0 Small Table	Egress Configurable ACL 0 Small Table
Egress Configurable ACL 0 TCAM An-	Egress Configurable ACL 0 TCAM Answer
swer	
Egress Configurable ACL 1 TCAM Answer	Egress Configurable ACL 1 TCAM Answer
Tunnel Entry MTU Length Check	Tunnel Entry MTU Length Check
ipp_register_bank_ss0	Link Aggregation Ctrl
5	Debug Counter srcPort Setup
	SNAP LLC Decoding Options
	Ingress Ethernet Type for VLAN tag
	Debug Counter nrVlans Setup
	SCTP Packet Decoder Options
	AH Header Packet Decoder Options
	ESP Header Packet Decoder Options
	Debug Counter spVidOp Setup
	Ingress Configurable ACL 0 Selection
	Ingress Configurable ACL 1 Selection
	Debug Counter finalVid Setup
	Debug Counter vlanVidOp Setup
	Debug Counter nextHopPtrLpm Setup
	Debug Counter nextHopPtrHash Setup

Bank Name	Connected Registers or Tables
	Debug Counter nextHopPtrFinal Setup
	Check IPv4 Header Checksum
	Force Non VLAN Packet To Specific Queue
	Force Unknown L3 Packet To Specific Egress Queue
	Force Non VLAN Packet To Specific Color
	Force Unknown L3 Packet To Specific Color
	Debug Counter I2DaHash Setup
	Debug Counter I2DaHashHitAndBucket Setup
	Debug Counter I2DaTrasmits MubbleRet Setup
	Forward From CPU
	Port Move Options
	L2 Action Table Egress Port State
	L2 Multicast Handling
	Egress Configurable ACL 0 Selection
	Egress Port NAT State
	NAT Action Table Force Original Packet
	Ingress MMP Drop Mask
	Debug Counter dstPortmask Setup
	IPP Debug srcPort
	IPP Debug dropPktAfterL2Decode
	IPP Debug nrVlans
	IPP Debug dropPktAfterL3Decode
	IPP Debug spVidOp
	IPP Debug finalVid
	IPP Debug vlanVidOp
	IPP Debug routerHit
	IPP Debug nextHopPtrLpm
	IPP Debug nextHopPtrHash
	IPP Debug nextHopPtrLpmHit
	IPP Debug nextHopPtrHashHit
	IPP Debug nextHopPtrFinal
	IPP Debug I2DaHash
	IPP Debug I2DaHashHitAndBucket
	IPP Debug I2DaTcamHitsAndCast
	IPP Debug routed
	IPP Debug isFlooding
	IPP Debug isBroadcast
	IPP Debug doL2Lookup
	IPP Debug dstPortmask
	IPP Debug debugMatchIPP0
	Enable Enqueue To Ports And Queues
	Flooding Action Send to Port
	Link Aggregation To Physical Ports Members
	Link Aggregate Weight
	Ingress Egress Port Packet Type Filter
	NAT Action Table
	Egress Configurable ACL 1 Rules Setup
	Egress Configurable ACL 0 Rules Setup
	Allow Special Frame Check For L2 Action Table
	Egress Multiple Spanning Tree State
	Router MTU Table
	Hairpin Enable
	L2 Multicast Table
	L2 Aging Collision Shadow Table
	Router Egress Queue To VLAN Data
	MPLS EXP Field To Packet Color Mapping Table

Bank Name	Connected Registers or Tables
	IPv6 Class of Service Field To Packet Color Mapping Table
	IPv4 TOS Field To Packet Color Mapping Table
	VLAN PCP And DEI To Color Mapping Table
	MPLS EXP Field To Egress Queue Mapping Table
	IPv6 Class of Service Field To Egress Queue Mapping Table
	IPv4 TOS Field To Egress Queue Mapping Table
	VLAN PCP To Queue Mapping Table
	L3 Routing Default
	Ingress VID Ethernet Type Range Assignment Answer
	Ingress VID Inner VID Range Assignment Answer
	Ingress VID Outer VID Range Assignment Answer
	Ingress VID MAC Range Assignment Answer
	Ingress Configurable ACL 3 Rules Setup
	Ingress Configurable ACL 2 Rules Setup
	Ingress Configurable ACL 2 Pre Lookup
	Ingress Configurable ACL 1 Pre Lookup
	Ingress Configurable ACL 0 Rules Setup
	Ingress Configurable ACL 0 Pre Lookup
	Ingress Port Packet Type Filter
	SMON Set Search
	Default Packet To CPU Modification
	L2 Reserved Multicast Address Action
	Second Tunnel Exit Miss Action
	Link Aggregation Membership
	Source Port Table
	Egress ACL Rule Pointer TCAM
	Ingress VID MAC Range Search Data
	Reserved Source MAC Address Range
	Reserved Destination MAC Address Range
	Send to CPU
	LACP Packet Decoder Options
	Debug Counter I2DaHashKey Setup
	L2 Tunnel Decoder Setup
	Learning DA MAC
	L2 Reserved Multicast Address Base
	ARP Packet Decoder Options
	RARP Packet Decoder Options
	IEEE 1588 L2 Packet Decoder Options
	IEEE 802.1X and EAPOL Packet Decoder Options
	GRE Packet Decoder Options
	·
	DNS Packet Decoder Options
	BOOTP and DHCP Packet Decoder Options
	CAPWAP Packet Decoder Options
	IKE Packet Decoder Options
	Egress Spanning Tree State
	Debug Counter debugMatchIPP0 Setup
	IPP Debug I2DaHashKey
	CPU Reason Code Operation
	L2 Lookup Collision Table Masks
	L2 Lookup Collision Table
	Ingress VID Ethernet Type Range Search Data
	Ingress VID Inner VID Range Search Data
	Ingress VID Outer VID Range Search Data
	Ingress Configurable ACL 1 Rules Setup
	Second Tunnel Exit Lookup TCAM Answer
	Tunnel Exit Lookup TCAM

Bank Name	Connected Registers or Tables
	Ingress Configurable ACL 0 TCAM
	IEEE 1588 L4 Packet Decoder Options
	Ingress Configurable ACL 0 Search Mask
	Second Tunnel Exit Lookup TCAM
	Router Port MAC Address
	Ingress Configurable ACL 3 TCAM
	LLDP Configuration
	Ingress Configurable ACL 1 Search Mask
	Egress Configurable ACL 0 Search Mask
	Egress Configurable ACL 0 TCAM
	Ingress Configurable ACL 1 TCAM
	Ingress Configurable ACL 2 TCAM
	Egress Configurable ACL 1 TCAM
ipp_register_bank_misc_ss0	Ingress Drop Options
L3 Routing TCAM	L3 Routing TCAM
count_packets ipp0_smonStatisticsBlock	SMON Set 0 Packet Counter[07]
count_packets ippo_smonstatisticsblock	SMON Set 1 Packet Counter[07]
	SMON Set 1 Packet Counter[07] SMON Set 2 Packet Counter[07]
	SMON Set 2 Packet Counter[07] SMON Set 3 Packet Counter[07]
count butes innO smanStatisticsPlack	
count_bytes ipp0_smonStatisticsBlock	SMON Set 0 Byte Counter[07] SMON Set 1 Byte Counter[07]
	SMON Set 2 Byte Counter[07]
	SMON Set 3 Byte Counter[07]
count_ipp0_aclConfStatisticsBlock	Ingress Configurable ACL Match Counter[063]
count_ipp0_vrflnStatisticsBlock	Received Packets on Ingress VRF[03]
Next Hop Hit Status	Next Hop Hit Status
count_ipp0_egressAclStatisticsBlock	Egress Configurable ACL Match Counter[063]
$count_ipp0_egressDropStatisticsBlock$	Queue Off Drop[010]
	Egress Spanning Tree Drop[010]
	MBSC Drop[010]
	Ingress-Egress Packet Filtering Drop[010]
	L2 Action Table Per Port Drop[010]
count_ucipp0_igrPortMibBlock	IP Unicast Received Counter[010]
$count_mcipp0_igrPortMibBlock$	IP Multicast Received Counter[010]
$count_uc_routedipp0_igrPortMibBlock$	IP Unicast Routed Counter[010]
count_mc_routedipp0_igrPortMibBlock	IP Multicast Routed Counter[010]
count_mc_acl_dropipp0_igrPortMibBlock	IP Multicast ACL Drop Counter[010]
$count_ipp0_debugIppStatisticsBlock$	Debug IPP Counter[022]
bk_mmp_stat_0	Flow Classification And Metering Drop
bk_ingress_admission_control_all_red_en_0	Ingress Admission Control Mark All Red Enable
bk_ingress_admission_control_all_red_0	Ingress Admission Control Mark All Red
Ingress Admission Control Token Bucket	Ingress Admission Control Token Bucket Configuration
Configuration	
Ingress Admission Control Reset	Ingress Admission Control Reset
Ingress Admission Control Current Status	Ingress Admission Control Current Status
bk_erm_ss0	ERM Yellow Configuration
	Resource Limiter Set[03]
	ERM Red Configuration
	Egress Resource Manager Pointer[010]
count_erm_ss0	Egress Resource Manager Drop[010]
pb_info_regbank_ss0	Packet Buffer Status
count_drop_pa top switch pb0	Buffer Overflow Drop
	Ingress Resource Manager Drop
pb_queue_manage_register_bank_ss0	Map Queue to Priority[010]
La-dagae-manage-register-pank-330	ap &acac to

Bank Name	Connected Registers or Tables
count_drop_pa top switch pb0 iRequeue	Re-queue Overflow Drop
pfc_regbank_rsv_size_ss0	Port/TC Reserved[087]
pfc_regbank_port_rsv_size_ss0	Port Reserved[010]
PFC Inc Counters for ingress ports 0 to	PFC Inc Counters for ingress ports 0 to 10
10	The file counters for highess ports of to 10
PFC Dec Counters for ingress ports 0 to	PFC Dec Counters for ingress ports 0 to 10
10	
pfc_regbank_cmn_misc_ss0	Port FFA Used[010]
	Port Used[010]
	TC FFA Used[07]
	FFA Used PFC
	FFA Used non-PFC
pfc_regbank_pause_settings1_ss0	Port Pause Settings[010]
pfc_regbank_taildrop_settings0_ss0	Port Tail-Drop Settings[010]
pfc_regbank_misc_ss0	Xon FFA Threshold
	Xoff FFA Threshold
	Tail-Drop FFA Threshold
	TC Xon FFA Threshold[07]
	TC Xoff FFA Threshold[07]
	TC Tail-Drop FFA Threshold[07]
	Port Xon FFA Threshold[010]
	Port Xoff FFA Threshold[010]
	Port Tail-Drop FFA Threshold[010]
	Port/TC Xon Total Threshold[087]
	Port/TC Xoff Total Threshold[087]
	Port/TC Tail-Drop Total Threshold[087]
qe_register_bank_ss0_sp0	Egress Port Depth[010]
L control of the land	Egress Queue Depth[087] Minimum Buffer Free
pb_r_register_bank_ss0	
disable_queue_output_register_bank_ss0	Output Disable[010] DWBB Budget Conscitut Configuration[010]
dwrr_bucket_capacity_settings_ss0 dwrr_bucket_misc_settings_ss0	DWRR Bucket Capacity Configuration[010] DWRR Bucket Misc Configuration[010]
dwrr_weight_settings_ss0	DWRR Weight Configuration[010]
queue_shaper_rate_settings	Queue Shaper Rate Configuration
queue_shaper_bucket_settings	Queue Shaper Bucket Capacity Configuration
queue_snaper_bucket_settings	Queue Shaper Bucket Threshold Configuration
queue_shaper_misc	Queue Shaper Enable
prio_shaper_rate_settings	Prio Shaper Rate Configuration
prio_shaper_bucket_settings	Prio Shaper Rucket Capacity Configuration
pho_shaper_bucket_settings	Prio Shaper Bucket Capacity Configuration
prio_shaper_misc	Prio Shaper Enable
port_shaper_rate_settings	Port Shaper Rate Configuration
port_shaper_bucket_settings	Port Shaper Bucket Capacity Configuration
por t_snaper_backet_settings	Port Shaper Bucket Threshold Configuration
port_shaper_misc	Port Shaper Enable
count_opkt_pa top switch pb0	PB Packet Head Counter
	PB Packet Tail Counter
drain_port_ss0	Drain Port
drain_drop_ss0	Drain Port Drop[010]
count_pa top switch epp0 conf	Unknown Egress Drop[010]
- F	Egress Port Disabled Drop[010]
	Egress Port Filtering Drop[010]
	Tunnel Exit Too Small Packet Modification To Small
	Drop[010]

Bank Name	Connected Registers or Tables
	EPP PM Drop
count_opkt_pa top switch epp0 conf	EPP Packet Head Counter
	EPP Packet Tail Counter
Egress Port Configuration	Egress Port Configuration
Egress Tunnel Exit Table	Egress Tunnel Exit Table
Tunnel Entry Instruction Table	Tunnel Entry Instruction Table
Tunnel Entry Header Data	Tunnel Entry Header Data
Beginning of Packet Tunnel Entry In-	Beginning of Packet Tunnel Entry Instruction Table
struction Table	
L2 Tunnel Entry Instruction Table	L2 Tunnel Entry Instruction Table
L3 Tunnel Entry Instruction Table	L3 Tunnel Entry Instruction Table
Color Remap From Egress Port	Color Remap From Egress Port
Color Remap From Ingress Admission	Color Remap From Ingress Admission Control
Control	
Egress Router Table	Egress Router Table
Next Hop DA MAC	Next Hop DA MAC
Router Port Egress SA MAC Address	Router Port Egress SA MAC Address
Next Hop MPLS Table	Next Hop MPLS Table
Egress MPLS TTL Table	Egress MPLS TTL Table
Next Hop Packet Insert MPLS Header	Next Hop Packet Insert MPLS Header
Egress Queue To PCP And CFI/DEI	Egress Queue To PCP And CFI/DEI Mapping Table
Mapping Table	
Egress VLAN Translation TCAM Answer	Egress VLAN Translation TCAM Answer
Ingress NAT Operation	Ingress NAT Operation
Egress NAT Operation	Egress NAT Operation
Select Which Egress QoS Mapping Table	Select Which Egress QoS Mapping Table To Use
To Use	
L2 QoS Mapping Table	L2 QoS Mapping Table
IP QoS Mapping Table	IP QoS Mapping Table
TOS QoS Mapping Table	TOS QoS Mapping Table
MPLS QoS Mapping Table	MPLS QoS Mapping Table
epp_register_bank_ss0	Output Mirroring Table
	Egress Queue To MPLS EXP Mapping Table
	Debug Counter reQueuePortId Setup
	Debug Counter fromPort Setup
	Egress MPLS Decoding Options
	Egress Ethernet Type for VLAN tag
	NAT Add Egress Port for NAT Calculation
	Disable CPU tag on CPU Port
	Debug Counter debugMatchEPP0 Setup
	EPP Debug imActive
	EPP Debug imExtra
	EPP Debug omEnabled
	EPP Debug omImActive
	EPP Debug reQueue
	EPP Debug reQueuePortId
	EPP Debug reQueuePkt
	EPP Debug fromPort
	EPP Debug delSpecificVlan
	EPP Debug updateTosExp
	EPP Debug isIPv4
	EPP Debug isIPv6
	EPP Debug addNewMpls
	EPP Debug isPPPoE EPP Debug debugMatchEPP0

Bank Name	Connected Registers or Tables
	Egress Port VID Operation
	Egress VLAN Translation TCAM
count_epp0_vrfOutStatisticsBlock	Transmitted Packets on Egress VRF[03]
Ingress NAT Hit Status	Ingress NAT Hit Status
Egress NAT Hit Status	Egress NAT Hit Status
count_epp0_debugEppStatisticsBlock	Debug EPP Counter[014]
count_opkt_pa top switch ps0	PS Packet Head Counter
ps_wrap_bridge	
	PS Packet Tail Counter
count_error_pa top switch ps0	PS Error Counter
ps_wrap_bridge	

35.4 Registers and Tables in Alphabetical Order

Name	Address Range
AH Decoder Drop	4592
AH Header Packet Decoder Options	124784
ARP Decoder Drop	4585
ARP Packet Decoder Options	128191
Aging Data FIFO	4465
Aging Data FIFO High Watermark Level	306
Allow Special Frame Check For L2 Action Table	125657 - 125660
BOOTP and DHCP Decoder Drop	4595
BOOTP and DHCP Packet Decoder Options	128203
Beginning of Packet Tunnel Entry Instruction Table	136947 - 136962
Buffer Free	1
Buffer Overflow Drop	134786
CAPWAP Decoder Drop	4596
CAPWAP Packet Decoder Options	128205
CPU Reason Code Operation	128215 - 128246
Check IPv4 Header Checksum	124794
Color Remap From Egress Port	136995 - 137016
Color Remap From Ingress Admission Control	137017 - 137080
Core Tick Configuration	2
Core Tick Select	3
Core Version	0
DNS Decoder Drop	4594
DNS Packet Decoder Options	128201
DWRR Bucket Capacity Configuration	135564 - 135574
DWRR Bucket Misc Configuration	135575 - 135585
DWRR Weight Configuration	135586 - 135673
Debug Counter debugMatchEPP0 Setup	148202
Debug Counter debugMatchIPP0 Setup	128211
Debug Counter dstPortmask Setup	124810
Debug Counter finalVid Setup	124789
Debug Counter fromPort Setup	148197
Debug Counter I2DaHash Setup	124799
Debug Counter I2DaHashHitAndBucket Setup	124800
Debug Counter I2DaHashKey Setup	128181

Name	Address Range
Debug Counter I2DaTcamHitsAndCast Setup	124801
Debug Counter nextHopPtrFinal Setup	124793
Debug Counter nextHopPtrHash Setup	124792
Debug Counter nextHopPtrLpm Setup	124791
Debug Counter nrVlans Setup	124782
Debug Counter reQueuePortId Setup	148196
Debug Counter spVidOp Setup	124786
Debug Counter srcPort Setup	124779
Debug Counter vlanVidOp Setup	124790
Debug EPP Counter	151614 - 151628
Debug IPP Counter	134434 - 134456
Default Packet To CPU Modification	127543 - 127553
Disable CPU tag on CPU Port	148201
Drain Port	136290
Drain Port Drop	136291 - 136301
EPP Debug addNewMpls	148215
EPP Debug debugMatchEPP0	148217
EPP Debug delSpecificVlan	148211
EPP Debug fromPort	148210
EPP Debug imActive	148203
EPP Debug imExtra	148204
EPP Debug isIPv4	148213
EPP Debug isIPv6	148214
EPP Debug isPPPoE	148216
EPP Debug omEnabled	148205
EPP Debug omImActive	148206
EPP Debug reQueue	148207
EPP Debug reQueuePkt	148209
EPP Debug reQueuePortId	148208
EPP Debug updateTosExp	148212
EPP PM Drop	136346
EPP Packet Head Counter	136347
EPP Packet Tail Counter	136348
ERM Red Configuration	134762
ERM Yellow Configuration	134752
ESP Decoder Drop	4593
ESP Header Packet Decoder Options	124785
Egress ACL Rule Pointer TCAM	127869 - 128124
Egress ACL Rule Pointer TCAM Answer	114394 - 114457
Egress Configurable ACL 0 Large Table	114458 - 122649
Egress Configurable ACL 0 Rules Setup	125649 - 125656
Egress Configurable ACL 0 Search Mask	129887
Egress Configurable ACL 0 Selection	124806
Egress Configurable ACL 0 Small Table	122650 - 124697
Egress Configurable ACL 0 TCAM	129903 - 130158
Egress Configurable ACL 0 TCAM Egress Configurable ACL 0 TCAM Answer	124698 - 124729
Egress Configurable ACL 1 Rules Setup	125645 - 125648
Egress Configurable ACL 1 TCAM	
	131823 - 132846
Egress Configurable ACL 1 TCAM Answer	124730 - 124761
Egress Configurable ACL Drop	4584
Egress Configurable ACL Match Counter	134260 - 134323
Egress Ethernet Type for VLAN tag	148199
Egress MPLS Decoding Options	148198

Name	Address Range
Egress MPLS TTL Table	140165 - 140168
Egress Multiple Spanning Tree State	125661 - 125676
Egress NAT Hit Status	150590 - 151613
Egress NAT Operation	144529 - 146576
Egress Port Configuration	136349 - 136370
Egress Port Depth	135453 - 135463
Egress Port Disabled Drop	136313 - 136323
Egress Port Filtering Drop	136324 - 136334
Egress Port NAT State	124807
Egress Port VID Operation	148218 - 148281
Egress Queue Depth	135464 - 135551
Egress Queue To MPLS EXP Mapping Table	148188 - 148195
Egress Queue To PCP And CFI/DEI Mapping Table	140297 - 140304
Egress Resource Manager Drop	134774 - 134784
Egress Resource Manager Pointer	134763 - 134773
Egress Router Table	137081 - 137084
Egress Spanning Tree Drop	134335 - 134345
Egress Spanning Tree State	128209
Egress Tunnel Exit Table	136371 - 136402
Egress VLAN Translation TCAM	148282 - 148537
Egress VLAN Translation TCAM Answer	140305 - 140432
Empty Mask Drop	4563
Enable Enqueue To Ports And Queues	124833 - 124843
Expired TTL Drop	4575
FFA Used PFC	135105
FFA Used non-PFC	135106
Flooding Action Send to Port	124844 - 124854
Flow Classification And Metering Drop	134457
Force Non VLAN Packet To Specific Color	124797
Force Non VLAN Packet To Specific Queue	124795
Force Unknown L3 Packet To Specific Color	124798
Force Unknown L3 Packet To Specific Egress Queue	124796
Forward From CPU	124802
GRE Decoder Drop	4598
GRE Packet Decoder Options	128199
Hairpin Enable	125721 - 125731
Hardware Learning Configuration	308 - 318
Hardware Learning Counter	353 - 363
Hash Based L3 Routing Table	60826 - 77209
Hit Update Data FIFO	4466
Hit Update Data FIFO High Watermark Level	307
IEEE 1588 L2 Packet Decoder Options	128195
IEEE 1588 L4 Packet Decoder Options	129415
IEEE 802.1X and EAPOL Decoder Drop	4589
IEEE 802.1X and EAPOL Packet Decoder Options	128197
IKE Decoder Drop	4597
IKE Packet Decoder Options	128207
IP Checksum Drop	4577
IP Multicast ACL Drop Counter	134423 - 134433
IP Multicast Received Counter	134390 - 134400
IP Multicast Routed Counter	134412 - 134422
IP QoS Mapping Table	146897 - 147152
IP Unicast Received Counter	134379 - 134389
ii Onicast Neceived Counter	134319 - 134309

Name	Address Range
IP Unicast Routed Counter	134401 - 134411
IPP Debug debugMatchIPP0	124832
IPP Debug doL2Lookup	124830
IPP Debug dropPktAfterL2Decode	124812
IPP Debug dropPktAfterL3Decode	124814
IPP Debug dstPortmask	124831
IPP Debug finalVid	124816
IPP Debug isBroadcast	124829
IPP Debug isFlooding	124828
IPP Debug I2DaHash	124824
IPP Debug I2DaHashHitAndBucket	124825
IPP Debug I2DaHashKey	128213
IPP Debug I2DaTcamHitsAndCast	124826
IPP Debug nextHopPtrFinal	124823
IPP Debug nextHopPtrHash	124820
IPP Debug nextHopPtrHashHit	124822
IPP Debug nextHopPtrLpm	124819
IPP Debug nextHopPtrLpmHit	124821
IPP Debug nrVlans	124813
IPP Debug routed	124827
IPP Debug routerHit	124818
IPP Debug spVidOp	124815
IPP Debug srcPort	124811
IPP Debug vlanVidOp	124817
IPP Empty Destination Drop	4561
IPP PM Drop	4560
IPP Packet Head Counter	4604
IPP Packet Tail Counter	4605
IPv4 TOS Field To Egress Queue Mapping Table	126636 - 126891
IPv4 TOS Field To Packet Color Mapping Table	126100 - 126355
IPv6 Class of Service Field To Egress Queue Mapping Table	126380 - 126635
IPv6 Class of Service Field To Packet Color Mapping Table	125844 - 126099
Ingress Admission Control Current Status	134682 - 134713
Ingress Admission Control Initial Pointer	4734 - 4861
Ingress Admission Control Mark All Red	134490 - 134521
Ingress Admission Control Mark All Red Enable	134458 - 134489
Ingress Admission Control Reset	134650 - 134681
Ingress Admission Control Token Bucket Configuration	134522 - 134649
Ingress Configurable ACL 0 Large Table	4862 - 37629
Ingress Configurable ACL 0 Pre Lookup	127512 - 127527
Ingress Configurable ACL 0 Rules Setup	127504 - 127511
Ingress Configurable ACL 0 Search Mask	129447
Ingress Configurable ACL 0 Selection	124787
Ingress Configurable ACL 0 Small Table	37630 - 41725
Ingress Configurable ACL 0 TCAM	128903 - 129414
Ingress Configurable ACL 0 TCAM Answer	41726 - 41853
Ingress Configurable ACL 1 Large Table	41854 - 43901
Ingress Configurable ACL 1 Pre Lookup	126992 - 127503
Ingress Configurable ACL 1 Rules Setup	128343 - 128358
Ingress Configurable ACL 1 Search Mask	129871
Ingress Configurable ACL 1 Selection	124788
Ingress Configurable ACL 1 Small Table	43902 - 44029
Ingress Configurable ACL 1 TCAM	130159 - 130286
6	

Name	Address Range
Ingress Configurable ACL 1 TCAM Answer	44030 - 44093
Ingress Configurable ACL 2 Pre Lookup	126928 - 126991
Ingress Configurable ACL 2 Rules Setup	126924 - 126927
Ingress Configurable ACL 2 TCAM	130287 - 131822
Ingress Configurable ACL 2 TCAM Answer	44094 - 44285
Ingress Configurable ACL 3 Rules Setup	126920 - 126923
Ingress Configurable ACL 3 TCAM	129735 - 129862
Ingress Configurable ACL 3 TCAM Answer	44286 - 44317
Ingress Configurable ACL Drop	4583
Ingress Configurable ACL Match Counter	133168 - 133231
Ingress Drop Options	132847
Ingress Egress Port Packet Type Filter	125122 - 125132
Ingress Ethernet Type for VLAN tag	124781
Ingress MMP Drop Mask	124809
Ingress Multiple Spanning Tree State	60790 - 60805
Ingress NAT Hit Status	148542 - 150589
Ingress NAT Operation	140433 - 144528
Ingress Packet Filtering Drop	4568
Ingress Port Packet Type Filter	127528 - 127538
Ingress Resource Manager Drop	134787
Ingress Router Table	60806 - 60809
Ingress Spanning Tree Drop: Blocking	4566
Ingress Spanning Tree Drop: Learning	4565
Ingress Spanning Tree Drop: Listen	4564
Ingress VID Ethernet Type Range Assignment Answer	126904 - 126907
Ingress VID Ethernet Type Range Search Data	128319 - 128326
Ingress VID Inner VID Range Assignment Answer	126908 - 126911
Ingress VID Inner VID Range Search Data	128327 - 128334
Ingress VID MAC Range Assignment Answer	126916 - 126919
Ingress VID MAC Range Search Data	128125 - 128140
Ingress VID Outer VID Range Assignment Answer	126912 - 126915
Ingress VID Outer VID Range Search Data	128335 - 128342
Ingress-Egress Packet Filtering Drop	134357 - 134367
Invalid Routing Protocol Drop	4574
L2 Action Table	114138 - 114265
L2 Action Table Drop	4601
L2 Action Table Egress Port State	124804
L2 Action Table Per Port Drop	134368 - 134378
L2 Action Table Port Move Drop	4602
L2 Action Table Source Port	114266 - 114393
L2 Action Table Special Packet Type Drop	4600
L2 Aging Collision Shadow Table	125796 - 125827
L2 Aging Collision Table	321 - 352
L2 Aging Status Shadow Table	81306 - 85401
L2 Aging Status Shadow Table - Replica	105914 - 110009
L2 Aging Table	364 - 4459
L2 Broadcast Storm Control Bucket Capacity Configuration	203 - 213
L2 Broadcast Storm Control Bucket Threshold Configuration	214 - 224
L2 Broadcast Storm Control Enable	225
L2 Broadcast Storm Control Rate Configuration	192 - 202
L2 DA Hash Lookup Table	85402 - 93593
L2 Destination Table	93594 - 97721
L2 Destination Table - Replica	110010 - 114137
La contraction de la contracti	1

Name	Address Range
L2 Flooding Storm Control Bucket Capacity Configuration	271 - 281
L2 Flooding Storm Control Bucket Threshold Configuration	282 - 292
L2 Flooding Storm Control Enable	293
L2 Flooding Storm Control Rate Configuration	260 - 270
L2 IEEE 1588 Decoder Drop	4587
L2 Lookup Collision Table	128255 - 128318
L2 Lookup Collision Table Masks	128247 - 128254
L2 Lookup Drop	4567
L2 Multicast Handling	124805
L2 Multicast Storm Control Bucket Capacity Configuration	237 - 247
L2 Multicast Storm Control Bucket Threshold Configuration	248 - 258
L2 Multicast Storm Control Enable	259
L2 Multicast Storm Control Rate Configuration	226 - 236
L2 Multicast Table	125732 - 125795
L2 QoS Mapping Table	146833 - 146896
L2 Reserved Multicast Address Action	127554 - 127809
L2 Reserved Multicast Address Base	128189
L2 Reserved Multicast Address Drop	4582
L2 SA Hash Lookup Table	97722 - 105913
L2 Tunnel Decoder Setup	128185
L2 Tunnel Entry Instruction Table	136963 - 136978
L3 LPM Result	60810 - 60825
L3 Lookup Drop	4576
L3 Routing Default	126900 - 126903
L3 Routing TCAM	132848 - 133103
L3 Tunnel Entry Instruction Table	136979 - 136994
L4 IEEE 1588 Decoder Drop	4588
LACP Decoder Drop	4591
LACP Packet Decoder Options	128177
LLDP Configuration	129863
Learning And Aging Enable	302
Learning And Aging Writeback Control	304
Learning Conflict	294
Learning DA MAC	128187
Learning Data FIFO	4461
Learning Data FIFO High Watermark Level	305
Learning Overflow	298
Learning Packet Drop	4581
Link Aggregate Weight	124866 - 125121
Link Aggregation Ctrl	124778
Link Aggregation Membership	127814 - 127824
Link Aggregation To Physical Ports Members	124855 - 124865
MAC Interface Counters For RX	48 - 69
MAC Interface Counters For TX	114 - 157
MAC RX Broken Packets	81 - 91
MAC RX Long Packet Drop	103 - 113
MAC RX Maximum Packet Length	70 - 80
MAC RX Short Packet Drop	92 - 102
MBSC Drop	134346 - 134356
MPLS EXP Field To Egress Queue Mapping Table	126372 - 126379
MPLS EXP Field To Packet Color Mapping Table	125836 - 125843
MPLS QoS Mapping Table	147665 - 148176
Map Queue to Priority	134788 - 134798
	1

Name	Address Range
Maximum Allowed VLAN Drop	4573
Minimum Allowed VLAN Drop	4572
Minimum Buffer Free	135552
NAT Action Table	125133 - 125644
NAT Action Table Drop	4599
NAT Action Table Force Original Packet	124808
NAT Add Egress Port for NAT Calculation	148200
Next Hop DA MAC	137085 - 139132
Next Hop Hit Status	133236 - 134259
Next Hop MPLS Table	139141 - 140164
Next Hop Packet Insert MPLS Header	140169 - 140296
Next Hop Packet Modifications	79258 - 81305
Next Hop Table	77210 - 79257
Output Disable	135553 - 135563
Output Mirroring Table	148177 - 148187
PB Packet Head Counter	136288
PB Packet Tail Counter	136289
PFC Dec Counters for ingress ports 0 to 10	134987 - 135074
PFC Inc Counters for ingress ports 0 to 10	134899 - 134986
PS Error Counter	151666 - 151676
PS Packet Head Counter	151664
PS Packet Tail Counter	151665
Packet Buffer Status	134785
Port FFA Used	135075 - 135085
Port Move Options	124803
Port Pause Settings	135107 - 135117
Port Reserved	134888 - 134898
Port Shaper Bucket Capacity Configuration	136221 - 136231
Port Shaper Bucket Threshold Configuration	136232 - 136242
Port Shaper Enable	136243
Port Shaper Rate Configuration	136210 - 136220
Port Tail-Drop FFA Threshold	135178 - 135188
Port Tail-Drop Settings	135118 - 135128
Port Used	135086 - 135096
Port Xoff FFA Threshold	135167 - 135177
Port Xon FFA Threshold	135156 - 135166
Port/TC Reserved	134800 - 134887
Port/TC Tail-Drop Total Threshold	135365 - 135452
Port/TC Xoff Total Threshold	135277 - 135364
Port/TC Xon Total Threshold	135189 - 135276
Prio Shaper Bucket Capacity Configuration	136030 - 136117
Prio Shaper Bucket Threshold Configuration	136118 - 136205
Prio Shaper Enable	136206
Prio Shaper Rate Configuration	135942 - 136029
Queue Off Drop	134324 - 134334
Queue Shaper Bucket Capacity Configuration	135762 - 135849
Queue Shaper Bucket Threshold Configuration	135850 - 135937
Queue Shaper Enable	135938
Queue Shaper Rate Configuration	135674 - 135761
RARP Decoder Drop	4586
RARP Packet Decoder Options	128193
Re-queue Overflow Drop	134799
Received Packets on Ingress VRF	133232 - 133235
	100200

Name	Address Range
Reserved Destination MAC Address Range	128157 - 128172
Reserved MAC DA Drop	4569
Reserved MAC SA Drop	4570
Reserved Source MAC Address Range	128141 - 128156
Resource Limiter Set	134754 - 134761
Router Egress Queue To VLAN Data	125828 - 125835
Router MTU Table	125677 - 125720
Router Port Egress SA MAC Address	139133 - 139140
Router Port MAC Address	129607 - 129734
SCTP Decoder Drop	4590
SCTP Packet Decoder Options	124783
SMON Set 0 Byte Counter	133136 - 133143
SMON Set 0 Packet Counter	133104 - 133111
SMON Set 1 Byte Counter	133144 - 133151
SMON Set 1 Packet Counter	133112 - 133119
SMON Set 1 Packet Counter SMON Set 2 Byte Counter	133152 - 133159
SMON Set 2 Packet Counter	133120 - 133127
SMON Set 3 Byte Counter	133160 - 133167
SMON Set 3 Packet Counter	133128 - 133135
SMON Set S Packet Counter SMON Set Search	127539 - 127542
SNAP LLC Decoding Options	124780
SP Overflow Drop	4512 - 4522
Scratch Scratch	4312 - 4322
Second Tunnel Exit Drop	4578
Second Tunnel Exit Drop Second Tunnel Exit Lookup TCAM	129479 - 129606
Second Tunnel Exit Lookup TCAM Answer	128359 - 128390
Second Tunnel Exit Lookup TCAM Answer Second Tunnel Exit Miss Action	127810 - 127813
Select Which Egress QoS Mapping Table To Use	146577 - 146832
Send to CPU	128173
Software Aging Enable	303
Software Aging Start Latch	4460
Source Port Default ACL Action	44318 - 44405
Source Port Default ACL Action Drop	4603
Source Port Table	127825 - 127868
TC FFA Used	135097 - 135104
TC Tail-Drop FFA Threshold	135148 - 135155
TC Xoff FFA Threshold	135140 - 135147
TC Xon FFA Threshold	135132 - 135139
TOS QoS Mapping Table	147153 - 147664
Tail-Drop FFA Threshold	135131
Time to Age	319
Transmitted Packets on Egress VRF	148538 - 148541
Tunnel Entry Header Data	136435 - 136946
Tunnel Entry Header Data Tunnel Entry Instruction Table	136403 - 136434
	130403 - 130434
Tunnel Entry MTU Length Check Tunnel Exit Lookup TCAM	124762 - 124777
Tunnel Exit Lookup TCAM Answer	4606 - 4733
Tunnel Exit Miss Action Drop	4579
Tunnel Exit Too Small Packet Modification Drop	4580
Tunnel Exit Too Small Packet Modification To Small Drop	136335 - 136345
Unknown Egress Drop	136302 - 136312
Unknown Ingress Drop	4562
VLAN Member Drop	4571

Name	Address Range
VLAN PCP And DEI To Color Mapping Table	126356 - 126371
VLAN PCP To Queue Mapping Table	126892 - 126899
VLAN Table	44406 - 60789
Xoff FFA Threshold	135130
Xon FFA Threshold	135129

35.5 Active Queue Manager

35.5.1 ERM Red Configuration

Configurations to mark the buffer memory congestion status as Red (heavily congested).

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation:} & Read/Write \\ \hbox{Address Space:} & 134762 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
10:0	redXoff	Number of free cells below this value will invoke the red congestion check for the incoming cells. The checks include the number of enqueued cells in the current queue and the packet length. The incoming packet might be terminated and dropped based on the check result.	0x66
21:11	redXon	Once the red congestion check is applied, number of free cells need to go above this value to disable the check again. The value needs to be larger than redX-off to provide an effective hysteresis.	0×100
29:22	redMaxCells	Maximum allowed packet length in cells when the buffer memory congestion status is red.	0×9

35.5.2 ERM Yellow Configuration

Configurations to mark the buffer memory congestion status as Yellow (slightly congested).

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : 134752

Field Description

Bits	Field Name	Description	Default Value
10:0	yellowXoff	Number of free cells below this value will invoke yellow congestion checks for the incoming cells. The checks include the number of enqueued cells in the current queue, higher priority queues and optionally the total number of enqueued cells for the current egress port. Incoming packets might be terminated and dropped based on the check result.	0x17b
21:11	yellowXon	Once the yellow congestion check is applied, number of free cells need to go above this value to disable the check again. The value needs to be larger than yellowXoff to provide an effective hysteresis.	0x20e
32:22	redPortEn	When the buffer memory congestion status is yellow and a single port consumes more than redPortXoff cells, this field can apply the redLimit check on a per port basis.	0x7ff
43:33	redPortXoff	When the buffer memory congestion status is yellow and the total number of cells enqueued on an egress port is larger than this value, redLimit check for that port will be invoked. Only valid when redPortEn is turned on.	0xbb

35.5.3 Egress Resource Manager Pointer

This table provides each egress port a set of limiters. Different egress queues can have different pointers to the **Resource Limiter Set**.

Number of Entries: 11

Type of Operation : Read/Write
Addressing : Egress port
Address Space : 134763 to 134773

Field Description

Bits	Field Name	Description	Default Value
1:0	q0	Pointer to the Resource Limiter Set for egress queue 0.	0x0
3:2	q1	Pointer to the Resource Limiter Set for egress queue 1.	0x0
5:4	q2	Pointer to the Resource Limiter Set for egress queue 2.	0×0
7:6	q3	Pointer to the Resource Limiter Set for egress queue 3.	0x0
9:8	q4	Pointer to the Resource Limiter Set for egress queue 4.	0×0
11:10	q5	Pointer to the Resource Limiter Set for egress queue 5.	0x0
13:12	q6	Pointer to the Resource Limiter Set for egress queue 6.	0×0
15:14	q7	Pointer to the Resource Limiter Set for egress queue 7.	0×0

35.5.4 Resource Limiter Set

This resource limiter is for comparing how many cells are ahead of the incoming cell for scheduling, that includes cells are enqueued in the same egress queue and all cells with a higher scheduling priority.

Number of Entries: 4 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing : Pointer from the Egress Resource Manager Pointer

Address Space : 134754 to 134761

Field Description

Bits	Field Name	Description	Default Value
10:0	yellowAccumulated	When the buffer memory is slightly congested (yel-	0x20
		low), the ERM allows accumulation of cells with	
		the same queue or higher scheduling priorities	
		to the limit in this field before appling the yel -	
		lowLimit.	
21:11	yellowLimit	When the buffer memory is slightly congested	0×28
		(yellow)and yellowAccumulated is reached, the	
		packet will be terminated and dropped if the en-	
		queued cells in the corresponding queue is more	
		than this value.	
32:22	redLimit	When the buffer memory is heavily congested	0×15
		(red), the incoming packet will be terminated and	
		dropped if the enqueued cells in the corresponding	
		egress queue is more than this value.	
40:33	maxCells	Maximum allowed packet length in cells for this	0xff
		limiter. Packet with cells more than this value will	
		be dropped.	

35.6 Core Information

35.6.1 Core Version

Adress 0 is reserved for the core version. Make sure the register value is the same as the revision number in the front page of the datasheet.

Number of Entries: 1

Type of Operation: Read Only

Address Space: 0

Field Description

Bits	Field Name	Description	Default Value
31:0	version	Version of the core.	0xcda53817

35.7 Egress Packet Processing

35.7.1 Beginning of Packet Tunnel Entry Instruction Table

The is the L2 tunnel entry instruction which described how a tunnel entry should be done after the L3 header. If the L3Type is either IPv4, IPv6 then the length fields are updated in the IP headers, for IPv4

the checksum is re-calculated. If the hasUDP is turned on then the UDP length-field is updated.

Number of Entries: 16

 ${\sf Type\ of\ Operation:} \qquad {\sf Read/Write}$

Addressing: Tunnel entry pointer Address Space: 136947 to 136962

Field Description

Bits	Field Name	Description	Default Value
1:0	ІЗТуре	Inserted header type, when selecting MPLS/Other no updates will be done to the data. 0 = IPv4 1 = IPv6 2 = MPLS/Other. 3 = Reserved.	0×0
7:2	ipHeaderOffset	Where does the IPv4/IPv6 header start in this header. Only valid if the L3-Header type is IPv4 or IPv6.	0x0
8	hasUdp	If the header is a IPv4 or IPv6 then a an UDP header is after the IP header. $0 = \text{No}$. $1 = \text{Yes}$.	0×0

35.7.2 Color Remap From Egress Port

Options for remapping internal packet color to outgoing packet headers. Each egress port has a separate color to field mapping.

Number of Entries: 11
Number of Addresses per Entry: 2

Type of Operation : Read/Write
Addressing : Egress Port
Address Space : 136995 to 137016

Bits	Field Name	Description	Default Value
1:0	colorMode		0×1
		0 = Skip remap	
		1=Remap to L3 only	
		2 = Remap to L2 only	
		3 = Remap to L2 and L3	
25:2	color2Tos	New TOS/TC value based on packet color.	0x0
		bits [0:7] : TOS/TC value for green	
		bits [8:15]: TOS/TC value for yellow	
		bits [16:23]: TOS/TC value for red	
33:26	tosMask	Mask for updating the TOS/TC field. For each bit in the	0x0
		mask, 0 means keep original value, 1 means update new	
		value to that bit.	

Bits	Field Name	Description	Default Value
36:34	color2Dei	New DEI value based on packet color. This is located in	0×0
		the outermost VLAN of the transmitted packet.	
		bit 0 : DEI value for green	
		bit 1: DEI value for yellow	
		bit 2 : DEI value for red	

35.7.3 Color Remap From Ingress Admission Control

Options from ingress admission control to remap internal packet color to outgoing packet headers.

 $\begin{array}{ll} \text{Number of Entries:} & 32 \\ \text{Number of Addresses per Entry:} & 2 \end{array}$

Type of Operation: Read/Write
Addressing: Meter Pointer
Address Space: 137017 to 137080

Field Description

Bits	Field Name	Description	Default Value
0	enable	If set, the colorMode field determines the remap process. Otherwise color remapping based on the ingress admission control is skipped.	0x0
2:1	colorMode	0 = Remap disabled 1 = Remap to L3 only 2 = Remap to L2 only 3 = Remap to L2 and L3	0×0
26:3	color2Tos	New TOS/TC value based on packet color. bits [0:7]: TOS/TC value for green bits [8:15]: TOS/TC value for yellow bits [16:23]: TOS/TC value for red	0×0
34:27	tosMask	Mask for updating the TOS/TC field. For each bit in the mask, 0 means keep original value, 1 means update new value to that bit.	0×0
37:35	color2Dei	New DEI value based on packet color. This is located in the outermost VLAN of the transmitted packet. bit 0: DEI value for green bit 1: DEI value for yellow bit 2: DEI value for red	0x0

241

35.7.4 Debug Counter debugMatchEPP0 Setup

Packet processing debug setup for registerDebug debugMatchEPP0.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148202

Field Description

Bits	Field Name	Description	Default Value
13:0	mask	Mask for comparison to update debug counter.	0×0
27:14	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.7.5 Debug Counter fromPort Setup

Packet processing debug setup for registerDebug fromPort.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148197

Field Description

Bits	Field Name	Description	Default Value
10:0	mask	Mask for comparison to update debug counter.	0×0
21:11	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0x0

35.7.6 Debug Counter reQueuePortId Setup

Packet processing debug setup for registerDebug reQueuePortId.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148196

Bits	Field Name	Description	Default Value
3:0	mask	Mask for comparison to update debug counter.	0×0
7:4	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0x0

35.7.7 Disable CPU tag on CPU Port

When a packet is sent to the CPU port normally a To CPU Tag will be added to the packet. This register provides a option to disable the CPU tag

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148201

Field Description

Bits	Field Name	Description	Default Value
0	disable	When set, the CPU port will no longer add a CPU Tag to packets going to the CPU port. $0 = \text{To CPU Tag enabled}$ $1 = \text{To CPU Tag disabled}$	0×0
1	disableReason0	When set, the CPU port will no longer add a CPU Tag to packets going to the CPU port with reason code 0 (default reason). $0 = \text{To CPU Tag enabled}$ $1 = \text{To CPU Tag disabled}$	0×0

35.7.8 Drain Port

Drop all packets on all queues to egress ports. The dropped packets are counted in the **Drain Port Drop** counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 136290

Field Description

Bits	Field Name	Description	Default Value
10:0	drainMask	Egress ports to be drained. One bit for each port in the current switch slice where bit 0 corresponds to local port	0×0
		0.	

35.7.9 EPP Debug addNewMpls

Packet processing pipeline status for addNewMpls.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation}: & \hbox{Read/Write} \\ \hbox{Address Space}: & 148215 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.10 EPP Debug debugMatchEPP0

Packet processing pipeline status for debugMatchEPP0.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148217

Field Description

Bits	Field Name	Description	Default Value
13:0	value	Status from last processed packet.	0×0

35.7.11 EPP Debug delSpecificVlan

Packet processing pipeline status for delSpecificVlan.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148211

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.12 EPP Debug fromPort

Packet processing pipeline status for fromPort.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148210

Bits	Field Name	Description	Default Value
10:0	value	Status from last processed packet.	0×0

35.7.13 EPP Debug imActive

Packet processing pipeline status for imActive.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148203

Field Description

	Bits	Field Name	Description	Default Value
Γ	0	value	Status from last processed packet.	0×0

35.7.14 EPP Debug imExtra

Packet processing pipeline status for imExtra.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148204

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.15 EPP Debug isIPv4

Packet processing pipeline status for isIPv4.

Number of Entries:

Type of Operation : Read/Write Address Space : 148213

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.16 EPP Debug isIPv6

Packet processing pipeline status for isIPv6.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148214

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.17 EPP Debug isPPPoE

Packet processing pipeline status for isPPPoE.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148216

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.18 EPP Debug omEnabled

Packet processing pipeline status for omEnabled.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148205

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0x0

35.7.19 EPP Debug omImActive

Packet processing pipeline status for omImActive.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation}: & \hbox{Read/Write} \\ \hbox{Address Space}: & 148206 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.20 EPP Debug reQueue

Packet processing pipeline status for reQueue.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148207

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.21 EPP Debug reQueuePkt

Packet processing pipeline status for reQueuePkt.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148209

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.22 EPP Debug reQueuePortId

Packet processing pipeline status for reQueuePortId.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148208

Field Description

Bits	Field Name	Description	Default Value
3:0	value	Status from last processed packet.	0×0

35.7.23 EPP Debug updateTosExp

Packet processing pipeline status for updateTosExp.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148212

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.7.24 Egress Ethernet Type for VLAN tag

Ethernet type used in VLAN operations when typeSel selects User Defined VLAN type. This Ethernet type is only used in VLAN push operations. In VLAN filtering a pushed user defined VLAN will be considered to be a C-VLAN.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148199

Field Description

Bits	Field Name	Description	Default Value
15:0	typeValue	Ethernet Type value.	0×ffff

35.7.25 Egress MPLS Decoding Options

When doing a Penultimate Pop then compare the first nibble after the innermost MPLS tag with this registers field nibbleForlpv4 to determine if the outgoing packet should have an IPv4 or IPv6 Ethernet Type.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148198

Field Description

Bits	Field Name	Description	Default Value
3:0	nibbleForIpv4	The nibble value which is used to identify a IPv4	0×4
		packet after a MPLS header. If the nibble does not	
		match this value it is assumed to be an IPv6 packet.	

35.7.26 Egress MPLS TTL Table

Configuration of what modification shall be done on the TTL field in MPLS routed packets.

Number of Entries: 4

Type of Operation: Read/Write
Addressing: Packets VRF
Address Space: 140165 to 140168

Field Description

Bits	Field Name	Description	Default Value
0	addNewTTL	Select if the router should decremented TTL in the outgo-	0×0
		ing packet or if it should be set to a fixed value.	
		0 = Decrement TTL $1 = $ Set the TTL to newTTL	
8:1	newTTL	New TTL for the packet. Only used when addNewTTL is	0×0
		set to 1	

35.7.27 Egress Multiple Spanning Tree State

Table of egress Multiple Spanning Tree Protocol Instances. Depends on routed or not, the pointer used to address the instance/entry in this table can from **msptPtr** in the **Next Hop Packet Modifications** table or **msptPtr** in the **VLAN Table**. Each entry contains the ingress spanning tree states for all ports in this MSTI.

Number of Entries: 16

Type of Operation: Read/Write

Addressing: msptPtr from VLAN Table or Next Hop Packet Modifications Table

Address Space: 125661 to 125676

Field Description

Bit	s Field Name	Description	Default Value
21:0	portSptState	The egress spanning tree state for this MSTI. Bit[1:0] is the state for port #0, bit[3:2] is the state for port #1, etc. 0 = Forwarding 1 = Discarding 2 = Learning	0×0

35.7.28 Egress NAT Operation

Egress NAT Operation Table.

Number of Entries: 1024 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: Egress ACL NAT Pointer plus egress port number.

Address Space : 144529 to 146576

Bits	Field Name	Description	Default Value
0	replaceSrc	Replace Source or Destination. $0 = Destination$ $1 = Source$	0×0
1	replaceIP	Replace IP address. $0 = \text{No.}$ $1 = \text{Yes.}$	0×0

Bits	Field Name	Description	Default Value
2	replaceL4Port	Replace TCP/UDP port. $0 = \text{No.}$ $1 = \text{Yes.}$	0×0
34:3	ipAddress	The new IP Address.	0x0
50:35	port	The new L4 Port.	0×0

35.7.29 Egress Port Configuration

This table configures various functions that are dependent on which port the packet leaves the switch. A VLAN operation (e.g. push, pop, swap) to be performed can be selected by the **vlanSingleOp** field. For the push and swap operations the information used to create the new VLAN header is controlled by the fields **vidSel**, **cfiDeiSel**, **pcpSel** and **typeSel**. Other configurations are VLAN LUT index, port disable and different filtering rules based on packet VLAN fields when the egress processing is done.

Number of Entries: 11
Number of Addresses per Entry: 2

Type of Operation : Read/Write
Addressing : Egress port
Address Space : 136349 to 136370

Field Description

Bits	Field Name	Description	Default Value
0	colorRemap	If set, color remapping to outgoing packet headers is allowed. The default color remapping options are based on the egress port number from the Color Remap From Egress Port table. If a packet is subjected to ingress admission control, its ingress admission control pointer can provide remap options from the Color Remap From Ingress Admission Control table to override default options.	0x0
3:1	vlanSingleOp	The egress port VLAN operation to perform on the packet. 0 = No operation. 1 = Swap. 2 = Push. 3 = Pop. 4 = Penultimate pop(remove all VLAN headers).	0×0
4	removeSNAP	If a packet which has SNAP/LLC encoding then remove it before sending out the packet on this egress port. $0 = \text{No. Keep it.}$ $1 = \text{Yes. Remove it.}$	0×0
6:5	typeSel	Selects which TPID to use when building a new VLAN header in a push or swap operation. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag field typeValue.	0x0

Bits	Field Name	Description	Default Value
8:7	vidSel	Selects which VID to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's vid will be used. 0 = From outermost VLAN in the packet (if any). 1 = From this table entry's vid. 2 = From the Ingress VID as selected in the Source Port Table.	0x0
10:9	cfiDeiSel	Selects which CFI/DEI to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's cfiDei will be used. 0 = From outermost VLAN in the packet (if any). 1 = From this table entry's cfiDei. 2 = From Egress Queue To PCP And CFI/DEI Mapping Table.	0x0
12:11	pcpSel	Selects which PCP to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's cfiDei will be used. 0 = From outermost VLAN in the packet (if any). 1 = From this table entry's pcp. 2 = From Egress Queue To PCP And CFI/DEI Mapping Table.	0x0
24:13	vid	The VID used in egress port VLAN push or swap operation if selected by vidSel .	0×0
25	cfiDei	The CFI/DEI used in egress port VLAN push or swap operation if selected by cfiDeiSeI .	0×0
28:26	рср	The PCP used in egress port VLAN push or swap operation if selected by pcpSel .	0×0
29	disabled	Disabling this port. All packets to this port is dropped and Egress Port Disabled Drop is incremented. 0 = All packets will be sent out. 1 = All packets will be dropped.	0×0
30	dropCtaggedVlans	Drop or allow customer VLANs tagged packets on this egress port. Will only drop packets that has exactly one VLAN tag. Must set moreThanOneVlans when this is used. 0 = Allow C-VLANs. 1 = Drop C-VLANs.	0x0
31	dropStaggedVlans	Drop or allow service VLANs tagged packets on this egress port. Will only drop packets that has exactly one VLAN tag. Must set moreThanOneVlans when this is used. 0 = Allow S-VLANs. 1 = Drop S-VLANs.	0x0

Bits	Field Name	Description	Default Value
32	moreThanOneVlans	When filtering with dropCtaggedVlans or drop- StaggedVlans then this field must be set to 1.	0×0
33	dropUntaggedVlans	Drop or Allow packets that are VLAN untagged on this egress port. $0 = \text{Allow untagged packets.}$ $1 = \text{Drop untagged packets.}$	0×0
34	dropSingleTaggedVlans	Drop or Allow packets that has one VLAN tag on this egress port. 0 = Allow untagged packets. 1 = Drop untagged packets.	0×0
35	dropDualTaggedVlans	Drop or allow packets which has more than one VLAN tag on this egress port. 0 = Allow packets which has more than one VLAN tag. 1 = Drop packets which has more than one VLAN tag.	0×0
36	dropCStaggedVlans	Drop or allow packets which has a C-VLAN followed by a S-VLAN tagged on this egress port. 0 = Allow packets which has a C-VLAN tag followed by a S-VLAN tag. 1 = Drop packets which has a C-VLAN tag followed by a S-VLAN tag.	0×0
37	dropSCtaggedVlans	Drop or allow packets which has a S-VLAN followed by a C-VLAN tagged on this egress port. 0 = Allow packets which has a S-VLAN followed by a C-VLAN tag. 1 = Drop packets which has a S-VLAN tag followed by a C-VLAN tag.	0×0
38	dropCCtaggedVlans	Drop or allow packets which has a C-VLAN followed by a C-VLAN tagged on this egress port. 0 = Allow packets which has a C-VLAN tag followed by a C-VLAN tag. 1 = Drop packets which has a C-VLAN tag followed by a C-VLAN tag.	0×0
39	dropSStaggedVlans	Drop or allow packets which has a S-VLAN followed by a S-VLAN tagged on this egress port. 0 = Allow packets which has a S-VLAN tag followed by a S-VLAN tag. 1 = Drop packets which has a S-VLAN tag followed by a S-VLAN tag.	0x0
40	useEgressQueueRemapping	Which remapping to final PCP, DEI, EXP and TOS fields shall be used for this port. 0 = Only use Egress Queue Remapping Tables 1 = First use the Egress Queue Remapping Tables then use the Select Which Egress QoS Mapping Table To Use to determine the final DEI,CFI,TOS and EXP fields.	0x0

35.7.30 Egress Port VID Operation

This search table checks the ingress VID and the number of VLANs before the egress port VLAN operation. If both ingress VID and number of VLANs are in the defined range then the VLAN operation in this table will override egress port VLAN operations. In case of multiple hit, VLAN operation from the first hit takes effect.

Number of Entries : 16 Number of Addresses per Entry: 4

Type of Operation : $\mathsf{Read}/\mathsf{Write}$

Addressing: All entries are read out in parallel

Address Space : 148218 to 148281

Bits	Field Name	Description	Default Value
2:0	vlanSingleOpIf	If this entry is hit, then this VLAN operation will override egress port VLAN operation. 0 = No operation. 1 = Swap. 2 = Push. 3 = Pop. 4 = Penultimate pop(remove all VLAN headers).	0x0
4:3	typeSellf	If this entry is hit, selects which TPID to use when building a new VLAN header in a push or swap operation. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag field typeValue.	0x0
6:5	vidSellf	Selects which VID to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's vidIf will be used. 0 = From outermost VLAN in the packet (if any). 1 = From this table entry's vidIf. 2 = From the Ingress VID as selected in the Source Port Table.	0x0
8:7	cfiDeiSellf	Selects which CFI/DEI to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's cfiDei will be used. 0 = From outermost VLAN in the packet (if any). 1 = From this table entry's cfiDeiIf. 2 = From Egress Queue To PCP And CFI/DEI Mapping Table.	0x0
10:9	pcpSellf	Selects which PCP to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's cfiDeilf will be used. 0 = From outermost VLAN in the packet (if any). 1 = From this table entry's pcp. 2 = From Egress Queue To PCP And CFI/DEI Mapping Table.	0x0
22:11	vidIf	VID used in VLAN push or swap operation if vidSellf chooses VID from this table.	0×0
23	cfiDeilf	CFI/DEI used in VLAN push or swap operation if cfiDeiSellf chooses CFI/DEI from this table.	0×0
26:24	pcplf	PCP used in VLAN push or swap operation if pcpSellf chooses PCP from this table.	0×0
38:27	startVid	Start of ingress VID to hit.	0x0

Bits	Field Name	Description	Default Value
50:39	endVid	End of ingress VID to hit.	0×0
53:51	minNrVlans	Minimum number of VLANs to hit	0×0
56:54	maxNrVlans	Maximum number of VLANs to hit	0×0
67:57	validPorts	Determine the valid egress port list.	0x0

35.7.31 Egress Queue To MPLS EXP Mapping Table

Map from egress queue number to MPLS EXP value to be used in MPLS operations selected by **Next Hop MPLS Table** and by **Next Hop Packet Insert MPLS Header** .

Number of Entries: 8

Type of Operation: Read/Write
Addressing: Egress Queue
Address Space: 148188 to 148195

Field Description

Bits	Field Name	Description	Default Value
2:0	exp	The outgoing Exp value for this queue.	0×0

35.7.32 Egress Queue To PCP And CFI/DEI Mapping Table

Get PCP and CFI/DEI from egress queues if selected by egress port VLAN operations push or swap.

Number of Entries: 8

Type of Operation : Read/Write
Addressing : Egress Queue
Address Space : 140297 to 140304

Field Description

Bits	Field Name	Description	Default Value
0	cfiDei	Map from egress queue to CFI/DEI.	0×0
3:1	рср	Map from egress queue to PCP.	0×0

35.7.33 Egress Router Table

Configuration of what modification shall be done on the TTL field in routed packets.

Number of Entries: 4

Type of Operation: Read/Write
Addressing: Packets VRF
Address Space: 137081 to 137084

Field Description

Bits	Field Name	Description	Default Value
0	addNewTTL	Select if the router should decremented TTL in the outgo-	0×0
		ing packet or if it should be set to a fixed value.	
		0 = Decrement TTL $1 = $ Set the TTL to newTTL	
8:1	newTTL	New TTL for the packet. Only used when addNewTTL is	0×0
		set to 1	

35.7.34 Egress Tunnel Exit Table

The same packet exit which is is done at ingress described in the second tunnel exit lookup. Setting must be the same. This tunnel exit can also be used by the L2, L3 and ACL actions.

Number of Entries: 16 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: From Various tables during ingress packet processing

Address Space : 136371 to 136402

Field Description

Bits	Field Name	Description	Default Value
7:0	howManyBytesToRemove	How many bytes to remove.	0×0
8	updateEthType	If packet is removed after L2+VLAN headers then update the Ethernet Header Type Field	0x0
24:9	ethType	If packet is removed after L2+VLAN headers then the New Ethernet Type which will overwrite the existing lowest 16 bits after the removal operation.	0×0
25	removeVlan	If packet is removed after L2+VLAN headers then remove the VLAN headers on the incoming packet.	0x0
26	updateL4Protocol	If packet is removed after L3 headers then update the L4 Protocol in IP header.	0x0
34:27	I4Protocol	If packet is removed after L3 headers then this new L4 Protocol will be written.	0×0
36:35	whereToRemove	Where to do the tunnel exit from 0 = At Byte Zero 1 = After L2 and up to two VLAN headers. 2 = After L3 IPv4/IPv6 headers. 3 = Reserved.	0×0

35.7.35 Egress VLAN Translation TCAM

The outermost VID and VID Ethernet Type (Service tag or Customer tag types) of the outgoing packet is compared.

Number of Entries: 128 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing : All entries are read out in parallel

Address Space : 148282 to 148537

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid. $0 = \text{No}$ $1 = \text{Yes}$	0×0
4:1	dstPort_mask	Mask for dstPort.	0×f
8:5	dstPort	The destination port which the packet is going out on	0x0
20:9	$outermostVid_mask$	Mask for outermostVid.	0xfff
32:21	outermostVid	The outermost VID of the modified packet.	0×0
33	$outermostVidType_mask$	Mask for outermostVidType.	0×1
34	outermostVidType	The outermost VID is a S-tag or C-Tag. $0 = \text{Customer tag}$ $1 = \text{Service tag}$	0x0

35.7.36 Egress VLAN Translation TCAM Answer

This is the table holding the answer for the Egress VLAN Translation TCAM.

Number of Entries: 128

 $Type\ of\ Operation: \qquad Read/Write$

Addressing : Egress VLAN Translation TCAM hit index

Address Space: 140305 to 140432

Field Description

Bits	Field Name	Description	Default Value
11:0	newVid	The new VID for the outgoing packet.	0×0
27:12	ethType	The new Ethernet Type for the outgoing packet	0x0

35.7.37 IP QoS Mapping Table

Set the outgoing packets PCP and CFI values for the outermost VLAN ID and ECN bits in the TOS Byte if selected from **Select Which Egress QoS Mapping Table To Use**. The rest of the TOS bits comes from the coloring mapping or MMP mapping tables.

Number of Entries: 256

Type of Operation : Read/Write

Address [2:0] :	The egress queue which the packet was queued
	on.
Address [4:3]:	The color of the packet.
Address [6:5] :	The ECN ToS bits TOS[1:0] after coloring op-
	eration.
Address [7]:	The Pointer from the Select Which Egress
	QoS Mapping Table To Use which Table Ptr.

Address Space : 146897 to 147152

Field Description

Addressing:

Bits	Field Name	Description	Default Value
0	updateCfiDei	Update CfiDei field in outgoing packet.	0x0
		$egin{array}{ll} 0 &= & {\sf Do} \ {\sf not} \ {\sf update}. \ 1 &= & {\sf Update}. \end{array}$	
1	cfiDei	Packets new CFI/DEI	0×0
2	updatePcp	Update Pcp field in outgoing packet.	0×0
		0 = Do not update.	
		1 = Update.	
5:3	рср	Packets new PCP	0×0
7:6	ecnTos	The outgoing TOS [1:0] ECN bits	0×0
8	updateExp	If the packet enterns a new MPLS tunnel using the	0×0
		Next Hop Packet Insert MPLS Header then use	
		this Exp for the outermost MPLS label.	
		0 = No. Dont Remap.	
		$1={ m Yes.}$ Remap to this new value	
11:9	newExp	New Exp value to be used.	0×0

35.7.38 Ingress NAT Operation

Ingress NAT Operation Table.

Number of Entries: 2048 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing : Ingress ACL NAT Pointer plus egress port number.

Address Space : 140433 to 144528

Field Description

Bits	Field Name	Description	Default Value
0	replaceSrc	Replace Source or Destination. 0 = Destiantion 1 = Source	0×0
1	replaceIP	Replace IP address. $0 = \text{No.}$ $1 = \text{Yes.}$	0×0
2	replaceL4Port	Replace TCP/UDP port. $0 = \text{No}.$ $1 = \text{Yes}.$	0×0
34:3	ipAddress	The new IP Address.	0x0
50:35	port	The new L4 Port.	0x0

35.7.39 L2 QoS Mapping Table

Set the outgoing packets PCP and CFI values for the outermost VLAN ID if selected from **Select Which Egress QoS Mapping Table To Use**.

Number of Entries: 64

Type of Operation: Read/Write

Address [2:0]: The egress queue which the packet was queued on.

Address [4:3]: The color of the packet.

Address [5]: The Pointer from the Select Which Egress QoS Mapping Table To Use whichTablePtr.

Address Space : 146833 to 146896

Field Description

Addressing:

Bits	Field Name	Description	Default Value
0	updateCfiDei	Update CfiDei field in outgoing packet. 0 = Do not update.	0x0
1	cfiDei	1 = Update. Packets new CFI/DEI.	0×0
2	updatePcp	Update Pcp field in outgoing packet. $0 = Do$ not update. $1 = Update$.	0x0
5:3	рср	Packets new PCP.	0x0

35.7.40 L2 Tunnel Entry Instruction Table

The is the L2 tunnel entry instruction which described how a tunnel entry should be done after the L2 MAC and VLAN headers in the packet. If the L3Type is either IPv4, IPv6 then the length fields are updated in the IP headers, for IPv4 the checksum is re-calculated. If the hasUDP is turned on then the UDP length-field is updated.

Number of Entries: 16

Type of Operation : Read/Write

Addressing : Tunnel entry pointer Address Space : 136963 to 136978

Field Description

Bits	Field Name	Description	Default Value
1:0	I3Type	Insert header type.	0×0
		0 = IPv4 1 = IPv6 2 = MPLS 3 = Other.	
2	hasUdp	If the header is a IPv4 or IPv6 then a insert an UDP	0×0
		header after IP header.	
3	updateEtherType	Shall the Ethernet Type be updated. $0 = \text{No}$ $1 = \text{Yes}$	0x0
19:4	outerEtherType	EtherType preceding the tunnel entry point.	0x0

35.7.41 L3 Tunnel Entry Instruction Table

The is the L3 tunnel entry instruction which described how a tunnel entry should be done after the L3 IPv4/IPv6/MPLS headers in the packet.

Number of Entries: 16

Type of Operation: Read/Write

Addressing: Tunnel entry pointer Address Space: 136979 to 136994

Field Description

Bits	Field Name	Description	Default Value
1:0	updateL4Type	If the packet is a IPv4 or IPv6 then the Next Head-	0x0
		er/Protocol field shall be updated. IPv4 Packet will	
		see a updated header checksum.	
9:2	I4Protocol	The new Next Header/Protocol byte	0×0

35.7.42 MPLS QoS Mapping Table

Set the outgoing packets PCP and CFI values for the outermost VLAN ID and outermost EXP MPLS label if selected from **Select Which Egress QoS Mapping Table To Use**.

Number of Entries: 512

Type of Operation: Read/Write

Address [2:0]: The egress queue which the packet was queued on.

Address [4:3]: The color of the packet.

Address [7:5]: The outermost label EXP bits.

Address [8]: The Pointer from the Select Which Egress QoS Mapping Table To Use which Table Ptr.

Address Space : 147665 to 148176

Field Description

Addressing:

Bits	Field Name	Description	Default Value
0	updateCfiDei	Update CfiDei field in outgoing packet.	0×0
		$egin{array}{ll} 0 &=& {\sf Do} \ {\sf not} \ {\sf update}. \ 1 &=& {\sf Update}. \end{array}$	
1	cfiDei	Packets new CFI/DEI.	0×0
2	updatePcp	Update Pcp field in outgoing packet.	0x0
		0 = Do not update.	
		1 = Update.	
5:3	рср	Packets new PCP.	0x0
8:6	exp	The outgoing Exp value for this queue in the outermost MPLS label.	0×0

35.7.43 NAT Add Egress Port for NAT Calculation

Should the ingress and egress NAT pointers from the ingress and egress ACL be added with the egress port number.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 148200

Field Description

Bits	Field Name	Description	Default Value
0	dontAddIngress	Do not add egress port when calculating the ingress NAT offset pointer. $0 = \text{Add Egress Port.}$ $1 = \text{Do not add Egress Port.}$	0×0
1	dontAddEgress	Do not add egress port when calculating the egress NAT offset pointer. $0 = \text{Add Egress Port.}$ $1 = \text{Do not add Egress Port.}$	0x0

35.7.44 Next Hop DA MAC

Determines the destination MAC address to use in the packet exiting the router.

Number of Entries: 1024 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing : nextHopPacketMod
Address Space : 137085 to 139132

Field Description

	Bits	Field Name	Description	Default Value
4	47:0	daMac	The destination MAC address for the next hop.	0×0

35.7.45 Next Hop MPLS Table

Determines the MPLS tag operation to perform.

Number of Entries : 1024 Type of Operation : Read/Write

Addressing : nextHopPacketMod
Address Space : 139141 to 140164

Field Description

Bits	Field Name	Description	Default Value
2:0	mplsOperation	The egress MPLS tag operation to perform on the packet. 0 = No operation. 1 = Swap. 2 = Push. 3 = Pop. 4 = Penultimate Pop(remove all MPLS tags).	0x0

Bits	Field Name	Description	Default Value
4:3	expSel	Select which EXP bits to use when building a new	0x0
		MPLS tag in Push or Swap operation.	
		 0 = From this entries EXP field. 1 = From egress queue remapping in Egress Queue To MPLS EXP Mapping Table 2 = From the MPLS label (outermost MPLS tag if a swap and innermost if a push. 	
7:5	exp	Value to use for the EXP field when building a new	0×0
		MPLS tag in a swap or push operation.	
27:8	label	MPLS label to use when building a new MPLS tag in	0x0
		a swap or push operation.	

35.7.46 Next Hop Packet Insert MPLS Header

Shall MPLS lables (up tp 4) be inserted on the packet before it is sent out. This enables a IP packet to go into a MPLS tunnel. Header is placed after L2 and VLANs before the IP packet header. MPLS EXP field comes from destination queue to EXP mapping table defined in **Egress Queue To MPLS EXP Mapping Table**. Only the lowest entries from 0 to 16-1 in the

ieldNext Hop TablenextHopPacketMod can be used to insert a MPLS header.

Number of Entries: 16 Number of Addresses per Entry: 8

Type of Operation : Read/Write

Addressing: nextHopPacketMod bits [3 : 0]

Address Space : 140169 to 140296

Field Description

Bits	Field Name	Description	Default Value
2:0	howManyLabelsToInsert	How many labels shall be inserted. Setting a zero here means no labels will be added.	0x0
3	whichEthernetType	Which Ethernet Type shall be used for these MPLS labels. $0 = 0x8847$ $1 = 0x8848$	0×0
23:4	mplsLabel0	First/Outermost MPLS label to be inserter.	0×0
24	copyTtl0	Where shall the TTL come from in the MPLS label 0 . $0 = \text{From this table, field ttl0.}$ $1 = \text{From the inner packet.}$	0×0
32:25	ttl0	TTL table value for MPLS label 0.	0×0
33	expFromQueue0	Where shall the EXP come from in the MPLS label 0. 0 = From this table, field exp0. 1 = From the Egress Queue To MPLS EXP Mapping Table.	0×0
36:34	exp0	EXP table value for MPLS label 0.	0×0
56:37	mplsLabel1	MPLS label 1 to be inserter.	0×0
57	copyTtl1	Where shall the TTL come from in the MPLS label 1. 0 = From this table, field ttl1. 1 = From the inner packet.	0×0

Bits	Field Name	Description	Default Value
65:58	ttl1	TTL table value for MPLS label 1.	0×0
66	expFromQueue1	Where shall the EXP come from in the MPLS label 1. 0 = From this table, field exp1. 1 = From the Egress Queue To MPLS EXP Mapping Table.	0×0
69:67	exp1	EXP table value for MPLS label 1.	0×0
89:70	mplsLabel2	MPLS label 2 to be inserter.	0×0
90	copyTtl2	Where shall the TTL come from in the MPLS label 2. 0 = From this table, field ttl2. 1 = From the inner packet.	0×0
98:91	ttl2	TTL table value for MPLS label 2.	0×0
99	expFromQueue2	Where shall the EXP come from in the MPLS label 2. 0 = From this table, field exp2. 1 = From the Egress Queue To MPLS EXP Mapping Table.	0×0
102:100	exp2	EXP table value for MPLS label 2.	0×0
122:103	mplsLabel3	MPLS label 3 to be inserter.	0×0
123	copyTtl3	Where shall the TTL come from in the MPLS label 3. 0 = From this table, field ttl3. 1 = From the inner packet.	0×0
131:124	ttl3	TTL table value for MPLS label 3.	0×0
132	expFromQueue3	Where shall the EXP come from in the MPLS label 3. 0 = From this table, field exp3. 1 = From the Egress Queue To MPLS EXP Mapping Table.	0×0
135:133	exp3	EXP table value for MPLS label 3.	0x0

35.7.47 Output Mirroring Table

Output mirroring configuration. An egress port can be set to have a mirrored port, but output mirroring cannot link more than one port. i.e. If Port A has an output mirroring Port B, Port B has an output mirroring Port C, packets sent to port A will not be mirrored to Port C.

Number of Entries: 11

Type of Operation : Read/Write
Addressing : Egress port
Address Space : 148177 to 148187

Bits	Field Name	Description	Default Value
0	output Mirror Enabled	If set to one, output mirroring is enabled for this	0×0
		port.	
4:1	outputMirrorPort	Destination of output mirroring. Only valid if out-	0×0
		putMirrorEnabled is set. Notice if the design con-	
		tains more than one switch slice, packets egressed	
		on one slice cannot be mirrored to another slice.	

35.7.48 Router Port Egress SA MAC Address

The routers SA MAC address to use when a packet exits the router. In normal cases this would be the incoming Destination MAC address. However when using NAT there are cases which this does not work and hence this table allows the usage of a alternative MAC address.

Number of Entries: 4 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: VRF

Address Space: 139133 to 139140

Field Description

Bits	Field Name	Description	Default Value
10:0	selectMacEntryPortMask	Portmask to select which SA MAC address to use as router MAC address. One bit per destination port. 0 = use incoming packets DA MAC address. 1 = use altMacAddress.	0×0
58:11	altMacAddress	The alternative base destination MAC address that is used to identify packets to the router.	0×0

35.7.49 Select Which Egress QoS Mapping Table To Use

This is the initial table which is looked up by all packets in order to determine how the mapping from internal QoS to packets final PCP, DEI, TOS/EXP field shall look like. In order for this table to be executed the field **useEgressQueueRemapping** must be set to one.

263

Number of Entries: 256

Type of Operation : Read/Write

Address Bit [1:0]:	Forwarding type to this port. 0 = Switched Packet 1 = Routed Packet 2 = Classification Rule Forwarded Packet 3 = Others - Send-to-CPU and packet from CPU
Address Bit [3:2]:	Packet type $0 = L2 - Not IPv4/IPv6/MPLS$ $1 = IPv4$ $2 = IPv6$ $3 = MPLS$
Address Bit [8:4]:	Egress Port

Address Space : 146577 to 146832

Field Description

Addressing:

Bits	Field Name	Description	Default Value
2:0	whichTableToUse	Select which table type to use. 0 = None. No remapping 1 = L2 QoS Mapping Table 2 = IP QoS Mapping Table 3 = TOS QoS Mapping Table 4 = MPLS QoS Mapping Table	0×0
2	hishTablaDt	5 = Use this tables remapping of DEI and PCP bits.	00
3	whichTablePtr	Which index of the tables to use. For most QoS tables there exists multiple tables to choose from.	0×0
4	updateCfiDei	Update CfiDei field in outgoing packet. $0 = Do$ not update. $1 = Update$.	0x0
5	cfiDei	Packets new CFI/DEI.	0×0
6	updatePcp	Update Pcp field in outgoing packet. $0 = Do$ not update. $1 = Update$.	0x0
9:7	рср	Packets new PCP.	0x0

35.7.50 TOS QoS Mapping Table

Set the outgoing packets PCP and CFI values for the outermost VLAN ID and TOS Byte if selected from **Select Which Egress QoS Mapping Table To Use**. The input TOS byte to this mapping table comes from the coloring or MMP mapping tables.

Number of Entries : 512
Type of Operation : Read/Write

Address [7:0]: The TOS byte.

Addressing: The Pointer from the Select Which Egress

QoS Mapping Table To Use which Table Ptr.

Address Space : 147153 to 147664

Field Description

Bits	Field Name	Description	Default Value
0	updateCfiDei	Update CfiDei field in outgoing packet. 0 = Do not update.	0×0
		1 = Update.	
1	cfiDei	Packets new CFI/DEI	0×0
2	updatePcp	Update Pcp field in outgoing packet.	0x0
		0 = Do not update.	
		1 = Update.	
5:3	рср	Packets new PCP	0x0
13:6	newTos	The outgoing new TOS bits	0×0
14	updateExp	If the packet enterns a new MPLS tunnel using the	0×0
		Next Hop Packet Insert MPLS Header then use	
		this Exp for the outermost MPLS label.	
		0 = No. Dont Remap.	
		1= Yes. Remap to this new value	
17:15	newExp	New Exp value to be used.	0×0

35.7.51 Tunnel Entry Header Data

The this is the byte data which is used to do tunnel insertions. The data to be used is pointed to from the **Tunnel Entry Instruction Table**

Number of Entries: 16 Number of Addresses per Entry: 32

Type of Operation : Read/Write
Addressing : tunnelHeaderPtr
Address Space : 136435 to 136946

Field Description

Bits	Field Name	Description	Default Value
639:0	data	Tunnel header data (bytes) to be inserted at tunnel entry point	0×0
		in packet.Byte 0 is the start of the tunnel header.	

35.7.52 Tunnel Entry Instruction Table

The tunnel entry instruction describes how a tunnel shall be entered. The same pointer address is used to read out the **Beginning of Packet Tunnel Entry Instruction Table**, **L2 Tunnel Entry Instruction Table** and **L3 Tunnel Entry Instruction Table**. The field tunnelEntryType determine which tunnel entry table to use. The insertion of the length field is independent from the other tunnel header length updates which is done.

Number of Entries: 16 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: Tunnel Entry Pointer from various tables

Address Space : 136403 to 136434

Bits	Field Name	Description	Default Value
1:0	tunnelEntryType	A tunnel entry shall be done. Where shall the tunnel entry be done 0 = At Byte Zero described in Beginning of Packet Tunnel Entry Instruction Table 1 = After L2 and up to two VLAN headers. described in L2 Tunnel Entry Instruction Table 2 = After L3 IPv4/IPv6/MPLS headers. 3 = Reserved.	0×0
2	insertLength	Insert the a packet length fields. The 2 byte length of the frame will overwrite current 2 bytes in the header data to be inserted at lengthPos . 0 = Yes. Insert a length field. 1 = No. Don't insert a length field.	0×0
9:3	lengthPos	If length shall be inserted, where shall it be inserted. A value of 0 means beginning of tunnel entry data.	0x0
23:10	lengthNegOffset	How much shall be decremented from the total packet (frame) length.	0x0

Bits	Field Name	Description	Default Value
37:24	lengthPosOffset	How much shall be incremented from the total packet (frame) length.	0x0
38	incVlansInLength	Should the outgoing packets number of VLANs be included in the length calculation? $0 = \text{No}.$ $1 = \text{Yes}.$	0×0
42:39	tunnelHeaderPtr	Points to which header to insert from register Tunnel Entry Header Data .	0x0
49:43	tunnelHeaderLen	The length of the tunnel header, in bytes, to insert from register Tunnel Entry Header Data .	0x0

35.8 Flow Control

35.8.1 FFA Used PFC

Total number of cells from the common pool used by ports in PFC-mode.

Number of Entries: 1

Type of Operation : Read Only Address Space : 135105

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells	0x0

35.8.2 FFA Used non-PFC

Total number of cells used from the common pool by ports in non-PFC mode.

Number of Entries: 1

Type of Operation : Read Only Address Space : 135106

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells	0×0

35.8.3 PFC Dec Counters for ingress ports 0 to 10

Wrapping counters of deallocated cells. The number of currently used cells is the allocated minus the deallocated modulo the counter size.

Number of Entries: 88

Type of Operation: Read Only

Addressing : 8*(Source port) + Traffic class

Address Space: 134987 to 135074

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells	0x0

35.8.4 PFC Inc Counters for ingress ports 0 to 10

Wrapping counters of allocated cells. The number of currently used cells is the allocated minus the deallocated modulo the counter size.

Number of Entries: 88

Type of Operation : Read Only

Addressing : 8*(Source port) + Traffic class

Address Space: 134899 to 134986

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells	0×0

35.8.5 Port FFA Used

Number of cells used from the common pool for this source port

Number of Entries: 11

Type of Operation: Read Only
Addressing: Source port
Address Space: 135075 to 135085

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells	0x0

35.8.6 Port Pause Settings

Pause settings per source port.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Source port
Address Space: 135107 to 135117

Field Description

Bits	Field Name	Description	Default Value
0	enable		0×0
		$egin{array}{ll} 0 &=& {\sf Pausing\ disabled} \ 1 &=& {\sf Pausing\ enabled} \end{array}$	
1	mode	On a port where both pausing and tail-drop is enabled the modes must match for the calculation of used FFA to be correct. $0 = \text{Priority mode} \\ 1 = \text{Port mode}$	0×0
3:2	reserved	Reserved.	0x0
11:4	force	Each bit refers to one traffic class (bit $0 = TC \ 0$) 0 = No force 1 = Force the pause state to that set in the pattern field Only valid if pausing is enabled.	0x0
19:12	pattern	Each bit refers to one traffic class (bit $0 = TC \ 0$) $0 = Not paused$ $1 = Paused$	0x0

35.8.7 Port Reserved

Number of cells reserved in the buffer memory for this source port. Shall be set to zero for prio-mode ports Note that this setting can only be changed for an empty port.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Source port
Address Space: 134888 to 134898

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells	0×9

35.8.8 Port Tail-Drop FFA Threshold

Settings for the Port Tail-Drop FFA Threshold

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Source port
Address Space: 135178 to 135188

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Tail-drop threshold in number of cells. When the FFA cells	0×400
		used by the source port reaches this threshold no further	
		packets will be accepted for this source port	
11	enable		0×0
		0 = This tail-drop threshold is disabled	
		$1={\sf This}$ tail-drop threshold is enabled	
12	trip		0×0
		0 = Normal operation	
		1 = Force this threshold to be counted as exceeded Only valid if this tail-drop threshold is enabled.	

35.8.9 Port Tail-Drop Settings

Tail-drop settings per source port.

Number of Entries: 11

Type of Operation : Read/Write
Addressing : Source port
Address Space : 135118 to 135128

Field Description

Bits	Field Name	Description	Default Value
0	enable	$0={\sf Tail\text{-}drop}$ is disabled for this source port $1={\sf Tail\text{-}drop}$ is enabled for this source port	0x0
1	mode	On a port where both pausing and tail-drop is enabled the modes must match for the calculation of used FFA to be correct. $0 = \text{Priority mode} \\ 1 = \text{Port mode}$	0×0

35.8.10 Port Used

Total number of cells used for this source port

Number of Entries: 11

Type of Operation: Read Only
Addressing: Source port
Address Space: 135086 to 135096

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells	0×0

35.8.11 Port Xoff FFA Threshold

Settings for Port Xoff FFA Threshold

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Source port
Address Space: 135167 to 135177

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Xoff threshold for the number of used FFA cells for this source	0×0
		port	
11	enable		0×0
		$0={ m This}\ { m Xoff}\ { m threshold}\ { m is}\ { m disabled}$ $1={ m This}\ { m Xoff}\ { m threshold}\ { m is}\ { m enabled}$	
12	trip		0×0
		0 = Normal operation	
		1 = Force this threshold to be counted as exceeded Only valid if this Xoff threshold is enabled.	

35.8.12 Port Xon FFA Threshold

Settings for Port Xon FFA Threshold

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Source port
Address Space: 135156 to 135166

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Xon threshold for the number of used FFA cells for this source	0x0
		port	

35.8.13 Port/TC Reserved

Number of cells reserved in the buffer memory for this source port and traffic class. For ports set to port-mode this should be 0 for all queues. Note that this setting can only be changed for an empty port.

Number of Entries: 88

Type of Operation : Read/Write

Addressing : 8 * Source port + Traffic class

Address Space: 134800 to 134887

Field Description

E	3its	Field Name	Description	Default Value
10	0:0	cells	Number of cells	0×0

35.8.14 Port/TC Tail-Drop Total Threshold

Settings for Port/TC Tail-Drop Total Threshold

Number of Entries: 88

Type of Operation : Read/Write

Addressing: 8 * Source port + Traffic class

Address Space: 135365 to 135452

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Tail-drop threshold in number of cells. When the sum of reserved and FFA cells used by this specific source port and traffic class combination reaches this threshold no further packets will be accepted for this source port and traffic class	0×400
11	enable	$0={\sf This}\ {\sf tail\text{-}drop}\ {\sf threshold}\ {\sf is}\ {\sf disabled}\ 1={\sf This}\ {\sf tail\text{-}drop}\ {\sf threshold}\ {\sf is}\ {\sf enabled}$	0x0
12	trip	0= Normal operation $1=$ Force this threshold to be counted as exceeded Only valid if this tail-drop threshold is enabled.	0×0

35.8.15 Port/TC Xoff Total Threshold

Settings for Port/TC Xoff Total Threshold

Number of Entries: 88

 $\label{type of Operation: Read/Write} Type of Operation: Read/Write$

Addressing : 8 * Source port + Traffic class

 $\mathsf{Address}\;\mathsf{Space}:\qquad 135277\;\mathsf{to}\;135364$

Bits	Field Name	Description	Default Value
10:0	cells	Xoff threshold for the sum of reserved and FFA cells used for	0x0
		this source port and traffic class combination	
11	enable		0×0
		$0={ m This\ Xoff\ threshold\ is\ disabled} \ 1={ m This\ Xoff\ threshold\ is\ enabled}$	
12	trip		0×0
		0 = Normal operation	
		1 = Force this threshold to be counted as exceeded Only valid if this Xoff threshold is enabled.	

35.8.16 Port/TC Xon Total Threshold

Settings for Port/TC Xon Total Threshold

Number of Entries: 88

Type of Operation : Read/Write

Address Space: 135189 to 135276

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Xon threshold for the sum of reserved and FFA cells used for	0×0
		this source port and traffic class combination	

35.8.17 TC FFA Used

Number of cells used from the common pool for this traffic class.

Number of Entries: 8

Type of Operation: Read Only
Addressing: Traffic class
Address Space: 135097 to 135104

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells	0x0

35.8.18 TC Tail-Drop FFA Threshold

Settings for TC Tail-Drop FFA Threshold

Number of Entries: 8

Type of Operation : Read/Write
Addressing : Traffic class
Address Space : 135148 to 135155

Bits	Field Name	Description	Default Value
10:0	cells	Tail-drop threshold in number of cells. When the FFA cells used by the traffic class reaches this threshold no further packets will be accepted for this traffic class	0×400
11	enable	$0={\sf This}\ {\sf tail\text{-}drop}\ {\sf threshold}\ {\sf is}\ {\sf disabled}\ 1={\sf This}\ {\sf tail\text{-}drop}\ {\sf threshold}\ {\sf is}\ {\sf enabled}$	0×0

Bits	Field Name	Description	Default Value
12	trip		0×0
		0 = Normal operation 1 = Force this threshold to be counted as exceeded Only valid if this tail-drop threshold is enabled.	

35.8.19 TC Xoff FFA Threshold

Settings for TC Xoff FFA Threshold

Number of Entries: 8

Type of Operation : Read/Write
Addressing : Traffic class
Address Space : 135140 to 135147

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Xoff threshold for the number of used FFA cells for this traffic	0×0
		class	
11	enable		0×0
		$0=\ {\sf This}\ {\sf Xoff}\ {\sf threshold}\ {\sf is}\ {\sf disabled}\ 1=\ {\sf This}\ {\sf Xoff}\ {\sf threshold}\ {\sf is}\ {\sf enabled}$	
12	trip		0×0
		0 = Normal operation	
		1 = Force this threshold to be counted as exceeded Only valid if this Xoff threshold is enabled.	

35.8.20 TC Xon FFA Threshold

Settings for TC Xon FFA Threshold

 $Number\ of\ Entries: \qquad 8$

Type of Operation: Read/Write
Addressing: Traffic class
Address Space: 135132 to 135139

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Xon threshold for the number of used FFA cells for this traffic class	0x0

35.8.21 Tail-Drop FFA Threshold

Settings for Tail-Drop FFA Threshold

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation:} & \hbox{Read/Write} \\ \hbox{Address Space:} & \hbox{135131} \end{array}$

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Tail-drop threshold in number of cells. When the total number of FFA cells used reaches this threshold no further packets will be accepted.	0×394
11	enable	$0={\sf This}\ {\sf tail\text{-}drop}\ {\sf threshold}\ {\sf is}\ {\sf disabled}\ 1={\sf This}\ {\sf tail\text{-}drop}\ {\sf threshold}\ {\sf is}\ {\sf enabled}$	0×0
12	trip	$0=\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	0×0

35.8.22 Xoff FFA Threshold

Settings for Xoff FFA Threshold

Number of Entries: 1

 $\begin{array}{ll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Address Space}: & 135130 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
10:0	cells	Xoff threshold for the total number of used FFA cells	0×0
11	enable		0×0
		$0={ m This}\ { m Xoff}\ { m threshold}\ { m is}\ { m disabled}$ $1={ m This}\ { m Xoff}\ { m threshold}\ { m is}\ { m enabled}$	
12	trip		0×0
		0 = Normal operation	
		1 = Force this threshold to be counted as exceeded Only valid if this Xoff threshold is enabled.	

35.8.23 Xon FFA Threshold

Settings for Xon FFA Threshold

Number of Entries: 1

 $\begin{array}{ll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Address Space}: & 135129 \end{array}$

Bits	Field Name	Description	Default Value
10:0	cells	Xon threshold for the total number of used FFA cells	0×0

35.9 Global Configuration

35.9.1 Core Tick Configuration

Global register for setting the frequency of the core tick

Number of Entries: 1

Type of Operation : Read/Write

Address Space: 2

Field Description

Bits	Field Name	Description	Default Value
19:0	clkDivider	The master Core Tick will be issued once every	0×271
		$rg_tick_div.clkDivider/4$ core clock cycles. If set to	
		zero, there will be no tick.	
23:20	stepDivider	The four ticks derived from the mas-	0xa
		ter core tick are issued once every	
		$rg_tick_div.stepDivider^{tick_number+1}$ master ticks.	
		The master tick is tick number 0. If stepDivider is	
		set to zero, there will be no ticks except possibly the	
		master tick.	

35.9.2 Core Tick Select

Global register for setting clock input to the core tick divider

Number of Entries: 1

Type of Operation: Read/Write

Address Space: 3

Field Description

Bits	Field Name	Description	Default Value
1:0	clkSelect	Select the source clock for the Core Tick divider. 0: disabled, 1: core clock, 2: debug_write_data[0], 3: reserved	0x1

35.9.3 MAC RX Maximum Packet Length

Packets with length above this value will be dropped.

Number of Entries: 11

 $\begin{array}{lll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Addressing}: & \mbox{Ingress Port} \\ \mbox{Address Space}: & 70 \ \mbox{to} \ \mbox{80} \\ \end{array}$

Field Description

Bits	Field Name	Description	Default Value
31:0	bytes	Number of bytes.	0×4003

35.9.4 Scratch

Scratch Register

Number of Entries: 1 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Address Space : 4

Field Description

Bits	Field Name	Description	Default Value
63:0	scratch	scratch field.	0×0

35.10 Ingress Packet Processing

35.10.1 AH Header Packet Decoder Options

The L4 protocol number which is used to determine if the packet has a Authentical Header, the underlaying packet must be a IPv4 or IPv6 packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124784

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled.	0×1
		$egin{array}{ll} 0 &= & No \\ 1 &= & Yes \end{array}$	
8:1	I4Proto	The value to be used to find this packet type.	0x33
19:9	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0×0
30:20	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = \text{Do not sent to CPU}$. Normal Processing of packet. $1 = \text{Send to CPU}$, bypass normal packet processing.	0x0

35.10.2 ARP Packet Decoder Options

The Ethernet type used to determine if a packet is a ARP packet.. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled. 0 = No 1 = Yes	0×1
16:1	eth	The value to be used to find this packet type.	0×806
27:17	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0x0
38:28	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0x0

35.10.3 Aging Data FIFO

This register exposes the output of a FIFO which is holding all aging requests from the aging unit. Under hardware aging writeback mode, the entry pushed to this FIFO is in sync with the FIB. If hardware aging writeback is turned off, the final aging decision should be issued from software injected learning packet and what is pushed to this FIFO is not updated to L2 tables.

Number of Entries: 1

Type of Operation : Read Only Address Space : 4465

Field Description

Bits	Field Name	Description	Default Value
3:0	hashClearValid	One bit per bucket, each bit set to 1 means the aging	0×0
		unit has requested to change the corresponding hash	
		bucket valid bit from 1 to 0 hence clear out this entry.	
7:4	hashClearHit	One bit per bucket, each bit set to 1 means the ag-	0×0
		ing unit has requested to change corresponding hash	
		bucket hit bit from 1 to 0.	
17:8	hashValue	Hash of GID, MAC.	0×0
18	camClearValid	When this field is 1, the aging unit has requested to	0×0
		change the corresponding cam entry valid bit from 1	
		to 0 hence clear out this entry.	
19	camClearHit	When this field is 1, the aging unit has requested to	0×0
		change the corresponding cam entry hit bit from 1 to	
		0.	

Bits	Field Name	Description	Default Value
24:20	camIndex	Index to the entry in L2 Aging Collision Table.	0×0
25	valid		0×0
		$0 = {\sf Empty} \; {\sf FIFO}, \; {\sf entry} \; {\sf is} \; {\sf not} \; {\sf valid} \ 1 = {\sf Valid} \; {\sf entry}$	

35.10.4 Aging Data FIFO High Watermark Level

The High Watermark Interrupt will occur when a push to **Aging Data FIFO** is done and the number of existing entries after the push is larger than this setting.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 306

Field Description

Bits	Field Name	Description	Default Value
5:0	level	Number of used entries.	0×0

35.10.5 Allow Special Frame Check For L2 Action Table

The result in L2 Action Table is a pointer field allowPtr which allows result from the L2 SA Action Table to setup rules of which types of packets/frames are allowed to be sent in on a port. If any of there is a match and packet is not allowed then all instances are dropped of this packet. The drop counter L2 Action Table Special Packet Type Drop is updated.

Number of Entries: 4

Type of Operation : Read/Write

Addressing: Result from L2 Action Table

Address Space: 125657 to 125660

Bits	Field Name	Description	Default Value
0	dontAllowBPDU	Allow BPDU frames. $0 = \text{Allow frame}.$ $1 = \text{Do not allow frame}.$	0×0
1	dontAllow8021X_EAPOL	Allow 802.1X EAPOL frames. $0 = \text{Allow frame}.$ $1 = \text{Do not allow frame}.$	0×0
2	dontAllowCAPWAP	Allow CAPWAP frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
3	dontAllowARP	Allow ARP frames. $0 = \text{Allow frame}.$ $1 = \text{Do not allow frame}.$	0x0

Bits	Field Name	Description	Default Value
4	dontAllowRARP	Allow RARP frames. $0 = \text{Allow frame}.$ $1 = \text{Do not allow frame}.$	0x0
5	dontAllowDNS	Allow DNS frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
6	dontAllowBOOTP_DHCP	Allow BOOTP_DHCP frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
7	dontAllowSCTP	Allow STCP frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
8	dontAllowLLDP	Allow LLDP frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
9	dontAllowGRE	Allow GRE frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
10	dontAllowESP	Allow ESP frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
11	dontAllowAH	Allow AH frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
12	dontAllowL2_1588	Allow L2 1588 frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
13	dontAllowL4_1588	Allow L4 1588 frames. $0 = \text{Allow frame}.$ $1 = \text{Do not allow frame}.$	0×0
14	dontAllowICMP	Allow ICMP frames. $0 = \text{Allow frame}.$ $1 = \text{Do not allow frame}.$	0×0
15	dontAllowIGMP	Allow IGMP frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
16	dontAllowL2McReserved	Allow L2 Reserved Da frames, see register L2 Reserved Multicast Address Base. 0 = Allow frame. 1 = Do not allow frame.	0x0
17	dontAllowIPV4	Allow IPV4 frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
18	dontAllowIPV6	Allow IPV6 frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
19	dontAllowUDP	Allow UDP frames. 0 = Allow frame. 1 = Do not allow frame.	0×0
20	dontAllowTCP	Allow TCP frames. 0 = Allow frame. 1 = Do not allow frame.	0×0

Bits	Field Name	Description	Default Value
21	dontAllowMPLS	Allow MPLS frames.	0×0
		0 = Allow frame. 1 = Do not allow frame.	

35.10.6 BOOTP and DHCP Packet Decoder Options

The UDP port 1 number used by the BOOTP protocol, the underlaying packet must be a IPv4 packet. If L4 Source Port is this value then L4 Destination Port must be egisterbootpUdpPort2 value and vice versa. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : 128203

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled. 0 = No	0×1
		1 = Yes	
16:1	udp1	The value to be used to find this packet type.	0×43
32:17	udp2	The value to be used to find this packet type.	0×44
43:33	drop	If a packet comes in on this source port then drop the packet. 0 = Do not drop this packet. 1 = Drop this packet and update the drop counter.	0×0
54:44	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0x0

35.10.7 CAPWAP Packet Decoder Options

The fields needs to determine if a packet is a CAPWAP packet the underlaying packet must be a IPv4 or IPv6 packet. . If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

280

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled.	0×1
		$egin{array}{ll} 0 &= & No \\ 1 &= & Yes \end{array}$	
16:1	udp1	The value to be used to find this packet type.	0×147e
32:17	udp2	The value to be used to find this packet type.	0×147f
43:33	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0x0
54:44	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = \text{Do not sent to CPU}$. Normal Processing of packet. $1 = \text{Send to CPU}$, bypass normal packet processing.	0x0

35.10.8 CPU Reason Code Operation

When a packet raises a send to CPU action during the ingress packet process, follow-up operations can be performed based on the reason code. In this table 16 ranges are searched in order and the same action hit in the latter range overrides the previous hit.

Number of Entries: 16 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space : 128215 to 128246

Field Description

Bits	Field Name	Description	Default Value
0	mutableCpu	Force the packet to another port instead of the	0×0
		CPU port when the CPU reason code hit in the	
		range.	
4:1	port	The new destination to replace the CPU port.	0×0
5	forceQueue	Force the packet to the CPU port with a new	0×0
		egress queue when the CPU reason code hit in	
		the range.	
8:6	eQueue	Egress queue	0×0
9	forceUpdateOrigCpuPkt	If this reason code is hit shall the origCpuPkt field	0×0
		be updated?	
		0 = No, no update.	
		1 = Yes, update.	
10	origCpuPkt	Force the packet to the CPU to be the orig-	0x0
		inial,unmodified, packet.	
		0 = No, modification will happen to packet.	
		1= Yes, force the packet to be unmodified.	
26:11	start	Start of CPU reason code.	0x0
42:27	end	End of CPU reason code.	0x0

35.10.9 Check IPv4 Header Checksum

This register provides an option to drop the IPv4 packet if its header checksum field has an incorrect value. The option is only for not routed IPv4 packet. For a routed IPv4 packet, the checksum check is

always performed.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124794

Field Description

Bits	Field Name	Description	Default Value
0	dropErrorChkSum	If set, always calculate the checksum of the received	0×0
		IPv4 packet. If the calculated value does not match	
		the IPv4 checksum field, the packet is dropped.	

35.10.10 DNS Packet Decoder Options

The TCP/UDP destination port number used to determine if a packet is a DNS packet, the underlaying packet must be a IPv4 or IPv6 packet.. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1 Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : 128201

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled. $0 = \text{No}$ $1 = \text{Yes}$	0×1
16:1	I4Port	The value to be used to find this packet type.	0×35
27:17	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0x0
38:28	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0x0

35.10.11 Debug Counter debugMatchIPP0 Setup

Packet processing debug setup for registerDebug debugMatchIPP0.

Number of Entries: 1 Number of Addresses per Entry: 2

 $\begin{tabular}{lll} Type of Operation: & Read/Write \\ Address Space: & 128211 \end{tabular}$

Field Description

Bits	Field Name	Description	Default Value
21:0	mask	Mask for comparison to update debug counter.	0×0
43:22	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.10.12 Debug Counter dstPortmask Setup

Packet processing debug setup for registerDebug dstPortmask.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation}: & \hbox{Read/Write} \\ \hbox{Address Space}: & \hbox{124810} \end{array}$

Field Description

Bits	Field Name	Description	Default Value
10:0	mask	Mask for comparison to update debug counter.	0×0
21:11	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0x0

35.10.13 Debug Counter finalVid Setup

Packet processing debug setup for registerDebug finalVid.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124789

Field Description

Bits	Field Name	Description	Default Value
12:0	mask	Mask for comparison to update debug counter.	0×0
25:13	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.10.14 Debug Counter I2DaHash Setup

Packet processing debug setup for registerDebug I2DaHash.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124799

Field Description

Bits	Field Name	Description	Default Value
9:0	mask	Mask for comparison to update debug counter.	0×0
19:10	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.10.15 Debug Counter I2DaHashHitAndBucket Setup

Packet processing debug setup for registerDebug I2DaHashHitAndBucket.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124800

Field Description

Bits	Field Name	Description	Default Value
2:0	mask	Mask for comparison to update debug counter.	0x0
5:3	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0x0

35.10.16 Debug Counter I2DaHashKey Setup

Packet processing debug setup for registerDebug I2DaHashKey.

Number of Entries : 1 Number of Addresses per Entry : 4

 $\begin{tabular}{lll} Type of Operation: & Read/Write \\ Address Space: & 128181 \end{tabular}$

Bits	Field Name	Description	Default Value
59:0	mask	Mask for comparison to update debug counter.	0×0
119:60	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.10.17 Debug Counter I2DaTcamHitsAndCast Setup

Packet processing debug setup for registerDebug I2DaTcamHitsAndCast.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124801

Field Description

Bits	Field Name	Description	Default Value
14:0	mask	Mask for comparison to update debug counter.	0×0
29:15	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.10.18 Debug Counter nextHopPtrFinal Setup

Packet processing debug setup for registerDebug nextHopPtrFinal.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124793

Field Description

Bits	Field Name	Description	Default Value
9:0	mask	Mask for comparison to update debug counter.	0×0
19:10	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.10.19 Debug Counter nextHopPtrHash Setup

Packet processing debug setup for registerDebug nextHopPtrHash.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124792

Field Description

Bits	Field Name	Description	Default Value
9:0	mask	Mask for comparison to update debug counter.	0×0
19:10	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.10.20 Debug Counter nextHopPtrLpm Setup

Packet processing debug setup for registerDebug nextHopPtrLpm.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124791

Field Description

Bits	Field Name	Description	Default Value
9:0	mask	Mask for comparison to update debug counter.	0×0
19:10	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0x0

35.10.21 Debug Counter nrVlans Setup

Packet processing debug setup for registerDebug nrVlans.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124782

Field Description

Bits	Field Name	Description	Default Value
1:0	mask	Mask for comparison to update debug counter.	0×0
3:2	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0×0

35.10.22 Debug Counter spVidOp Setup

Packet processing debug setup for registerDebug spVidOp.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124786

Field Description

Bits	Field Name	Description	Default Value
2:0	mask	Mask for comparison to update debug counter.	0×0
5:3	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0x0

35.10.23 Debug Counter srcPort Setup

Packet processing debug setup for registerDebug srcPort.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124779

Field Description

Bits	Field Name	Description	Default Value
3:0	mask	Mask for comparison to update debug counter.	0×0
7:4	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0x0

35.10.24 Debug Counter vlanVidOp Setup

Packet processing debug setup for registerDebug vlanVidOp.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124790

Field Description

Bits	Field Name	Description	Default Value
2:0	mask	Mask for comparison to update debug counter.	0×0
5:3	hitValue	Value to compare to update debug counter. Both the incoming value and this value is ANDed with the mask before comparsion is carried out. If comparsion results in true the counter is updated	0x0

35.10.25 Default Packet To CPU Modification

Shall packets which are sent to the CPU be modified or original incoming packets. If a packet is switch / routed the to the CPU port then it will come out as the modified packet. This register only is relevant when a packet is sent to the cpu using Send-to-CPU flag (ie. when reason code != 0).

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Source Port
Address Space: 127543 to 127553

Field Description

Bits	Field Name	Description	Default Value
0	origCpuPkt	Force the packet to the CPU to be the originial,unmodified, packet. The exception to this is rule is the tunnel exit which will still be carried out. $0 = No$, modification will happen to packet. $1 = Yes$, force the packet to be unmodified.	0×0

35.10.26 ESP Header Packet Decoder Options

The L4 protocol number which is used to determine if the packet has a Authentical Header, the underlaying packet must be a IPv4 or IPv6 packet.. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124785

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled. $0 = \text{No}$ $1 = \text{Yes}$	0×1
8:1	I4Proto	The value to be used to find this packet type.	0×32
19:9	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0×0
30:20	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0×0

35.10.27 Egress ACL Rule Pointer TCAM

D-left search that determines which ACL rule pointers to use when building the search key for the egress ACL lookups.

Number of Entries: 64 Number of Addresses per Entry: 4

Type of Operation : ${\sf Read/Write}$

Addressing : All entries are read out in parallel

Address Space : 127869 to 128124

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
11:1	destPortMask_mask	Mask for destPortMask.	0×7ff
22:12	destPortMask	The packets egress ports, one bit per port.	0×0
23	routed_mask	Mask for routed.	0×1
24	routed	The packet was routed.	0×0
26:25	vrf_mask	Mask for vrf.	0×3
28:27	vrf	The VRF used when routed.	0×0
29	flooded₋mask	Mask for flooded.	0×1
30	flooded	The packet was flooded due to L2 table miss.	0×0
31	ucSwitched_mask	Mask for ucSwitched.	0×1
32	ucSwitched	The packet was L2 switched to a unicast destination port.	0×0
33	mcSwitched_mask	Mask for mcSwitched.	0×1
34	mcSwitched	The packet was L2 switched to a multicast group.	0×0
46:35	vid_mask	Mask for vid.	0×fff
58:47	vid	The index used in the VLAN table lookup.	0×0
60:59	l3Type_mask	Mask for I3Type.	0x3
62:61	13Туре	The packets L3 Type. ab-FourIPv4IPv6MPLSOther	0×0
65:63	l4Type_mask	Mask for I4Type.	0×7

Bits	Field Name	Description	Default Value
68:66	l4Type	The packets L4 Type. abEightNot known.Is IPv4 or IPv6 but type is not any L4 type in this list.UDPTCPIGMPICMPICMPv6MLD	0×0
72:69	srcPort_mask	Mask for srcPort.	0xf
76:73	srcPort	The packets source port.	0×0

35.10.28 Egress ACL Rule Pointer TCAM Answer

This is the table holding the answer for the Egress ACL Rule Pointer TCAM.

Number of Entries: 64

Type of Operation: Read/Write

Addressing: Egress ACL Rule Pointer TCAM hit index

Address Space: 114394 to 114457

Field Description

Bits	Field Name	Description	Default Value
2:0	rulePtr0	Rule Pointer for egress ACL engine 0.	0×0
4:3	rulePtr1	Rule Pointer for egress ACL engine 1.	0×0

35.10.29 Egress Configurable ACL 0 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table. If multiple buckets match then the result from the highest entry is selected.

Number of Entries: 1024 Number of Addresses per Entry: 8

Type of Operation : $\mathsf{Read}/\mathsf{Write}$

Address Space : address[9:8] : bu 114458 to 122649

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \\ 1 &= & Yes \end{array}$	
135:1	compareData	The data which shall be compared in this entry.	0x0
136	sendToCpu	This is a result field used when this entry is hit. If	0×0
		set, the packet shall be sent to the CPU port.	
137	forceSendToCpuOrigPkt	This is a result field used when this entry is hit. If	0×0
		packet shall be sent to CPU then setting this bit	
		will force the packet to be the incoming originial	
		packet. The exception to this is rule is the tunnel	
		exit which will still be carried out	

Bits	Field Name	Description	Default Value
138	metaDataValid	This is a result field used when this entry is hit. Is the meta_data field valid.	0×0
154:139	metaData	This is a result field used when this entry is hit. Meta data for packets going to the CPU.	0×0
155	metaDataPrio	This is a result field used when this entry is hit. If multiple ACLs hit this meta_data shall take priority.	0×0
156	dropEnable	This is a result field used when this entry is hit. If set, the packet shall be dropped and the Egress Configurable ACL Drop counter is incremented.	0×0
157	sendToPort	This is a result field used when this entry is hit. Send the packet to a specific port. $0 = \text{Disabled}$. $1 = \text{Send}$ to port configured in destPort.	0×0
161:158	destPort	This is a result field used when this entry is hit. The port which the packet shall be sent to.	0x0
162	updateCounter	This is a result field used when this entry is hit. When set the selected statistics counter will be updated.	0x0
168:163	counter	This is a result field used when this entry is hit. Which counter in Egress Configurable ACL Match Counter to update.	0×0
169	natOpValid	This is a result field used when this entry is hit. NAT operation pointer is valid.	0x0
179:170	natOpPtr	This is a result field used when this entry is hit. NAT operation pointer.	0×0
180	natOpPrio	This is a result field used when this entry is hit. If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0×0
181	tunnelEntry	This is a result field used when this entry is hit. Shall all of these packets enter into a tunnel.	0×0
182	tunnelEntryUcMc	This is a result field used when this entry is hit. Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0x0
186:183	tunnelEntryPtr	This is a result field used when this entry is hit. The tunnel entry which this packet shall enter upon exiting the switch.	0x0
187	tunnelEntryPrio	This is a result field used when this entry is hit. If multiple tunnelEntry are set and this prio bit is set then this tunnelEntryPtr will be selected.	0×0

35.10.30 Egress Configurable ACL 0 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number of fields. The fieldSelectBitmask has one bit for each field. The first 7 fields (bits) which are set to one are selected to build the lookup key for this ACL. It is not allowed to set more than 7 bit in the bitmask. The fields are described in ACL Fields

Number of Entries: 8

Type of Operation: Read/Write
Addressing: ACL rule pointer
Address Space: 125649 to 125656

Field Description

Bits	Field Name	Description	Default Value
17:0	fieldSelectBitmask	Bitmask of which fields to select. Set a bit to one	0×0
		to select this specific field, set zero to not select	
		field. At Maximum 7 bits should be set.	

35.10.31 Egress Configurable ACL 0 Search Mask

Before the hashing and searching is done in the **Egress Configurable ACL 0 Large Table** and **Egress Configurable ACL 0 Small Table**. The search data is AND:ed with this mask. If a bit in the mask is set to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and large tables.

Number of Entries: 1
Number of Addresses per Entry: 16

 $\begin{tabular}{lll} Type of Operation: & Read/Write \\ Address Space: & 129887 \end{tabular}$

Field Description

Bits	Field Name	Description	Default Value
134:0	mask_small	Which bits to compare in the Egress Configurable ACL	$2^{135} - 1$
		0 Small Table lookup. A bit set to 1 means the corre-	
		sponding bit in the search data is compared and 0 means	
		the bit is ignored.	
269:135	mask_large	Which bits to compare in the Egress Configurable ACL	$2^{135} - 1$
		O Large Table lookup. A bit set to 1 means the corre-	
		sponding bit in the search data is compared and 0 means	
		the bit is ignored.	

35.10.32 Egress Configurable ACL 0 Selection

This register selects which result to use when there are multiple hits.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124806

Field Description

Bits	Field Name	Description	Default Value
0	selectTcamOrTable	If set to zero then TCAM answer is selected. If set	0×0
		to one then hash table answer is selected.	
1	selectSmallOrLarge	If set to zero then small hash table is selected. If	0×0
		set to one then large hash table is selected.	

35.10.33 Egress Configurable ACL 0 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table. If multiple buckets match then the result from the highest entry is selected.

Number of Entries: 256 Number of Addresses per Entry: 8

Type of Operation : Read/Write

Addressing: address[5:0]: hash of {compareData }
address[7:6]: bucket number

Address Space : 122650 to 124697

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid. 0 = No	0x0
		1 = Yes	
135:1	compareData	The data which shall be compared in this entry.	0×0
136	sendToCpu	This is a result field used when this entry is hit. If set, the packet shall be sent to the CPU port.	0x0
137	forceSendToCpuOrigPkt	This is a result field used when this entry is hit. If	0×0
		packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial	
		packet. The exception to this is rule is the tunnel	
		exit which will still be carried out	
138	metaDataValid	This is a result field used when this entry is hit. Is	0x0
		the meta_data field valid.	
154:139	metaData	This is a result field used when this entry is hit.	0x0
		Meta data for packets going to the CPU.	
155	metaDataPrio	This is a result field used when this entry is hit. If	0x0
1.0		multiple ACLs hit this meta_data shall take priority.	
156	dropEnable	This is a result field used when this entry is hit. If	0×0
		set, the packet shall be dropped and the Egress	
157	sendToPort	Configurable ACL Drop counter is incremented. This is a result field used when this entry is hit.	0×0
157	Send for ort	Send the packet to a specific port.	000
		0 = Disabled.	
		1 = Send to port configured in destPort.	
161:158	destPort	This is a result field used when this entry is hit.	0x0
		The port which the packet shall be sent to.	
162	updateCounter	This is a result field used when this entry is hit.	0x0
		When set the selected statistics counter will be updated.	

Bits	Field Name	Description	Default Value
168:163	counter	This is a result field used when this entry is hit. Which counter in Egress Configurable ACL Match Counter to update.	0×0
169	natOpValid	This is a result field used when this entry is hit. NAT operation pointer is valid.	0x0
179:170	natOpPtr	This is a result field used when this entry is hit. NAT operation pointer.	0x0
180	natOpPrio	This is a result field used when this entry is hit. If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0×0
181	tunnelEntry	This is a result field used when this entry is hit. Shall all of these packets enter into a tunnel.	0x0
182	tunnelEntryUcMc	This is a result field used when this entry is hit. Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0x0
186:183	tunnelEntryPtr	This is a result field used when this entry is hit. The tunnel entry which this packet shall enter upon exiting the switch.	0×0
187	tunnelEntryPrio	This is a result field used when this entry is hit. If multiple tunnelEntry are set and this prio bit is set then this tunnelEntryPtr will be selected.	0×0

35.10.34 Egress Configurable ACL 0 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.

Number of Entries: 16 Number of Addresses per Entry: 16

Type of Operation : ${\sf Read/Write}$

Addressing : All entries are read out in parallel

Address Space : 129903 to 130158

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
135:1	mask	Which bits to compare in this entry.	$2^{135} - 1$
270:136	compareData	The data which shall be compared in this entry. Observe	0×0
		that this compare data must be AND:ed by software before	
		the entry is searched. The hardware does not do the AND	
		between mask and compareData (In order to save area).	

35.10.35 Egress Configurable ACL 0 TCAM Answer

This is the table holding the answer for the **Egress Configurable ACL 0 TCAM**.

Number of Entries: 16 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: Egress Configurable ACL 0 TCAM hit index

Address Space : 124698 to 124729

Field Description

Bits	Field Name	Description	Default Value
0	sendToCpu	If set, the packet shall be sent to the CPU port.	0×0
1	forceSendToCpuOrigPkt	If packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial	0x0
		packet. The exception to this is rule is the tunnel exit which will still be carried out	
2	metaDataValid	Is the meta_data field valid.	0×0
18:3	metaData	Meta data for packets going to the CPU.	0×0
19	metaDataPrio	If multiple ACLs hit this meta_data shall take priority.	0x0
20	dropEnable	If set, the packet shall be dropped and the Egress Configurable ACL Drop counter is incremented.	0×0
21	sendToPort	Send the packet to a specific port. 0 = Disabled. 1 = Send to port configured in destPort.	0×0
25:22	destPort	The port which the packet shall be sent to.	0×0
26	updateCounter	When set the selected statistics counter will be updated.	0x0
32:27	counter	Which counter in Egress Configurable ACL Match Counter to update.	0x0
33	natOpValid	NAT operation pointer is valid.	0×0
43:34	natOpPtr	NAT operation pointer.	0×0
44	natOpPrio	If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0×0
45	tunnelEntry	Shall all of these packets enter into a tunnel.	0x0
46	tunnelEntryUcMc	Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0x0
50:47	tunnelEntryPtr	The tunnel entry which this packet shall enter upon exiting the switch.	0×0
51	tunnelEntryPrio	If multiple tunnelEntry are set and this prio bit is set then this tunnelEntryPtr will be selected.	0x0

35.10.36 Egress Configurable ACL 1 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number of fields. The fieldSelectBitmask has one bit for each field. The first 20 fields (bits) which are set to one are selected to build the lookup key for this ACL. It is not allowed to set more than 20 bit in the bitmask. The fields are described in ACL Fields

Number of Entries: 4

Type of Operation: Read/Write
Addressing: ACL rule pointer
Address Space: 125645 to 125648

Field Description

Bits	Field Name	Description	Default Value
19:0	fieldSelectBitmask	Bitmask of which fields to select. Set a bit to one	0x0
		to select this specific field, set zero to not select	
		field. At Maximum 20 bits should be set.	

35.10.37 Egress Configurable ACL 1 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.

Number of Entries: 16 Number of Addresses per Entry: 64

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space: 131823 to 132846

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
540:1	mask	Which bits to compare in this entry.	$2^{540} - 1$
1080:541	compareData	The data which shall be compared in this entry. Observe that this compare data must be AND:ed by software before the entry is searched. The hardware does not do the AND between mask and compareData (In order to save area).	0×0

296

35.10.38 Egress Configurable ACL 1 TCAM Answer

This is the table holding the answer for the Egress Configurable ACL 1 TCAM.

Number of Entries: 16 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: Egress Configurable ACL 1 TCAM hit index

Address Space : 124730 to 124761

Bits	Field Name	Description	Default Value
0	sendToCpu	If set, the packet shall be sent to the CPU port.	0×0
1	forceSendToCpuOrigPkt	If packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial	0×0
		packet. The exception to this is rule is the tunnel	
		exit which will still be carried out	
2	metaDataValid	Is the meta_data field valid.	0x0
18:3	metaData	Meta data for packets going to the CPU.	0x0
19	metaDataPrio	If multiple ACLs hit this meta_data shall take priority.	0x0
20	dropEnable	If set, the packet shall be dropped and the Egress Configurable ACL Drop counter is incremented.	0x0
21	sendToPort	Send the packet to a specific port. 0 = Disabled. 1 = Send to port configured in destPort.	0×0
25:22	destPort	The port which the packet shall be sent to.	0×0
26	updateCounter	When set the selected statistics counter will be updated.	0x0
32:27	counter	Which counter in Egress Configurable ACL Match Counter to update.	0x0
33	tunnelEntry	Shall all of these packets enter into a tunnel.	0×0
34	tunnelEntryUcMc	Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0x0
38:35	tunnelEntryPtr	The tunnel entry which this packet shall enter upon exiting the switch.	0×0
39	tunnelEntryPrio	If multiple tunnelEntry are set and this prio bit is set then this tunnelEntryPtr will be selected.	0×0

35.10.39 Egress Port NAT State

At end of ingress processing a check is done to determine what to do with packets which has different port states and what the ingress and egress ACLs says what shall be done with the packets. The table needs to be enabled in the natActionTableEnable.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation}: & \hbox{Read/Write} \\ \hbox{Address Space}: & \hbox{124807} \end{array}$

Field Description

Bits	Field Name	Description	Default Value
10:0	portState	Egress Port NAT state (Bit 0 is port 0, bit 1 is port 1 etc.). $0 = Private$ $1 = Public$	0x0

35.10.40 Egress Spanning Tree State

Spanning tree state for each egress port. The state Disabled implies that spanning tree protocol is not enabled and hence frames will be forwarded on this egress port.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : 128209

Field Description

Bits	Field Name	Description	Default Value
32:0	sptState	State of the spanning tree protocol. Bit[2:0] is port #0, bit[5:3] is port #1 etc. 0 = Disabled 1 = Blocking 2 = Listening 3 = Learning 4 = Forwarding	0×0

35.10.41 Enable Enqueue To Ports And Queues

This register is used to control if a particular port and queue shall be able to enqueue new packets. One queue mask exists for each port, setting a bit in the queue mask means packet is allowed to be queued on the respective queue. Packets that are directed to a queue that is turned off will be dropped and counted in **Queue Off Drop**.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress Port
Address Space: 124833 to 124843

Field Description

Bits	Field Name	Description	Default Value
7:0	q_on	If a bit is set, the corresponding queue is on.	0×ff

35.10.42 Flooding Action Send to Port

If a packet is flooded and this function is enabled on the source port then the packet is send to a single egress port instead of being flooded to all ports part of the packets VLAN membership.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Source Port
Address Space: 124844 to 124854

Field Description

Bits	Field Name	Description	Default Value
0	enable	Enable sent to port instead of flooding.	0×0
		$egin{array}{ll} 0 &= & {\sf Disable} \ 1 &= & {\sf Enable} \end{array}$	

Bits	Field Name	Description	Default Value
4:1	destPort	Once enabled this is the destination port to sent the packet to in case of flooding.	0x0

35.10.43 Force Non VLAN Packet To Specific Color

If a packet is non-VLAN tagged, there is an option to force these packets to a certain initial color.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124797

Field Description

Bits	Field Name	Description	Default Value
0	forceColor	When set, packets which are non-VLAN tagged are forced	0x0
		to a color.	
2:1	color	Initial color of the packet	0x0

35.10.44 Force Non VLAN Packet To Specific Queue

If a packet is non-VLAN tagged, there is an option to force these packets to a certain ingress/egress queue.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124795

Field Description

Bits	Field Name	Description	Default Value
0	forceQueue	If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 21.1	0×0
3:1	eQueue	The egress queue to be assigned if the forceQueue field in this entry is set to 1.	0×0

35.10.45 Force Unknown L3 Packet To Specific Color

If a packet does not contain IPv4, IPv6, MPLS or PPPoE carrying IPv4/IPv6 field there is an option to force the packet to a certain initial color.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124798

Field Description

Bits	Field Name	Description	Default Value
0	forceColor	When set, unknown L3 packet types are forced to a color.	0×0
2:1	color	Initial color of the packet	0×0

35.10.46 Force Unknown L3 Packet To Specific Egress Queue

If a packet does not contain IPv4, IPv6, MPLS or PPPoE carrying IPv4/IPv6 field there is an option to force the packet to a certain egress queue.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124796

Field Description

Bits	Field Name	Description	Default Value
0	forceQueue	If set, the packet shall have a forced egress queue. Please	0×0
		see Egress Queue Selection Diagram in Figure 21.1	
3:1	eQueue	The egress queue to be assigned if the forceQueue field in	0×0
		this entry is set to 1.	

35.10.47 Forward From CPU

Indicates if all frames received on the CPU port shall be forwarded while ignoring the egress port's spanning tree status.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124802

Field Description

Bits	Field Name	Description	Default Value
0	enable	If set, any frame received on the CPU port is forwarded without	0×0
		consideration of the egress port's spanning tree state.	

35.10.48 GRE Packet Decoder Options

The L4 protocol number which is used to determine if the packet has a GRE header. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : 128199

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled.	0×1
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
8:1	I4Proto	The value to be used to find this packet type.	0×2f
24:9	udp1	The value to be used to find this packet type.	0×1292
40:25	udp2	The value to be used to find this packet type.	0×1293
51:41	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0×0
62:52	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0×0

35.10.49 Hairpin Enable

Decide if the L2 switching allows a packet to be switched back on the same port it entered the switch. There are separate controls for flooding due to unknown MAC DA, multicast and unicast.

Number of Entries: 11

Type of Operation : Read/Write
Addressing : Ingress port
Address Space : 125721 to 125731

Field Description

Bits	Field Name	Description	Default Value
0	allowFlood	Allow flooding to source port.	0×0
1	allowMc	Allow multicast to source port.	0×0
2	allowUc	Allow unicast to source port.	0×1

35.10.50 Hardware Learning Configuration

Configure default status for a newly learned entry, learning limits and learning exceptions.

Number of Entries: 11

 $\begin{array}{lll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Addressing}: & \mbox{Ingress Port} \\ \mbox{Address Space}: & 308 \mbox{ to } 318 \\ \end{array}$

Field Description

Bits	Field Name	Description	Default Value
0	valid	For a new packet which is to be learned what value shall the valid bit have?	0×1

Bits	Field Name	Description	Default Value
1	stat	For a new packet which is to be learned what value	0x0
		shall the static bit have?	
2	hit	For a new packet which is to be learned what value	0×1
		shall the hit bit have?	
15:3	learnLimit	Maximum number of entries can be learned on this	0×0
		port. 0 means no limit.	
16	portMoveException	When the hardware learning unit is turned on and	0×0
		the ingress packet processing determines to bypass	
		the hardware learning check, set this field to one	
		to still perform the port move action.	
17	saHitException	When the hardware learning unit is turned on and	0×0
		the ingress packet processing determines to bypass	
		the hardware learning check, set this field to one	
		to still perform the SA hit update action.	

35.10.51 Hardware Learning Counter

Number of MAC addresses learned by the hardware learning unit. Write 0 to clear.

Number of Entries: 11

Type of Operation : Read/Write Addressing : Ingress Port Address Space : 353 to 363

Field Description

Bits	Field Name	Description	Default Value
12:0	cnt	Number of learned L2 entries.	0×0

35.10.52 Hash Based L3 Routing Table

This is the routing table used to determine the next hop. The IP lookup is done by hashing the VRF and the destination address extracted from the incoming packet. The hash is used to index this table. For each hash value the table has 4 buckets. The incoming IP address is compared with the destIPAddr field in all the buckets for the selected hash value. The packets assigned VRF is compared with the vrf fields and the protocol type is compares against the entries protocol. If there is a match in any bucket then the other fields in the matched bucket will be used for next hop processing. If ECMP is enabled for this entry an offset is added to the **nextHopPointer** and used when indexing the **Next Hop Table**.

 $\begin{array}{ll} \text{Number of Entries}: & 2048 \\ \text{Number of Addresses per Entry}: & 8 \end{array}$

Type of Operation : Read/Write

address[9:10]: bucket number

Address Space : 60826 to 77209

Bits	Field Name	Description	Default Value
0	ipVersion	Select if this is an IPv4 or IPv6 entry. 0 = IPv4 entry. 1 = IPv6 entry.	0x0
1	mpls	This is an MPLS entry, $0 = IP$ entry. $1 = MPLS$ entry.	0x0
3:2	vrf	This entries VRF. The packets assigned VRF will be compared with this field.	0×0
131:4	destIPAddr	The IP or MPLS address to be matched. If the entry is an IPv4 entry then only bits [31:0] is used. If the entry is a MPLS entry then bits [4-1:0] contains the source port while bits [4+19:4] contains the MPLS label to match.	0×0
141:132	nextHopPointer	Index into the Next Hop Table for this destination.	0x0
142	useECMP	Enables the use of ECMP hash to calculate the next hop pointer. 0 = Use ECMP hash. 1 = Do not use ECMP hash.	0×0
148:143	ecmpMask	How many bits of the ECMP hash will be used when calculating the ECMP offset. This byte is AND:ed with the ECMP hash to determine which bits shall be used as offset.	0×0
151:149	ecmpShift	How many bits the masked ECMP hash will be right shifted.	0×0

35.10.53 Hit Update Data FIFO

This register exposes the output of a FIFO which is holding all hit update requests to refresh the hit state. Under hardware hit writeback mode, the entry pushed to this FIFO is in sync with the FIB. If hardware hit writeback is turned off, the final hit update decision should be issued from software injected learning packet and what is pushed to this FIFO is not updated to L2 tables.

Number of Entries: 1

Type of Operation : Read Only Address Space : 4466

Bits	Field Name	Description	Default Value
0	hashRefreshHit	When this field is 1, the learning and aging engine has	0×0
		requested to refresh the hit state from 0 to 1 for the	
		hash table in FIB.	
10:1	hashValue	Hash of GID, MAC.	0×0
12:11	hashBucket	Bucket number of the hash lookup table.	0×0
13	camRefreshHit	When this field is 1, the learning and aging engine has	0×0
		requested to refresh the hit state from 0 to 1 for the	
		cam entry.	
18:14	camIndex	Index to the entry in L2 Aging Collision Table.	0×0

Bits	Field Name	Description	Default Value
19	valid		0×0
		$0 = {\sf Empty\ FIFO}$, entry is not valid $1 = {\sf Valid\ entry}$	

35.10.54 Hit Update Data FIFO High Watermark Level

The High Watermark Interrupt will occur when a push to **Hit Update Data FIFO** is done and the number of existing entries after the push is larger than this setting.

Number of Entries: 1

Type of Operation: Read/Write

Address Space: 307

Field Description

Bits	Field Name	Description	Default Value
5:0	level	Number of used entries	0x0

35.10.55 IEEE 1588 L2 Packet Decoder Options

The Ethernet type used to determine if a packet is a IEEE 1588 L2 Packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : 128195

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled. $0 = \text{No}$ $1 = \text{Yes}$	0×1
16:1	eth	The value to be used to find this packet type.	0x88f7
27:17	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0×0
38:28	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0x0
39	ptp	If a packet is sent to the CPU and this bit is set and the packet has a timestamp then it will show having a valid timestamp in the CPU-header.	0x0

35.10.56 IEEE 1588 L4 Packet Decoder Options

IEEE 1588 L4 packet is determined by this register. Fields from L2/L3/L4 are required for the comparison, including two optional DA MAC, five optional IPv4 DA, two optional IPv6 DA with the first one maskable, and two optional UDP destination ports. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1
Number of Addresses per Entry: 32

Type of Operation : Read/Write Address Space : 129415

Field Description

Bits	Field	Description	Default	
Dits	Name	Description	Value	
0	enabled	Is this decoding enabled.	0×1	
		0 = No		
		1 = Yes		
48:1	da_mac1	DA MAC to match.	0×11b19000000	
96:49	da_mac2	DA MAC to match.	0×180c200000e	
128:97	da_ipv4_addr1	IPv4 DA to match.	0xe0000181	
160:129	da_ipv4_addr2	IPv4 DA to match.	0xe0000182	
192:161	da_ipv4_addr3	IPv4 DA to match.	0xe0000183	
224:193	da_ipv4_addr4	IPv4 DA to match.	0xe0000184	
256:225	da_ipv4_addr5	IPv4 DA to match.	0xe000016b	
384:257	da_ipv6_addr1	IPv6 DA to match. This address is maskable.	0×1810000000000000000000000000000000000	
512:385	da_ipv6_mask1	Bit mask for da_ipv6_addr1. For each bit of the	0×fff0fffffffffffffffffff	
		mask, 1 means valid for comparison.		
640:513	da_ipv6_addr2	IPv6 DA to match.	0x6b00000000000000000000000000000000000	
656:641	udp1	UDP destination to match.	0×13f	
672:657	udp2	UDP destination to match.	0×140	
683:673	drop	If a packet comes in on this source port then	0x0	
		drop the packet.		
		0 = Do not drop this packet.		
		1 = Drop this packet and update the drop counter.		
694:684	toCpu	If a packet comes in on this source port then	0×0	
		send the packet to the CPU port.		
		0 = Do not sent to CPU. Normal Processing of		
		packet.		
		1 = Send to CPU , bypass normal packet processing.		
695	ptp	If a packet is sent to the CPU and this bit is set	0×0	
		and the packet has a timestamp then it will show		
		having a valid timestamp in the CPU-header.		

35.10.57 IEEE 802.1X and EAPOL Packet Decoder Options

The Ethernet type used to determine if a packet is a 802.1X or EAPOL packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1
Number of Addresses per Entry: 2

 $\begin{array}{ll} {\sf Type\ of\ Operation:} & {\sf Read/Write} \\ {\sf Address\ Space:} & 128197 \end{array}$

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled. 0 = No	0×1
		1 = Yes	
16:1	eth	The value to be used to find this packet type.	0×888e
27:17	drop	If a packet comes in on this source port then drop the packet. 0 = Do not drop this packet. 1 = Drop this packet and update the drop counter.	0×0
38:28	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0×0

35.10.58 IKE Packet Decoder Options

The UDP ports used to detect a IKE packet the underlaying packet must be a IPv4 or IPv6 packet.. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

 $\begin{array}{ll} \text{Number of Entries}: & 1 \\ \text{Number of Addresses per Entry}: & 2 \end{array}$

Type of Operation : Read/Write Address Space : 128207

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled. 0 = No	0×1
		1 = Yes	
16:1	udp1	The value to be used to find this packet type.	0×1f4
32:17	udp2	The value to be used to find this packet type.	0×1194
43:33	drop	If a packet comes in on this source port then drop the packet. 0 = Do not drop this packet. 1 = Drop this packet and update the drop counter.	0×0
54:44	toCpu	If a packet comes in on this source port then send the packet to the CPU port. 0 = Do not sent to CPU. Normal Processing of packet.	0x0
		0 = Do not sent to CPO. Normal Processing of packet. 1 = Send to CPU , bypass normal packet processing.	

35.10.59 IPP Debug debugMatchIPP0

Packet processing pipeline status for debugMatchIPP0.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124832

Bits	Field Name	Description	Default Value
21:0	value	Status from last processed packet.	0×0

35.10.60 IPP Debug doL2Lookup

Packet processing pipeline status for doL2Lookup.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124830

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.10.61 IPP Debug dropPktAfterL2Decode

Packet processing pipeline status for dropPktAfterL2Decode.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124812

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.10.62 IPP Debug dropPktAfterL3Decode

Packet processing pipeline status for dropPktAfterL3Decode.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation}: & \hbox{Read/Write} \\ \hbox{Address Space}: & \hbox{124814} \end{array}$

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.10.63 IPP Debug dstPortmask

Packet processing pipeline status for dstPortmask.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124831

Field Description

Bit	Field Name	Description	Default Value
10:0	value	Status from last processed packet.	0×0

35.10.64 IPP Debug finalVid

Packet processing pipeline status for finalVid.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124816

Field Description

Bits	Field Name	Description	Default Value
12:0	value	Status from last processed packet.	0×0

35.10.65 IPP Debug isBroadcast

Packet processing pipeline status for isBroadcast.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124829

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.10.66 IPP Debug isFlooding

Packet processing pipeline status for isFlooding.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124828

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.10.67 IPP Debug I2DaHash

Packet processing pipeline status for I2DaHash.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation}: & Read/Write \\ \hbox{Address Space}: & 124824 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
9:0	value	Status from last processed packet.	0×0

35.10.68 IPP Debug I2DaHashHitAndBucket

Packet processing pipeline status for I2DaHashHitAndBucket.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124825

Field Description

Bits	Field Name	Description	Default Value
2:0	value	Status from last processed packet.	0x0

35.10.69 IPP Debug I2DaHashKey

Packet processing pipeline status for I2DaHashKey.

Number of Entries: 1
Number of Addresses per Entry: 2

 $\begin{array}{ll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Address Space}: & 128213 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
59:0	value	Status from last processed packet.	0×0

35.10.70 IPP Debug I2DaTcamHitsAndCast

Packet processing pipeline status for I2DaTcamHitsAndCast.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124826

Field Description

Bits	Field Name	Description	Default Value
14:0	value	Status from last processed packet.	0×0

35.10.71 IPP Debug nextHopPtrFinal

Packet processing pipeline status for nextHopPtrFinal.

Number of Entries: 1

 $\begin{tabular}{ll} Type of Operation: & Read/Write \\ Address Space: & 124823 \end{tabular}$

Field Description

Bits	Field Name	Description	Default Value
9:0	value	Status from last processed packet.	0×0

35.10.72 IPP Debug nextHopPtrHash

Packet processing pipeline status for nextHopPtrHash.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124820

Field Description

Bits	Field Name	Description	Default Value
9:0	value	Status from last processed packet.	0×0

35.10.73 IPP Debug nextHopPtrHashHit

Packet processing pipeline status for nextHopPtrHashHit.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124822

Field Description

	Bits	Field Name	Description	Default Value
Γ	0	value	Status from last processed packet.	0×0

35.10.74 IPP Debug nextHopPtrLpm

Packet processing pipeline status for nextHopPtrLpm.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124819

Field Description

Bits	Field Name	Description	Default Value
9:0	value	Status from last processed packet.	0×0

35.10.75 IPP Debug nextHopPtrLpmHit

Packet processing pipeline status for nextHopPtrLpmHit.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124821

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.10.76 IPP Debug nrVlans

Packet processing pipeline status for nrVlans.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124813

Bits	Field Name	Description	Default Value
1:0	value	Status from last processed packet.	0×0

35.10.77 IPP Debug routed

Packet processing pipeline status for routed.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124827

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.10.78 IPP Debug routerHit

Packet processing pipeline status for routerHit.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124818

Field Description

Bits	Field Name	Description	Default Value
0	value	Status from last processed packet.	0×0

35.10.79 IPP Debug spVidOp

Packet processing pipeline status for spVidOp.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation}: & \hbox{Read/Write} \\ \hbox{Address Space}: & 124815 \end{array}$

Bits	Field Name	Description	Default Value
2:0	value	Status from last processed packet.	0×0

35.10.80 IPP Debug srcPort

Packet processing pipeline status for srcPort.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124811

Field Description

Bits	Field Name	Description	Default Value
3:0	value	Status from last processed packet.	0×0

35.10.81 IPP Debug vlanVidOp

Packet processing pipeline status for vlanVidOp.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation:} & \hbox{Read/Write} \\ \hbox{Address Space:} & \hbox{124817} \end{array}$

Field Description

Bits	Field Name	Description	Default Value
2:0	value	Status from last processed packet.	0×0

35.10.82 IPv4 TOS Field To Egress Queue Mapping Table

Mapping table from TOS in the IPv4 header to an egress queue.

Number of Entries: 256

 $\label{type of Operation: Read/Write} Type of Operation: Read/Write$

Addressing: Incoming IPv4 packets TOS

Address Space: 126636 to 126891

Bits	Field Name	Description	Default Value
2:0	pQueue	Egress queue.	0×1

35.10.83 IPv4 TOS Field To Packet Color Mapping Table

Mapping table from TOS in the IPv4 header to a packet inital color.

Number of Entries: 256

Type of Operation : Read/Write

Addressing: Incoming IPv4 packets TOS pointer

Address Space: 126100 to 126355

Field Description

Bits	Field Name	Description	Default Value
1:0	color	Packet initial color.	0x0

35.10.84 IPv6 Class of Service Field To Egress Queue Mapping Table

Mapping table from Class of Service in the IPv6 header to an egress queue.

Number of Entries: 256

Type of Operation : Read/Write

Addressing: Incoming IPv6 packets Class of Service

Address Space: 126380 to 126635

Field Description

Bits	Field Name	Description	Default Value
2:0	pQueue	Egress queue.	0×1

35.10.85 IPv6 Class of Service Field To Packet Color Mapping Table

Mapping table from Class of service in the IPv6 header to a packet inital color.

Number of Entries: 256

Type of Operation : Read/Write

Addressing: Incoming IPv6 packets Class os Service pointer

Address Space: 125844 to 126099

Bits	Field Name	Description	Default Value
1:0	color	Packet initial color.	0×0

35.10.86 Ingress Admission Control Current Status

Number of tokens currently in the token bucket.

Number of Entries: 32

Type of Operation: Read/Write
Addressing: Meter Pointer
Address Space: 134682 to 134713

Field Description

Bits	Field Name	Description	Default Value
15:0	tokens_0	Number of tokens after the last visit for token bucket 0.	0×0
31:16	tokens_1	Number of tokens after the last visit for token bucket 1.	0×0

35.10.87 Ingress Admission Control Initial Pointer

Initial ingress admission control pointer based on source port number and L2 priority. L2 priority is from either the outermost VLAN PCP field or **defaultPcp**. Further processes may overwrite the initial pointer by comparing the order of the pointer.

Number of Entries: 128

Type of Operation: Read/Write

Address Space: 4734 to 4861

Field Description

Bits	Field Name	Description	Default Value
0	mmpValid	If set, this entry contains a valid MMP pointer	0×0
5:1	mmpPtr	Initial pointer to the ingress MMP.	0×0
7:6	mmpOrder	Order of the initial ingress MMP pointer.	0×0

315

35.10.88 Ingress Admission Control Mark All Red

Blocking status of the MMP entry due to packet drops in the MMP.

Number of Entries: 32

Type of Operation: Read/Write
Addressing: Meter Pointer
Address Space: 134490 to 134521

Field Description

Bits	Field Name	Description	Default Value
0	markAllRed	When this field is set to 1 by the core, the correspond-	0×0
		ing MMP entry is under the blocking status. As a conse-	
		quence, all packets with this MMP pointer will be dropped.	
		Clear this field to allow packets enter the MMP entry again.	

35.10.89 Ingress Admission Control Mark All Red Enable

Option to block metering after MMP packet drops.

Number of Entries: 32

Type of Operation: Read/Write
Addressing: Meter Pointer
Address Space: 134458 to 134489

Field Description

Bits	Field Name	Description	Default Value
0	markAllRedEn	After setting this field to 1, if a packet is dropped by	0x0
		a MMP entry, this MMP entry will stop metering and	
		drop all packets with the corresponding MMP pointer.	

35.10.90 Ingress Admission Control Reset

Reset token buckets so that it is back to the inital status. The reset will be kept high till new traffic arrives, then the traffic is metered with a bucket full of tokens and the reset is deactivated. It is helpful when the token bucket configuration is changed during runtime.

Number of Entries: 32

Type of Operation: Read/Write
Addressing: Meter Pointer
Address Space: 134650 to 134681

Field Description

Bits	Field Name	Description	Default Value
0	bucketReset	if set, reload with full tokens for token buckets in this entry.	0×1

35.10.91 Ingress Admission Control Token Bucket Configuration

Configuration options for token buckets used by Ingress Admission Control. Each entry refers to either a single rate three color marker (srTCM) or a two rate three color marker (trTCM) with two token buckets. For each token bucket the rate is configured by filling in a certain number of tokens at one of the available frequencies. Token bucket 0 shall always use the committed information rate (CIR). Runtime configuration update requires writting 1 to the Ingress Admission Control Reset first.

Number of Entries: 32 Number of Addresses per Entry: 4

Type of Operation: Read/Write
Addressing: Meter Pointer
Address Space: 134522 to 134649

Field Description

Bits	Field Name	Description	Default Value
15:0	bucketCapacity_0	Capacity for token bucket 0.	0×0
27:16	tokens_0	Number of tokens added each tick for token bucket 0.	0x0
30:28	tick_0	Select one of the 5 available ticks for token bucket 0. The tick frequencies are configured globaly in the Core Tick Configuration register.	0×0
46:31	bucketCapacity_1	Capacity for token bucket 1.	0×0
58:47	tokens_1	Number of tokens added each tick for token bucket 1.	0x0
61:59	tick_1	Select one of the 5 available ticks for token bucket 1. The tick frequencies are configured globaly in the Core Tick Configuration register.	0×0
62	bucketMode	$egin{array}{l} 0 = \mbox{srTCM} \ 1 = \mbox{trTCM} \end{array}$	0x0
63	colorBlind	 0 = color-aware: The metering result is based on the initial coloring from the ingress process pipeline. 1 = color-blind: The metering ignores any precoloring. 	0×0
66:64	dropMask	Drop mask for the three colors obtained from the metering result. For each bit set to 1 the corresponding color shall drop the packet. Bit 0, 1, 2 represents drop or not for green, yellow and red respectively	0×4
81:67	maxLength	Maximum allowed packet length in bytes. Packets with bytes larger than this value will be dropped before metering.	0×7fff
83:82	tokenMode	 0 = Count in bytes and add extra bytes for metering. 1 = Count in bytes and substract extra bytes for metering. 2 = Count in packets. 3 = No tokens are counted. 	0x0
91:84	byteCorrection	Extra bytes per packet for IFG correction, only valid under byte mode. Default is 4 byte FCS plus 20 byte IFG.	0×18

35.10.92 Ingress Configurable ACL 0 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table. If multiple buckets match then the result from the highest entry is selected.

Number of Entries : 2048 Number of Addresses per Entry: 16

 $\mathsf{Read}/\mathsf{Write}$ Type of Operation :

address[8:0] : hash of {compareData } $\mathsf{Addressing}:$

address[10:9] : bucket number

4862 to 37629 Address Space :

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid. 0 = No 1 = Yes	0x0
330:1	compareData	The data which shall be compared in this entry.	0×0
331	sendToCpu	This is a result field used when this entry is hit. If set, the packet shall be sent to the CPU port.	0×0
332	forceSendToCpuOrigPkt	This is a result field used when this entry is hit. If packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial packet. The exception to this is rule is the tunnel exit which will still be carried out	0×0
333	metaDataValid	This is a result field used when this entry is hit. Is the meta_data field valid.	0×0
349:334	metaData	This is a result field used when this entry is hit. Meta data for packets going to the CPU.	0×0
350	metaDataPrio	This is a result field used when this entry is hit. If multiple ACLs hit this meta_data shall take priority.	0×0
351	dropEnable	This is a result field used when this entry is hit. If set, the packet shall be dropped and the Ingress Configurable ACL Drop counter is incremented.	0x0
352	sendToPort	This is a result field used when this entry is hit. Send the packet to a specific port. 0 = Disabled. 1 = Send to port configured in destPort.	0×0
356:353	destPort	This is a result field used when this entry is hit. The port which the packet shall be sent to.	0×0
357	inputMirror	This is a result field used when this entry is hit. If set, input mirroring is enabled for this rule. In addition to the normal processing of the packet a copy of the unmodified input packet will be send to the destination Input Mirror port and exit on that port. The copy will be subject to the normal resource limitations in the switch.	0x0
361:358	destInputMirror	This is a result field used when this entry is hit. Destination physical port for input mirroring.	0×0
362	imPrio	This is a result field used when this entry is hit. If multiple input mirror are set and this prio bit is set then this input mirror will be selected.	0x0
363	updateCounter	This is a result field used when this entry is hit. When set the selected statistics counter will be updated.	0x0
369:364	counter	This is a result field used when this entry is hit. Which counter in Ingress Configurable ACL Match Counter to update.	0×0

Bits	Field Name	Description	Default Value
370	updateTosExp	This is a result field used when this entry is hit. Force TOS/EXP update.	0×0
378:371	newTosExp	This is a result field used when this entry is hit. New TOS/EXP value.	0×0
386:379	tosMask	This is a result field used when this entry is hit. Mask for TOS value. Setting a bit to one means this bit will be selected from the newTosExp field , while setting this bit to zero means that the bit will be selected from the packets already existing TOS byte bit.	0x0
387	enableUpdateIp	This is a result field used when this entry is hit. If this entry is hit then update SA or DA IPv4 address in ingress packet processing, this value will be used by the routing function and egress ACL if this is exists, this only works for IPv4. 0 = Disable 1 = Enable	0×0
388	updateSaOrDa	This is a result field used when this entry is hit. Update the SA or DA IPv4 address. The Destiantion IP address updated will be used in the routing functionality and Egress ACL functionality. If the source IP address is updated then the updated value will be used in the egress ACL keys. 0 = Source IP Address 1 = Destination IP Address	0x0
420:389	newlpValue	This is a result field used when this entry is hit. Update the SA or DA IPv4 address value.	0x0
421	enable Update L4	This is a result field used when this entry is hit. If this entry is hit then update L4 Source Port or Destination port in ingress packet processing, this value will be used in the Egress ACL. 0 = Disable 1 = Enable	0x0
422	updateL4SpOrDp	This is a result field used when this entry is hit. Update the source or destination L4 port. 0 = Source L4 Port 1 = Destination L4 Port	0×0
438:423	newL4Value	This is a result field used when this entry is hit. Update the L4 SP or DP with this value	0×0
439	natOpValid	This is a result field used when this entry is hit. NAT operation pointer is valid.	0×0
450:440	natOpPtr	This is a result field used when this entry is hit. NAT operation pointer.	0×0
451	natOpPrio	This is a result field used when this entry is hit. If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0x0
452	forceColor	This is a result field used when this entry is hit. If set, the packet shall have a forced color.	0×0
454:453	color	This is a result field used when this entry is hit. Initial color of the packet if the forceColor field is set.	0x0
455	forceColorPrio	This is a result field used when this entry is hit. If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.	0x0

Bits	Field Name	Description	Default Value
456	mmpValid	This is a result field used when this entry is hit. If set, this entry contains a valid MMP pointer	0x0
461:457	mmpPtr	This is a result field used when this entry is hit. Ingress MMP pointer.	0x0
463:462	mmpOrder	This is a result field used when this entry is hit. Ingress MMP pointer order.	0x0
464	forceQueue	This is a result field used when this entry is hit. If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 21.1	0×0
467:465	eQueue	This is a result field used when this entry is hit. The egress queue to be assigned if the forceQueue field in this entry is set to 1.	0x0
468	forceQueuePrio	This is a result field used when this entry is hit. If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.	0×0

35.10.93 Ingress Configurable ACL 0 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 0. Setting the valid bit and a new rule will override the default rule pointer from the source port table.

Number of Entries: 16

 $Type\ of\ Operation: \qquad Read/Write$

Address bits [1:0]	Value from preLookupAclBits.
Address bits [3:2]	L3 Type Of Packet.
	0 = IPv4 1 = IPv6 2 = MPLS 3 = Not IPv4, IPv6 or MPLS

Address Space : 127512 to 127527

Field Description

Addressing:

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid. If not then use default port rule.	0×0
3:1	rulePtr	If the valid is entry then this rule pointer will be used.	0×0

35.10.94 Ingress Configurable ACL 0 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number of fields. The fieldSelectBitmask has one bit for each field. The first 7 fields (bits) which are set to one are selected. It is not allowed to set more than 7 bit in the bitmask. The fields are described in ACL Fields

Number of Entries: 8

Type of Operation: Read/Write
Addressing: ACL rule pointer
Address Space: 127504 to 127511

Bits	Field Name	Description	Default Value
13:0	fieldSelectBitmask	Bitmask of which fields to select. Set a bit to one to select this specific field, set zero to not select	0×0
		field. At Maximum 7 bits should be set.	

35.10.95 Ingress Configurable ACL 0 Search Mask

Before the hashing and searching is done in the **Ingress Configurable ACL 0 Large Table** and **Ingress Configurable ACL 0 Small Table**. The search data is AND:ed with this mask. If a bit in the mask is set to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and large tables.

Number of Entries: 1
Number of Addresses per Entry: 32

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
329:0	mask_small	Which bits to compare in the Ingress Configurable ACL	$2^{330} - 1$
		O Small Table lookup. A bit set to 1 means the corresponding bit in the search data is compared and 0 means the bit is ignored.	
659:330	mask_large	Which bits to compare in the Ingress Configurable ACL 0 Large Table lookup. A bit set to 1 means the corresponding bit in the search data is compared and 0 means the bit is ignored.	$2^{330} - 1$

35.10.96 Ingress Configurable ACL 0 Selection

This register selects which result to use when there are multiple hits.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124787

Bits	Field Name	Description	Default Value
0	selectTcamOrTable	If set to zero then TCAM answer is selected. If set	0x0
		to one then hash table answer is selected.	
1	selectSmallOrLarge	If set to zero then small hash table is selected. If	0×0
		set to one then large hash table is selected.	

35.10.97 Ingress Configurable ACL 0 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table. If multiple buckets match then the result from the highest entry is selected.

Number of Entries: 256 Number of Addresses per Entry: 16

Type of Operation : Read/Write

Addressing: address[5:0]: hash of {compareData }

address[7:6]: bucket number

Address Space : 37630 to 41725

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid. 0 = No 1 = Yes	0x0
330:1	compareData	The data which shall be compared in this entry.	0x0
331	sendToCpu	This is a result field used when this entry is hit. If set, the packet shall be sent to the CPU port.	0×0
332	forceSendToCpuOrigPkt	This is a result field used when this entry is hit. If packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial packet. The exception to this is rule is the tunnel exit which will still be carried out	0×0
333	metaDataValid	This is a result field used when this entry is hit. Is the meta_data field valid.	0×0
349:334	metaData	This is a result field used when this entry is hit. Meta data for packets going to the CPU.	0×0
350	metaDataPrio	This is a result field used when this entry is hit. If multiple ACLs hit this meta_data shall take priority.	0×0
351	dropEnable	This is a result field used when this entry is hit. If set, the packet shall be dropped and the Ingress Configurable ACL Drop counter is incremented.	0×0
352	sendToPort	This is a result field used when this entry is hit. Send the packet to a specific port. 0 = Disabled. 1 = Send to port configured in destPort.	0x0
356:353	destPort	This is a result field used when this entry is hit. The port which the packet shall be sent to.	0×0
357	inputMirror	This is a result field used when this entry is hit. If set, input mirroring is enabled for this rule. In addition to the normal processing of the packet a copy of the unmodified input packet will be send to the destination Input Mirror port and exit on that port. The copy will be subject to the normal resource limitations in the switch.	0x0
361:358	destInputMirror	This is a result field used when this entry is hit. Destination physical port for input mirroring.	0×0
362	imPrio	This is a result field used when this entry is hit. If multiple input mirror are set and this prio bit is set then this input mirror will be selected.	0×0

Bits	Field Name	Description	Default Value
363	updateCounter	This is a result field used when this entry is hit. When set the selected statistics counter will be updated.	0x0
369:364	counter	This is a result field used when this entry is hit. Which counter in Ingress Configurable ACL Match Counter to update.	0x0
370	updateTosExp	This is a result field used when this entry is hit. Force TOS/EXP update.	0×0
378:371	newTosExp	This is a result field used when this entry is hit. New TOS/EXP value.	0x0
386:379	tosMask	This is a result field used when this entry is hit. Mask for TOS value. Setting a bit to one means this bit will be selected from the newTosExp field , while setting this bit to zero means that the bit will be selected from the packets already existing TOS byte bit.	0×0
387	enableUpdateIp	This is a result field used when this entry is hit. If this entry is hit then update SA or DA IPv4 address in ingress packet processing, this value will be used by the routing function and egress ACL if this is exists, this only works for IPv4. 0 = Disable 1 = Enable	0x0
388	updateSaOrDa	This is a result field used when this entry is hit. Update the SA or DA IPv4 address. The Destiantion IP address updated will be used in the routing functionality and Egress ACL functionality. If the source IP address is updated then the updated value will be used in the egress ACL keys. $0 = \text{Source IP Address}$ $1 = \text{Destination IP Address}$	0×0
420:389	newlpValue	This is a result field used when this entry is hit. Update the SA or DA IPv4 address value.	0×0
421	enable Update L4	This is a result field used when this entry is hit. If this entry is hit then update L4 Source Port or Destination port in ingress packet processing, this value will be used in the Egress ACL. 0 = Disable 1 = Enable	0x0
422	updateL4SpOrDp	This is a result field used when this entry is hit. Update the source or destination L4 port. 0 = Source L4 Port 1 = Destination L4 Port	0×0
438:423	newL4Value	This is a result field used when this entry is hit. Update the L4 SP or DP with this value	0x0
439	natOpValid	This is a result field used when this entry is hit. NAT operation pointer is valid.	0×0
450:440	natOpPtr	This is a result field used when this entry is hit. NAT operation pointer.	0×0
451	natOpPrio	This is a result field used when this entry is hit. If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0x0
452	forceColor	This is a result field used when this entry is hit. If set, the packet shall have a forced color.	0x0

Bits	Field Name	Description	Default Value
454:453	color	This is a result field used when this entry is hit. Initial color of the packet if the forceColor field is set.	0×0
455	forceColorPrio	This is a result field used when this entry is hit. If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.	0x0
456	mmpValid	This is a result field used when this entry is hit. If set, this entry contains a valid MMP pointer	0×0
461:457	mmpPtr	This is a result field used when this entry is hit. Ingress MMP pointer.	0×0
463:462	mmpOrder	This is a result field used when this entry is hit. Ingress MMP pointer order.	0×0
464	forceQueue	This is a result field used when this entry is hit. If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 21.1	0×0
467:465	eQueue	This is a result field used when this entry is hit. The egress queue to be assigned if the forceQueue field in this entry is set to 1.	0x0
468	forceQueuePrio	This is a result field used when this entry is hit. If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.	0x0

35.10.98 Ingress Configurable ACL 0 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.

Number of Entries: 16 Number of Addresses per Entry: 32

Type of Operation : ${\sf Read/Write}$

Addressing: All entries are read out in parallel

Address Space: 128903 to 129414

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0x0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
330:1	mask	Which bits to compare in this entry.	$2^{330} - 1$
660:331	compareData	The data which shall be compared in this entry. Observe	0×0
		that this compare data must be AND:ed by software before	
		the entry is searched. The hardware does not do the AND	
		between mask and compareData (In order to save area).	

35.10.99 Ingress Configurable ACL 0 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 0 TCAM.

 $\begin{array}{ll} \mbox{Number of Entries}: & \mbox{16} \\ \mbox{Number of Addresses per Entry}: & \mbox{8} \end{array}$

Type of Operation : ${\sf Read/Write}$

Addressing : Ingress Configurable ACL 0 TCAM hit index

Address Space : 41726 to 41853

Field Description

Bits	Field Name	Description	Default Value
0	sendToCpu	If set, the packet shall be sent to the CPU port.	0x0
1	forceSendToCpuOrigPkt	If packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial packet. The exception to this is rule is the tunnel exit which will still be carried out	0×0
2	metaDataValid	Is the meta_data field valid.	0×0
18:3	metaData	Meta data for packets going to the CPU.	0×0
19	metaDataPrio	If multiple ACLs hit this meta_data shall take priority.	0x0
20	dropEnable	If set, the packet shall be dropped and the Ingress Configurable ACL Drop counter is incremented.	0x0
21	sendToPort	Send the packet to a specific port. 0 = Disabled. 1 = Send to port configured in destPort.	0×0
25:22	destPort	The port which the packet shall be sent to.	0×0
26	inputMirror	If set, input mirroring is enabled for this rule. In addition to the normal processing of the packet a copy of the unmodified input packet will be send to the destination Input Mirror port and exit on that port. The copy will be subject to the normal resource limitations in the switch.	0×0
30:27	destInputMirror	Destination physical port for input mirroring.	0×0
31	imPrio	If multiple input mirror are set and this prio bit is set then this input mirror will be selected.	0×0
32	updateCounter	When set the selected statistics counter will be updated.	0×0
38:33	counter	Which counter in Ingress Configurable ACL Match Counter to update.	0x0
39	updateTosExp	Force TOS/EXP update.	0×0
47:40	newTosExp	New TOS/EXP value.	0×0
55:48	tosMask	Mask for TOS value. Setting a bit to one means this bit will be selected from the newTosExp field , while setting this bit to zero means that the bit will be selected from the packets already existing TOS byte bit.	0×0
56	enableUpdateIp	If this entry is hit then update SA or DA IPv4 address in ingress packet processing, this value will be used by the routing function and egress ACL if this is exists, this only works for IPv4. 0 = Disable 1 = Enable	0x0

Bits	Field Name	Description	Default Value
57	updateSaOrDa	Update the SA or DA IPv4 address. The Destiantion IP address updated will be used in the routing functionality and Egress ACL functionality. If the source IP address is updated then the updated value will be used in the egress ACL keys. 0 = Source IP Address 1 = Destination IP Address	0×0
89:58	newlpValue	Update the SA or DA IPv4 address value.	0×0
90	enableUpdateL4	If this entry is hit then update L4 Source Port or Destination port in ingress packet processing, this value will be used in the Egress ACL. 0 = Disable 1 = Enable	0×0
91	updateL4SpOrDp	Update the source or destination L4 port. 0 = Source L4 Port 1 = Destination L4 Port	0×0
107:92	newL4Value	Update the L4 SP or DP with this value	0×0
108	natOpValid	NAT operation pointer is valid.	0×0
119:109	natOpPtr	NAT operation pointer.	0×0
120	natOpPrio	If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0×0
121	forceColor	If set, the packet shall have a forced color.	0×0
123:122	color	Initial color of the packet if the forceColor field is set.	0x0
124	forceColorPrio	If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.	0×0
125	mmpValid	If set, this entry contains a valid MMP pointer	0×0
130:126	mmpPtr	Ingress MMP pointer.	0x0
132:131	mmpOrder	Ingress MMP pointer order.	0x0
133	forceQueue	If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 21.1	0×0
136:134	eQueue	The egress queue to be assigned if the forceQueue field in this entry is set to 1.	0×0
137	forceQueuePrio	If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.	0x0

35.10.100 Ingress Configurable ACL 1 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table. If multiple buckets match then the result from the highest entry is selected.

Number of Entries: 128 Number of Addresses per Entry: 16

Type of Operation : Read/Write

Address Space : 41854 to 43901

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \\ 1 &= & Yes \end{array}$	
135:1	compareData	The data which shall be compared in this entry.	0×0
136	sendToCpu	This is a result field used when this entry is hit. If set, the packet shall be sent to the CPU port.	0x0
137	forceSendToCpuOrigPkt	This is a result field used when this entry is hit. If packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial packet. The exception to this is rule is the tunnel exit which will still be carried out	0×0
138	metaDataValid	This is a result field used when this entry is hit. Is the meta_data field valid.	0x0
154:139	metaData	This is a result field used when this entry is hit. Meta data for packets going to the CPU.	0×0
155	metaDataPrio	This is a result field used when this entry is hit. If multiple ACLs hit this meta_data shall take priority.	0×0
156	dropEnable	This is a result field used when this entry is hit. If set, the packet shall be dropped and the Ingress Configurable ACL Drop counter is incremented.	0×0
157	sendToPort	This is a result field used when this entry is hit. Send the packet to a specific port. 0 = Disabled. 1 = Send to port configured in destPort.	0×0
161:158	destPort	This is a result field used when this entry is hit. The port which the packet shall be sent to.	0x0
162	inputMirror	This is a result field used when this entry is hit. If set, input mirroring is enabled for this rule. In addition to the normal processing of the packet a copy of the unmodified input packet will be send to the destination Input Mirror port and exit on that port. The copy will be subject to the normal resource limitations in the switch.	0x0
166:163	destInputMirror	This is a result field used when this entry is hit. Destination physical port for input mirroring.	0×0
167	imPrio	This is a result field used when this entry is hit. If multiple input mirror are set and this prio bit is set then this input mirror will be selected.	0×0
168	noLearning	This is a result field used when this entry is hit. If set this packets MAC SA will not be learned.	0x0
169	updateCounter	This is a result field used when this entry is hit. When set the selected statistics counter will be updated.	0x0
175:170	counter	This is a result field used when this entry is hit. Which counter in Ingress Configurable ACL Match Counter to update.	0x0
176	updateTosExp	This is a result field used when this entry is hit. Force TOS/EXP update.	0x0
184:177	newTosExp	This is a result field used when this entry is hit. New TOS/EXP value.	0×0

Bits	Field Name	Description	Default Value
192:185	tosMask	This is a result field used when this entry is hit. Mask for TOS value. Setting a bit to one means this bit will be selected from the newTosExp field , while setting this bit to zero means that the bit will be selected from the packets already existing TOS byte bit.	0×0
193	updateCfiDei	This is a result field used when this entry is hit. The CFI/DEI value of the packets outermost VLAN should be updated. 0 = Do not update the value. 1 = Update the value.	0×0
194	newCfiDeiValue	This is a result field used when this entry is hit. The value to update to.	0×0
195	updatePcp	This is a result field used when this entry is hit. The PCP value of the packets outermost VLAN should be updated. 0 = Do not update the value. 1 = Update the value.	0×0
198:196	newPcpValue	This is a result field used when this entry is hit. The PCP value to update to.	0×0
199	updateVid	This is a result field used when this entry is hit. The VID value of the packets outermost VLAN should be updated. 0 = Do not update the value. 1 = Update the value.	0×0
211:200	newVidValue	This is a result field used when this entry is hit. The VID value to update to.	0×0
212	updateEType	This is a result field used when this entry is hit. The VLANs TPID type should be updated. 0 = Do not update the TPID. 1 = Update the TPID.	0x0
214:213	newEthType	This is a result field used when this entry is hit. Select which TPID to use in the outer VLAN header. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag.	0×0
215	cfiDeiPrio	This is a result field used when this entry is hit. If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.	0x0
216	pcpPrio	This is a result field used when this entry is hit. If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.	0x0
217	vidPrio	This is a result field used when this entry is hit. If multiple updateVid are set and this prio bit is set then this updateVid will be selected.	0x0
218	ethPrio	This is a result field used when this entry is hit. If multiple updateEType are set and this prio bit is set then this updateEType will be selected.	0x0

Bits	Field Name	Description	Default Value
219	enableUpdateIp	This is a result field used when this entry is hit. If this entry is hit then update SA or DA IPv4 address in ingress packet processing, this value will be used by the routing function and egress ACL if this is exists, this only works for IPv4. 0 = Disable 1 = Enable	0×0
220	updateSaOrDa	This is a result field used when this entry is hit. Update the SA or DA IPv4 address. The Destiantion IP address updated will be used in the routing functionality and Egress ACL functionality. If the source IP address is updated then the updated value will be used in the egress ACL keys. $0 = \text{Source IP Address}$ $1 = \text{Destination IP Address}$	0x0
252:221	newlpValue	This is a result field used when this entry is hit. Update the SA or DA IPv4 address value.	0x0
253	enableUpdateL4	This is a result field used when this entry is hit. If this entry is hit then update L4 Source Port or Destination port in ingress packet processing, this value will be used in the Egress ACL. 0 = Disable 1 = Enable	0x0
254	updateL4SpOrDp	This is a result field used when this entry is hit. Update the source or destination L4 port. 0 = Source L4 Port 1 = Destination L4 Port	0×0
270:255	newL4Value	This is a result field used when this entry is hit. Update the L4 SP or DP with this value	0x0
271	natOpValid	This is a result field used when this entry is hit. NAT operation pointer is valid.	0x0
282:272	natOpPtr	This is a result field used when this entry is hit. NAT operation pointer.	0x0
283	natOpPrio	This is a result field used when this entry is hit. If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0×0
284	ptp	This is a result field used when this entry is hit. When the packet is sent to the CPU the packet will have the PTP bit in the To CPU Tag set to one. The timestamp in the To CPU Tag will also be set to the timestamp from the incoming packet.	0×0
285	tunnelEntry	This is a result field used when this entry is hit. Shall all of these packets enter into a tunnel.	0x0
286	tunnelEntryUcMc	This is a result field used when this entry is hit. Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0x0
290:287	tunnelEntryPtr	This is a result field used when this entry is hit. The tunnel entry which this packet shall enter upon exiting the switch.	0×0

Bits	Field Name	Description	Default Value
291	tunnelEntryPrio	This is a result field used when this entry is hit. If	0x0
		multiple tunnelEntry are set and this prio bit is set	
		then this tunnelEntryPtr will be selected.	
292	forceColor	This is a result field used when this entry is hit. If	0x0
		set, the packet shall have a forced color.	
294:293	color	This is a result field used when this entry is hit.	0x0
		Initial color of the packet if the forceColor field is	
		set.	
295	forceColorPrio	This is a result field used when this entry is hit. If	0×0
		multiple forceColor are set and this prio bit is set	
		then this forceVid value will be selected.	
296	mmpValid	This is a result field used when this entry is hit. If	0×0
		set, this entry contains a valid MMP pointer	
301:297	mmpPtr	This is a result field used when this entry is hit.	0×0
		Ingress MMP pointer.	
303:302	mmpOrder	This is a result field used when this entry is hit.	0×0
		Ingress MMP pointer order.	
304	forceQueue	This is a result field used when this entry is hit. If	0×0
		set, the packet shall have a forced egress queue.	
		Please see Egress Queue Selection Diagram in Fig-	
		ure 21.1	
307:305	eQueue	This is a result field used when this entry is hit.	0×0
		The egress queue to be assigned if the forceQueue	
		field in this entry is set to 1.	
308	forceQueuePrio	This is a result field used when this entry is hit. If	0×0
		multiple forceQueue are set and this prio bit is set	
		then this forceQueue value will be selected.	
309	forceVidValid	This is a result field used when this entry is hit.	0×0
		Override the Ingress VID, see chapter VLAN Pro-	
		cessing.	
321:310	forceVid	This is a result field used when this entry is hit.	0x0
		The new Ingress VID.	
322	forceVidPrio	This is a result field used when this entry is hit.	0x0
		If multiple forceVid are set and this prio bit is set	
		then this forceVid value will be selected.	

35.10.101 Ingress Configurable ACL 1 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 1. Setting the valid bit and a new rule will override the default rule pointer from the source port table.

Number of Entries: 512

Type of Operation: Read/Write

	/	
	Address bits [1:0]	Value from preLookupAclBits.
Ì	Address bits [3:2]	Number of VLANs in incoming Packet.
Ì	Address bits [5:4]	L3 Type Of Packet.
		0 = IPv4
		1 = IPv6
		2 = MPLS 3 = Not IPv4, IPv6 or MPLS
	A 1 1 1 1 10 C	,
	Address bits [8:6]	L4 Type Of Packet.
		0 = Not known.
		1 = Is IPv4 or IPv6 but type is not any L4 type in this list.
		2 = UDP
		3 = TCP
		4 = IGMP 5 = ICMP
		6 = ICMP
		7 = MLD

Address Space : 126992 to 127503

Field Description

Addressing:

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid. If not then use default port rule.	0×0
3:1	rulePtr	If the valid is entry then this rule pointer will be used.	0×0

35.10.102 Ingress Configurable ACL 1 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number of fields. The fieldSelectBitmask has one bit for each field. The first 7 fields (bits) which are set to one are selected. It is not allowed to set more than 7 bit in the bitmask. The fields are described in ACL Fields

Number of Entries: 8 Number of Addresses per Entry: 2

Type of Operation : Read/Write
Addressing : ACL rule pointer
Address Space : 128343 to 128358

Field Description

Bits	Field Name	Description	Default Value
32:0	fieldSelectBitmask	Bitmask of which fields to select. Set a bit to one to select this specific field, set zero to not select field. At Maximum 7 bits should be set.	0×0

35.10.103 Ingress Configurable ACL 1 Search Mask

Before the hashing and searching is done in the Ingress Configurable ACL 1 Large Table and Ingress Configurable ACL 1 Small Table. The search data is AND:ed with this mask. If a bit in the mask is set

to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and large tables.

Number of Entries: 1
Number of Addresses per Entry: 16

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
134:0	mask_small	Which bits to compare in the Ingress Configurable ACL 1 Small Table lookup. A bit set to 1 means the corresponding bit in the search data is compared and 0 means	$2^{135} - 1$
269:135	mask_large	the bit is ignored. Which bits to compare in the Ingress Configurable ACL 1 Large Table lookup. A bit set to 1 means the corresponding bit in the search data is compared and 0 means the bit is ignored.	$2^{135} - 1$

35.10.104 Ingress Configurable ACL 1 Selection

This register selects which result to use when there are multiple hits.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124788

Field Description

Bits	Field Name	Description	Default Value
0	selectTcamOrTable	If set to zero then TCAM answer is selected. If set	0×0
		to one then hash table answer is selected.	
1	selectSmallOrLarge	If set to zero then small hash table is selected. If	0×0
		set to one then large hash table is selected.	

35.10.105 Ingress Configurable ACL 1 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table. If multiple buckets match then the result from the highest entry is selected.

Number of Entries: 8 Number of Addresses per Entry: 16

Type of Operation : Read/Write

Address Space : 43902 to 44029

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0x0
		$egin{array}{ll} 0 &= & No \\ 1 &= & Yes \end{array}$	
135:1	compareData	The data which shall be compared in this entry.	0x0
136	sendToCpu	This is a result field used when this entry is hit. If set, the packet shall be sent to the CPU port.	0×0
137	forceSendToCpuOrigPkt	This is a result field used when this entry is hit. If packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial packet. The exception to this is rule is the tunnel exit which will still be carried out	0×0
138	metaDataValid	This is a result field used when this entry is hit. Is the meta_data field valid.	0×0
154:139	metaData	This is a result field used when this entry is hit. Meta data for packets going to the CPU.	0×0
155	metaDataPrio	This is a result field used when this entry is hit. If multiple ACLs hit this meta_data shall take priority.	0×0
156	dropEnable	This is a result field used when this entry is hit. If set, the packet shall be dropped and the Ingress Configurable ACL Drop counter is incremented.	0x0
157	sendToPort	This is a result field used when this entry is hit. Send the packet to a specific port. 0 = Disabled. 1 = Send to port configured in destPort.	0×0
161:158	destPort	This is a result field used when this entry is hit. The port which the packet shall be sent to.	0×0
162	inputMirror	This is a result field used when this entry is hit. If set, input mirroring is enabled for this rule. In addition to the normal processing of the packet a copy of the unmodified input packet will be send to the destination Input Mirror port and exit on that port. The copy will be subject to the normal resource limitations in the switch.	0x0
166:163	destInputMirror	This is a result field used when this entry is hit. Destination physical port for input mirroring.	0×0
167	imPrio	This is a result field used when this entry is hit. If multiple input mirror are set and this prio bit is set then this input mirror will be selected.	0x0
168	noLearning	This is a result field used when this entry is hit. If set this packets MAC SA will not be learned.	0×0
169	updateCounter	This is a result field used when this entry is hit. When set the selected statistics counter will be updated.	0x0
175:170	counter	This is a result field used when this entry is hit. Which counter in Ingress Configurable ACL Match Counter to update.	0x0
176	updateTosExp	This is a result field used when this entry is hit. Force TOS/EXP update.	0×0
184:177	newTosExp	This is a result field used when this entry is hit. New TOS/EXP value.	0×0

Bits	Field Name	Description	Default Value
192:185	tosMask	This is a result field used when this entry is hit. Mask for TOS value. Setting a bit to one means this bit will be selected from the newTosExp field , while setting this bit to zero means that the bit will be selected from the packets already existing TOS byte bit.	0x0
193	updateCfiDei	This is a result field used when this entry is hit. The CFI/DEI value of the packets outermost VLAN should be updated. 0 = Do not update the value. 1 = Update the value.	0×0
194	newCfiDeiValue	This is a result field used when this entry is hit. The value to update to.	0×0
195	updatePcp	This is a result field used when this entry is hit. The PCP value of the packets outermost VLAN should be updated. 0 = Do not update the value. 1 = Update the value.	0×0
198:196	newPcpValue	This is a result field used when this entry is hit. The PCP value to update to.	0×0
199	updateVid	This is a result field used when this entry is hit. The VID value of the packets outermost VLAN should be updated. 0 = Do not update the value. 1 = Update the value.	0×0
211:200	newVidValue	This is a result field used when this entry is hit. The VID value to update to.	0×0
212	updateEType	This is a result field used when this entry is hit. The VLANs TPID type should be updated. 0 = Do not update the TPID. 1 = Update the TPID.	0×0
214:213	newEthType	This is a result field used when this entry is hit. Select which TPID to use in the outer VLAN header. 0 = C-VLAN - 0×8100. 1 = S-VLAN - 0×88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag.	0×0
215	cfiDeiPrio	This is a result field used when this entry is hit. If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.	0×0
216	pcpPrio	This is a result field used when this entry is hit. If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.	0x0
217	vidPrio	This is a result field used when this entry is hit. If multiple updateVid are set and this prio bit is set then this updateVid will be selected.	0x0
218	ethPrio	This is a result field used when this entry is hit. If multiple updateEType are set and this prio bit is set then this updateEType will be selected.	0x0

Bits	Field Name	Description	Default Value
219	enableUpdateIp	This is a result field used when this entry is hit. If this entry is hit then update SA or DA IPv4 address in ingress packet processing, this value will be used by the routing function and egress ACL if this is exists, this only works for IPv4. 0 = Disable 1 = Enable	0×0
220	updateSaOrDa	This is a result field used when this entry is hit. Update the SA or DA IPv4 address. The Destiantion IP address updated will be used in the routing functionality and Egress ACL functionality. If the source IP address is updated then the updated value will be used in the egress ACL keys. $0 = \text{Source IP Address}$ $1 = \text{Destination IP Address}$	0x0
252:221	newlpValue	This is a result field used when this entry is hit. Update the SA or DA IPv4 address value.	0x0
253	enableUpdateL4	This is a result field used when this entry is hit. If this entry is hit then update L4 Source Port or Destination port in ingress packet processing, this value will be used in the Egress ACL. 0 = Disable 1 = Enable	0×0
254	updateL4SpOrDp	This is a result field used when this entry is hit. Update the source or destination L4 port. 0 = Source L4 Port 1 = Destination L4 Port	0×0
270:255	newL4Value	This is a result field used when this entry is hit. Update the L4 SP or DP with this value	0×0
271	natOpValid	This is a result field used when this entry is hit. NAT operation pointer is valid.	0x0
282:272	natOpPtr	This is a result field used when this entry is hit. NAT operation pointer.	0x0
283	natOpPrio	This is a result field used when this entry is hit. If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0×0
284	ptp	This is a result field used when this entry is hit. When the packet is sent to the CPU the packet will have the PTP bit in the To CPU Tag set to one. The timestamp in the To CPU Tag will also be set to the timestamp from the incoming packet.	0×0
285	tunnelEntry	This is a result field used when this entry is hit. Shall all of these packets enter into a tunnel.	0x0
286	tunnelEntryUcMc	This is a result field used when this entry is hit. Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0x0
290:287	tunnelEntryPtr	This is a result field used when this entry is hit. The tunnel entry which this packet shall enter upon exiting the switch.	0×0

Bits	Field Name	Description	Default Value
291	tunnelEntryPrio	This is a result field used when this entry is hit. If multiple tunnelEntry are set and this prio bit is set then this tunnelEntryPtr will be selected.	0×0
292	forceColor	This is a result field used when this entry is hit. If set, the packet shall have a forced color.	0x0
294:293	color	This is a result field used when this entry is hit. Initial color of the packet if the forceColor field is set.	0×0
295	forceColorPrio	This is a result field used when this entry is hit. If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.	0×0
296	mmpValid	This is a result field used when this entry is hit. If set, this entry contains a valid MMP pointer	0x0
301:297	mmpPtr	This is a result field used when this entry is hit. Ingress MMP pointer.	0x0
303:302	mmpOrder	This is a result field used when this entry is hit. Ingress MMP pointer order.	0×0
304	forceQueue	This is a result field used when this entry is hit. If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 21.1	0×0
307:305	eQueue	This is a result field used when this entry is hit. The egress queue to be assigned if the forceQueue field in this entry is set to 1.	0×0
308	forceQueuePrio	This is a result field used when this entry is hit. If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.	0×0
309	forceVidValid	This is a result field used when this entry is hit. Override the Ingress VID, see chapter VLAN Processing.	0×0
321:310	forceVid	This is a result field used when this entry is hit. The new Ingress VID.	0×0
322	forceVidPrio	This is a result field used when this entry is hit. If multiple forceVid are set and this prio bit is set then this forceVid value will be selected.	0×0

35.10.106 Ingress Configurable ACL 1 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.

 $\begin{array}{ll} \text{Number of Entries}: & 8 \\ \text{Number of Addresses per Entry}: & 16 \end{array}$

Type of Operation : Read/Write

Addressing : All entries are read out in parallel

 $\mbox{Address Space}: \mbox{130159 to } 130286$

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
135:1	mask	Which bits to compare in this entry.	$2^{135} - 1$
270:136	compareData	The data which shall be compared in this entry. Observe that this compare data must be AND:ed by software before the entry is searched. The hardware does not do the AND between mask and compareData (In order to save area).	0x0

35.10.107 Ingress Configurable ACL 1 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 1 TCAM.

Number of Entries : 8 Number of Addresses per Entry : 8

Type of Operation : Read/Write

Addressing : Ingress Configurable ACL 1 TCAM hit index

Address Space : 44030 to 44093

Bits	Field Name	Description	Default Value
0	sendToCpu	If set, the packet shall be sent to the CPU port.	0x0
1	forceSendToCpuOrigPkt	If packet shall be sent to CPU then setting this bit	0×0
		will force the packet to be the incoming originial	
		packet. The exception to this is rule is the tunnel	
		exit which will still be carried out	
2	metaDataValid	Is the meta_data field valid.	0×0
18:3	metaData	Meta data for packets going to the CPU.	0×0
19	metaDataPrio	If multiple ACLs hit this meta_data shall take pri-	0×0
		ority.	
20	dropEnable	If set, the packet shall be dropped and the Ingress	0×0
		Configurable ACL Drop counter is incremented.	
21	sendToPort	Send the packet to a specific port.	0×0
		0 = Disabled.	
		1 = Send to port configured in destPort.	
25:22	destPort	The port which the packet shall be sent to.	0×0
26	inputMirror	If set, input mirroring is enabled for this rule. In	0×0
		addition to the normal processing of the packet a	
		copy of the unmodified input packet will be send	
		to the destination Input Mirror port and exit on	
		that port. The copy will be subject to the normal	
		resource limitations in the switch.	
30:27	destInputMirror	Destination physical port for input mirroring.	0×0
31	imPrio	If multiple input mirror are set and this prio bit is	0×0
		set then this input mirror will be selected.	
32	noLearning	If set this packets MAC SA will not be learned.	0x0
33	updateCounter	When set the selected statistics counter will be	0x0
		updated.	
39:34	counter	Which counter in Ingress Configurable ACL	0x0
		Match Counter to update.	
40	updateTosExp	Force TOS/EXP update.	0x0

Bits	Field Name	Description	Default Value
48:41	newTosExp	New TOS/EXP value.	0×0
56:49	tosMask	Mask for TOS value. Setting a bit to one means this bit will be selected from the newTosExp field , while setting this bit to zero means that the bit will be selected from the packets already existing TOS byte bit.	0×0
57	updateCfiDei	The CFI/DEI value of the packets outermost VLAN should be updated. $0 = Do$ not update the value. $1 = Update$ the value.	0x0
58	newCfiDeiValue	The value to update to.	0x0
59	updatePcp	The PCP value of the packets outermost VLAN should be updated. $0 = Do$ not update the value. $1 = Update$ the value.	0x0
62:60	newPcpValue	The PCP value to update to.	0×0
63	updateVid	The VID value of the packets outermost VLAN should be updated. $0 = Do$ not update the value. $1 = Update$ the value.	0x0
75:64	newVidValue	The VID value to update to.	0×0
76	updateEType	The VLANs TPID type should be updated. $0 = Do$ not update the TPID. $1 = Update$ the TPID.	0x0
78:77	newEthType	Select which TPID to use in the outer VLAN header. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag.	0×0
79	cfiDeiPrio	If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.	0×0
80	pcpPrio	If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.	0×0
81	vidPrio	If multiple updateVid are set and this prio bit is set then this updateVid will be selected.	0×0
82	ethPrio	If multiple updateEType are set and this prio bit is set then this updateEType will be selected.	0×0
83	enableUpdateIp	If this entry is hit then update SA or DA IPv4 address in ingress packet processing, this value will be used by the routing function and egress ACL if this is exists, this only works for IPv4. 0 = Disable 1 = Enable	0×0
84	updateSaOrDa	Update the SA or DA IPv4 address. The Destiantion IP address updated will be used in the routing functionality and Egress ACL functionality. If the source IP address is updated then the updated value will be used in the egress ACL keys. 0 = Source IP Address 1 = Destination IP Address	0x0
116:85	newlpValue	Update the SA or DA IPv4 address value.	0x0

Bits	Field Name	Description	Default Value
117	enableUpdateL4	If this entry is hit then update L4 Source Port or Destination port in ingress packet processing, this value will be used in the Egress ACL. 0 = Disable 1 = Enable	0×0
118	updateL4SpOrDp	Update the source or destination L4 port. 0 = Source L4 Port 1 = Destination L4 Port	0×0
134:119	newL4Value	Update the L4 SP or DP with this value	0x0
135	natOpValid	NAT operation pointer is valid.	0x0
146:136	natOpPtr	NAT operation pointer.	0x0
147	natOpPrio	If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0×0
148	ptp	When the packet is sent to the CPU the packet will have the PTP bit in the To CPU Tag set to one. The timestamp in the To CPU Tag will also be set to the timestamp from the incoming packet.	0×0
149	tunnelEntry	Shall all of these packets enter into a tunnel.	0x0
150	tunnelEntryUcMc	Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0x0
154:151	tunnelEntryPtr	The tunnel entry which this packet shall enter upon exiting the switch.	0×0
155	tunnelEntryPrio	If multiple tunnelEntry are set and this prio bit is set then this tunnelEntryPtr will be selected.	0×0
156	forceColor	If set, the packet shall have a forced color.	0x0
158:157	color	Initial color of the packet if the forceColor field is set.	0×0
159	forceColorPrio	If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.	0×0
160	mmpValid	If set, this entry contains a valid MMP pointer	0x0
165:161	mmpPtr	Ingress MMP pointer.	0x0
167:166	mmpOrder	Ingress MMP pointer order.	0x0
168	forceQueue	If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 21.1	0x0
171:169	eQueue	The egress queue to be assigned if the forceQueue field in this entry is set to 1.	0×0
172	forceQueuePrio	If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.	0×0
173	forceVidValid	Override the Ingress VID, see chapter VLAN Processing.	0×0
185:174	forceVid	The new Ingress VID.	0x0
186	forceVidPrio	If multiple forceVid are set and this prio bit is set then this forceVid value will be selected.	0×0

35.10.108 Ingress Configurable ACL 2 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 2. Setting the valid bit and a new rule will override the default rule pointer from the source port table.

Number of Entries: 64

Type of Operation: Read/Write

Address bits [1:0] Value from preLookupAclBits.

Address bits [3:2] Number of VLANs in incoming Packet.

Address bits [5:4] L3 Type Of Packet.

0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4, IPv6 or MPLS

Address Space : 126928 to 126991

Field Description

Addressing:

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid. If not then use default port rule.	0×0
2:1	rulePtr	If the valid is entry then this rule pointer will be used.	0×0

35.10.109 Ingress Configurable ACL 2 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number of fields. The fieldSelectBitmask has one bit for each field. The first 20 fields (bits) which are set to one are selected. It is not allowed to set more than 20 bit in the bitmask. The fields are described in ACL Fields

Number of Entries: 4

Type of Operation: Read/Write
Addressing: ACL rule pointer
Address Space: 126924 to 126927

Field Description

Bits	Field Name	Description	Default Value
27:0	fieldSelectBitmask	Bitmask of which fields to select. Set a bit to one	0×0
		to select this specific field, set zero to not select	
		field. At Maximum 20 bits should be set.	

35.10.110 Ingress Configurable ACL 2 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.

Number of Entries: 24 Number of Addresses per Entry: 64

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space: 130287 to 131822

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
540:1	mask	Which bits to compare in this entry.	$2^{540} - 1$
1080:541	compareData	The data which shall be compared in this entry. Observe that this compare data must be AND:ed by software before the entry is searched. The hardware does not do the AND between mask and compareData (In order to save area).	0×0

35.10.111 Ingress Configurable ACL 2 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 2 TCAM.

Number of Entries: 24 Number of Addresses per Entry: 8

Type of Operation : Read/Write

Addressing : Ingress Configurable ACL 2 TCAM hit index

Address Space : 44094 to 44285

Field Description

Bits	Field	Description	Default
Dits	Name	Description	Value
0	sendToCpu	If set, the packet shall be sent to the CPU port.	0x0
1	forceSendToCpuOrigPkt	If packet shall be sent to CPU then setting this bit	0x0
		will force the packet to be the incoming originial	
		packet. The exception to this is rule is the tunnel	
		exit which will still be carried out	
2	metaDataValid	Is the meta_data field valid.	0x0
18:3	metaData	Meta data for packets going to the CPU.	0x0
19	metaDataPrio	If multiple ACLs hit this meta_data shall take pri-	0x0
		ority.	
20	dropEnable	If set, the packet shall be dropped and the Ingress	0x0
		Configurable ACL Drop counter is incremented.	
21	sendToPort	Send the packet to a specific port.	0x0
		0 = Disabled.	
		1 = Send to port configured in destPort.	
25:22	destPort	The port which the packet shall be sent to.	0x0
26	inputMirror	If set, input mirroring is enabled for this rule. In	0×0
		addition to the normal processing of the packet a	
		copy of the unmodified input packet will be send	
		to the destination Input Mirror port and exit on	
		that port. The copy will be subject to the normal	
		resource limitations in the switch.	
30:27	destInputMirror	Destination physical port for input mirroring.	0x0
31	imPrio	If multiple input mirror are set and this prio bit is	0x0
		set then this input mirror will be selected.	
32	noLearning	If set this packets MAC SA will not be learned.	0x0
33	updateCounter	When set the selected statistics counter will be	0x0
		updated.	

Bits	Field Name	Description	Default Value
39:34	counter	Which counter in Ingress Configurable ACL	0×0
		Match Counter to update.	
40	updateTosExp	Force TOS/EXP update.	0x0
48:41	newTosExp	New TOS/EXP value.	0×0
56:49	tosMask	Mask for TOS value. Setting a bit to one means	0×0
		this bit will be selected from the newTosExp field	
		, while setting this bit to zero means that the bit will be selected from the packets already existing	
		TOS byte bit.	
57	updateCfiDei	The CFI/DEI value of the packets outermost	0x0
		VLAN should be updated.	
		0 = Do not update the value.	
		1 = Update the value.	
58	newCfiDeiValue	The value to update to.	0×0
59	updatePcp	The PCP value of the packets outermost VLAN	0×0
		should be updated.	
		0 = Do not update the value. 1 = Update the value.	
60.60	D. W.L.	·	0.0
62:60	newPcpValue updateVid	The PCP value to update to. The VID value of the packets outermost VLAN	0×0 0×0
03	updatevid	should be updated.	UXU
		0 = Do not update the value.	
		1 = Update the value.	
75:64	newVidValue	The VID value to update to.	0×0
76	updateEType	The VLANs TPID type should be updated.	0x0
	. ,,	0 = Do not update the TPID.	
		1 = Update the TPID.	
78:77	newEthType	Select which TPID to use in the outer VLAN	0x0
		header.	
		0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8.	
		2 = User defined VLAN type from register Egress	
		Ethernet Type for VLAN tag.	
79	cfiDeiPrio	If multiple updateCfiDei are set and this prio bit is	0×0
		set then this updateCfiDei will be selected.	
80	pcpPrio	If multiple updatePcp are set and this prio bit is	0×0
		set then this updatePcp will be selected.	
81	vidPrio	If multiple updateVid are set and this prio bit is	0×0
82	ethPrio	set then this updateVid will be selected.	0×0
02	etherio	If multiple updateEType are set and this prio bit is set then this updateEType will be selected.	UXU
83	enableUpdateIp	If this entry is hit then update SA or DA IPv4	0×0
00	спавісоравісір	address in ingress packet processing, this value will	OXO
		be used by the routing function and egress ACL if	
		this is exists, this only works for IPv4.	
		0 = Disable	
		1 = Enable	
84	updateSaOrDa	Update the SA or DA IPv4 address. The Des-	0×0
		tiantion IP address updated will be used in the	
		routing functionality and Egress ACL functional-	
		ity. If the source IP address is updated then the updated value will be used in the egress ACL keys.	
		0 = Source IP Address 1 = Destination IP Address	

Bits	Field Name	Description	Default Value
116:85	newlpValue	Update the SA or DA IPv4 address value.	0x0
117	enableUpdateL4	If this entry is hit then update L4 Source Port or Destination port in ingress packet processing, this value will be used in the Egress ACL. 0 = Disable 1 = Enable	0×0
118	updateL4SpOrDp	Update the source or destination L4 port. $0 = \text{Source L4 Port}$ $1 = \text{Destination L4 Port}$	0×0
134:119	newL4Value	Update the L4 SP or DP with this value	0x0
135	natOpValid	NAT operation pointer is valid.	0x0
146:136	natOpPtr	NAT operation pointer.	0x0
147	natOpPrio	If multiple natOpValid are set and this prio bit is set then this natOpPtr value will be selected.	0×0
148	ptp	When the packet is sent to the CPU the packet will have the PTP bit in the To CPU Tag set to one. The timestamp in the To CPU Tag will also be set to the timestamp from the incoming packet.	0×0
149	tunnelEntry	Shall all of these packets enter into a tunnel.	0x0
150	tunnelEntryUcMc	Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0×0
154:151	tunnelEntryPtr	The tunnel entry which this packet shall enter upon exiting the switch.	0×0
155	tunnelEntryPrio	If multiple tunnelEntry are set and this prio bit is set then this tunnelEntryPtr will be selected.	0×0
156	forceColor	If set, the packet shall have a forced color.	0x0
158:157	color	Initial color of the packet if the forceColor field is set.	0×0
159	forceColorPrio	If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.	0×0
160	mmpValid	If set, this entry contains a valid MMP pointer	0x0
165:161	mmpPtr	Ingress MMP pointer.	0x0
167:166	mmpOrder	Ingress MMP pointer order.	0x0
168	forceQueue	If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 21.1	0x0
171:169	eQueue	The egress queue to be assigned if the forceQueue field in this entry is set to 1.	0×0
172	forceQueuePrio	If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.	0×0
173	forceVidValid	Override the Ingress VID, see chapter VLAN Processing.	0×0
185:174	forceVid	The new Ingress VID.	0×0
186	forceVidPrio	If multiple forceVid are set and this prio bit is set then this forceVid value will be selected.	0×0

35.10.112 Ingress Configurable ACL 3 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number of fields. The fieldSelectBitmask has one bit for each field. The first 10 fields (bits) which are set to one are selected. It is not allowed to set more than 10 bit in the bitmask. The fields are described in ACL Fields

Number of Entries: 4

Type of Operation : Read/Write
Addressing : ACL rule pointer
Address Space : 126920 to 126923

Field Description

Bits	Field Name	Description	Default Value
9:0	fieldSelectBitmask	Bitmask of which fields to select. Set a bit to one	0×0
		to select this specific field, set zero to not select	
		field. At Maximum 10 bits should be set.	

35.10.113 Ingress Configurable ACL 3 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.

Number of Entries: 16 Number of Addresses per Entry: 8

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space : 129735 to 129862

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
80:1	mask	Which bits to compare in this entry.	$2^{80} - 1$
160:81	compareData	The data which shall be compared in this entry. Observe that this compare data must be AND:ed by software before the entry is searched. The hardware does not do the AND between mask and compareData (In order to save area).	0×0

35.10.114 Ingress Configurable ACL 3 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 3 TCAM.

Number of Entries: 16 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: Ingress Configurable ACL 3 TCAM hit index

Address Space : 44286 to 44317

Bits	Field Name	Description	Default Value
0	sendToCpu	If set, the packet shall be sent to the CPU port.	0×0
1	forceSendToCpuOrigPkt	If packet shall be sent to CPU then setting this bit	0×0
		will force the packet to be the incoming originial	
		packet. The exception to this is rule is the tunnel	
2	and Detailed	exit which will still be carried out	0.0
2	metaDataValid	Is the meta_data field valid.	0x0
18:3	metaData	Meta data for packets going to the CPU.	0x0
19	metaDataPrio	If multiple ACLs hit this meta_data shall take priority.	0x0
20	dropEnable	If set, the packet shall be dropped and the Ingress	0×0
		Configurable ACL Drop counter is incremented.	
21	sendToPort	Send the packet to a specific port.	0×0
		$egin{array}{ll} 0 &=& {\sf Disabled}. \ 1 &=& {\sf Send} \ {\sf to} \ {\sf port} \ {\sf configured} \ {\sf in} \ {\sf destPort}. \end{array}$	
25:22	destPort	The port which the packet shall be sent to.	0x0
26	forceColor	If set, the packet shall have a forced color.	0×0
28:27	color	Initial color of the packet if the forceColor field is set.	0×0
29	forceColorPrio	If multiple forceColor are set and this prio bit is set	0×0
29	Torcecolor no	then this forceVid value will be selected.	0.0
30	mmpValid	If set, this entry contains a valid MMP pointer	0×0
35:31	mmpPtr	Ingress MMP pointer.	0x0
37:36	mmpOrder	Ingress MMP pointer order.	0x0
38	forceQueue	If set, the packet shall have a forced egress queue.	0x0
30	Torcequeue	Please see Egress Queue Selection Diagram in Fig-	0.00
		ure 21.1	
41:39	eQueue	The egress queue to be assigned if the forceQueue	0x0
		field in this entry is set to 1.	
42	forceQueuePrio	If multiple forceQueue are set and this prio bit is	0×0
		set then this forceQueue value will be selected.	

35.10.115 Ingress Drop Options

Options to enable or disable learning when the L2 forwarding process drops the packet.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation:} & \hbox{Read/Write} \\ \hbox{Address Space:} & \hbox{132847} \end{array}$

Field Description

Bits	Field Name	Description	Default Value
0	learnL2DestDrop	Allow learning when L2 Destination Table drops the packet.	0×0
1	learnL2FloodDrop	Allow learning when the packet is dropped due to unknown DA.	0x0
2	learnL2DestVlanMemberDrop	Allow learning when the packt is dropped due to destination VLAN membership check.	0×1
3	learnL2HairpinDrop	Allow learning when the packet is dropped due to hairpin configurations.	0×0

35.10.116 Ingress Egress Port Packet Type Filter

This sets up which packets are to be dropped or allowed to be transmitted on each of the egress ports. This filtering is done after the source port tables VLAN operation and the VLAN tables VLAN operation. Notice this filter applies to L2 L3 forwarding result only, any other special rules could bypass it (traffic to/from CPU port, classifications, etc). Packets dropped due to this filter will be counted in **Ingress-Egress Packet Filtering Drop**.

Number of Entries: 11

Type of Operation : Read/Write
Addressing : Egress port
Address Space : 125122 to 125132

Field Description

Bits	Field Name	Description	Default Value
0	dropCtaggedVlans	Drop or allow customer VLAN tagged packets on this egress port. Will only drop packets that has exactly one VLAN tag. Must set moreThanOneVlans when this is used. Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN. 0 = Allow C-VLANs. 1 = Drop C-VLANs.	0x0
1	dropStaggedVlans	Drop or allow service VLAN tagged packets on this egress port. Must set moreThanOneVlans when this is used. Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN. 0 = Allow S-VLANs. 1 = Drop S-VLANs.	0x0
2	moreThanOneVlans	When filtering with dropCtaggedVlans or drop- StaggedVlans then this field must be set to 1.	0x0
3	dropSingleTaggedVlans	Drop or Allow packets that are VLAN untagged on this egress port. 0 = Allow untagged packets. 1 = Drop untagged packets.	0×0
4	dropUntaggedVlans	Drop or Allow packets that are VLAN untagged on this egress port. 0 = Allow untagged packets. 1 = Drop untagged packets.	0×0
5	dropIPv4Packets	Drop or allow IPv4 packets on this egress port. $0 = \text{Allow IPv4 packets.}$ $1 = \text{Drop IPv4 packets.}$	0x0
6	dropIPv6Packets	Drop or allow IPv6 packets on this egress port. 0 = Allow IPv6 packets. 1 = Drop IPv6 packets.	0x0
7	dropMPLSPackets	Drop or allow MPLS packets on this source port. $0 = \text{Allow MPLS packets.}$ $1 = \text{Drop MPLS packets.}$	0x0

Bits	Field Name	Description	Default Value
8	dropIPv4MulticastPackets	Drop or allow IPv4 Multicast packets on this egress port. $0 = \text{Allow IPv4 MC packets.} \\ 1 = 1 = \text{Drop IPv4 MC packets.}$	0×0
9	dropIPv6MulticastPackets	Drop or allow IPv6 Multicast packets on this egress port. 0 = Allow IPv6 MC packets. 1 = Drop IPv6 MC packets.	0x0
10	dropL2BroadcastFrames	Drop or allow L2 broadcast packets on this egress port. 0 = Allow L2 broadcast packets. 1 = Drop L2 broadcast packets.	0×0
11	dropL2FloodingFrames	Drop or allow L2 flooding packets on this egress port. Observe that this rule takes the unknownL2McFilterRule into account. 0 = Allow L2 flooding packets. 1 = Drop L2 flooding packets.	0×0
12	dropL2MulticastFrames	Drop or allow L2 multicast packets on this egress port. Observe that this L2 multicast bit takes the register L2 Multicast Handling into account to determine if this packet is a L2 multicast packet or not. 0 = Allow L2 multicast packets 1 = Drop L2 multicast packets.	0x0
13	dropDualTaggedVlans	Drop or allow packets with has more than one VLAN tag on this egress port. 0 = Allow packets which has more than one VLAN tag. 1 = Drop packets which has more than one VLAN tag.	0×0
14	dropCStaggedVlans	Drop or allow packets with has a C-VLAN followed by a S-VLAN tagged on this egress port. Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN. 0 = Allow packets which has a C-VLAN tag followed by a S-VLAN tag. 1 = Drop packets which has a C-VLAN tag followed by a S-VLAN tag.	0x0
15	dropSCtaggedVlans	Drop or allow packets with has a S-VLAN followed by a C-VLAN tagged on this egress port. Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN. 0 = Allow packets which has a S-VLAN followed by a C-VLAN tag. 1 = Drop packets which has a S-VLAN tag followed by a C-VLAN tag.	0x0
16	dropCCtaggedVlans	Drop or allow packets with has a C-VLAN followed by a C-VLAN tagged on this egress port. Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN. 0 = Allow packets which has a C-VLAN tag followed by a C-VLAN tag. 1 = Drop packets which has a C-VLAN tag followed by a C-VLAN tag.	0x0

Bits	Field Name	Description	Default Value
17	dropSStaggedVlans	Drop or allow packets with has a S-VLAN followed by a S-VLAN tagged on this egress port. Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN. 0 = Allow packets which has a S-VLAN tag followed by a S-VLAN tag. 1 = Drop packets which has a S-VLAN tag followed by a S-VLAN tag.	0×0
18	dropRouted	Drop or allow packets which has been routed on this egress port. 0 = Allow packets which has been routed. 1 = Drop packets which has been routed.	0×0
29:19	srcPortFilter	Each egress port has an optional way of ensuring that a specific source port does not send out a packet on a specific egress port. By setting a bit in this port mask, the packets originating from that source port will be dropped and not be allowed to reach this egress port.	0x0

35.10.117 Ingress Ethernet Type for VLAN tag

When decoding VLAN tags, if the Ethernet Type matches the **typeValue** it will be considered to be a VLAN tag in addition to the standard values of 0x8100 and 0x88A8. The **type** field determines if the VLAN should be regarded as a Service VLAN or Customer VLAN.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124781

Field Description

Bits	Field Name	Description	Default Value
15:0	typeValue	Ethernet Type value.	0×ffff
16	type	User defined VLAN type. 0 = Customer VLAN. 1 = Service VLAN.	0×0
17	valid	User defined VLAN is valid. 0 = Not Valid. 1 = Valid.	0x0

35.10.118 Ingress MMP Drop Mask

This register provides an option to let ingress MMP not drop packets on certain ports after metering.

348

Number of Entries: 1

 $\begin{array}{ll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Address Space}: & 124809 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
10:0	dropMask	Each bit in this mask refers to if ingress MMP drop is allowed on the corresponding egress port.	0×7ff

35.10.119 Ingress Multiple Spanning Tree State

Table of ingress Multiple Spanning Tree Protocol Instances. For routed packets the pointer used to address this table is from the **msptPtr** field in the **Next Hop Packet Modifications** table. For switched packets is is from the **msptPtr** field in the **VLAN Table**. Each entry contains the ingress spanning tree states for all ports in this MSTI.

Number of Entries: 16

Type of Operation: Read/Write

Addressing: msptPtr from VLAN Table or Next Hop Packet Modifications Table

Address Space : 60790 to 60805

Field Description

Bits	Field Name	Description	Default Value
21:0	portSptState	The ingress spanning tree state for this MSTI. Bit[1:0] is the state for port $\#0$, bit[3:2] is the state for port $\#1$, etc. $0 = \text{Forwarding}$ $1 = \text{Discarding}$ $2 = \text{Learning}$	0×0

35.10.120 Ingress Port Packet Type Filter

This configures which packet types that are to be dropped or allowed on each source port. Each entry corresponds to one ingress port. Packets dropped due to the filter are counted in **Ingress Packet Filtering Drop**.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Ingress port
Address Space: 127528 to 127538

Bit	Field Name	Description	Default Value
0	dropCtaggedVlans	Drop or allow customer VLAN tagged packet on this ingress port. Will only drop packets that has exactly one VLAN tag. Must set moreThanOneVlans when this is used. 0 = Allow C-VLANs. 1 = Drop C-VLANs.	0x0

Bits	Field Name	Description	Default Value
1	dropStaggedVlans	Drop or allow service VLANs tagged packets on this ingress port. Will only drop packets that has exactly one VLAN tag. Must set moreThanOneVlans when this is used. 0 = Allow S-VLANs. 1 = Drop S-VLANs.	0×0
2	moreThanOneVlans	When filtering with dropCtaggedVlans or drop- StaggedVlans then this field must be set to 1.	0×0
3	dropUntaggedVlans	Drop or Allow packets that are VLAN untagged on this ingress port. 0 = Allow untagged packets. 1 = Drop untagged packets.	0×0
4	dropSingleTaggedVlans	Drop or Allow packets that are VLAN untagged on this ingress port. $0 = \text{Allow untagged packets.}$ $1 = \text{Drop untagged packets.}$	0x0
5	dropIPv4Packets	Drop or allow IPv4 packets on this ingress port. $0 = \text{Allow IPv4 packets.}$ $1 = \text{Drop IPv4 packets.}$	0x0
6	dropIPv6Packets	Drop or allow IPv6 packets on this ingress port. 0 = Allow IPv6 packets. 1 = Drop IPv6 packets.	0x0
7	dropMPLSPackets	Drop or allow MPLS packets on this ingress port. $0 = \text{Allow MPLS packets}.$ $1 = \text{Drop MPLS packets}.$	0x0
8	dropIPv4MulticastPackets	Drop or allow IPv4 multicast packets on this ingress port. 0 = Allow IPv4 MC packets. 1 = Drop IPv4 MC packets.	0×0
9	dropIPv6MulticastPackets	Drop or allow IPv6 multicast packets on this ingress port. 0 = Allow IPv6 MC packets. 1 = Drop IPv6 MC packets.	0×0
10	dropL2BroadcastFrames	Drop or allow L2 broadcast packets on this ingress port. 0 = Drop L2 broadcast packets. 1 = Allow L2 broadcast packets.	0×0
11	dropL2MulticastFrames	Drop or allow L2 multicast packets on this ingress port. Observe that this L2 multicast bit takes the register L2 Multicast Handling into account to determine if this packet is a L2 multicast packet or not. 0 = Allow L2 multicast packets 1 = Drop L2 multicast packets.	0×0
12	dropDualTaggedVlans	Drop or allow packets which has more than one VLAN tag on this ingress port. 0 = Allow packets which has dual tags. 1 = Drop packets which has dual tags.	0x0

Bits	Field Name	Description	Default Value
13	dropCStaggedVlans	Drop or allow packets which has a C-VLAN followed by a S-VLAN tagged on this ingress port. 0 = Allow packets which has a C-VLAN tag followed by a S-VLAN tag. 1 = Drop packets which has a C-VLAN tag followed by a S-VLAN tag.	0×0
14	dropSCtaggedVlans	Drop or allow packets which has a S-VLAN followed by a C-VLAN tagged on this ingress port. 0 = Allow packets which has a S-VLAN followed by a C-VLAN tag. 1 = Drop packets which has a S-VLAN tag followed by a C-VLAN tag.	0×0
15	dropCCtaggedVlans	Drop or allow packets which has a C-VLAN followed by a C-VLAN tagged on this ingress port. 0 = Allow packets which has a C-VLANs tag followed by a C-VLAN tag. 1 = Drop packets which has a C-VLAN tag followed by a C-VLAN tag.	0×0
16	dropSStaggedVlans	Drop or allow packets which has a S-VLAN followed by a S-VLAN tagged on this source port. 0 = Allow packets which has a S-VLAN tag followed by a S-VLAN tag. 1 = Drop packets which has a S-VLAN tag followed by a S-VLAN tag.	0×0

35.10.121 Ingress Router Table

The ingress router table or the Virtual Router Function (VRF), controls which packets are allowed to get access to this router. If a packet is dropped due to the settings of Ingress Router Table accept fields then the Invalid Routing Protocol Drop will be incremented. Updates for the Next Hop Hit Status is also controlled in this table.

Number of Entries: 4

Type of Operation : Read/Write

Addressing: vrf

Address Space : 60806 to 60809

Bits	Field Name	Description	Default Value
0	acceptIPv4	Accept IPv4 packets. If disabled and an IPv4 packet reaches the router the packet will be dropped and the Invalid Routing Protocol Drop incremented. 0 = Deny 1 = Accept	0×0
1	acceptIPv6	Accept IPv6 packets. If disabled and an IPv6 packet reaches the router the packet will be dropped and the Invalid Routing Protocol Drop incremented. $0 = Deny$ $1 = Accept$	0×0

Bits	Field Name	Description	Default Value
2	acceptMPLS	Accept MPLS packets. If disabled and an MPLS packet reaches the router the packet will be dropped and the Invalid Routing Protocol Drop incremented. 0 = Deny 1 = Accept	0x0
10:3	minTTL	Minimum TTL. Packets with a TTL below this value will not be accepted. The packet will be dropped and the Expired TTL Drop counter incremented. If the minTtlToCpu is set the packet will be sent to CPU instead of being dropped. The TTL check is done for IPv4, IPv6 and MPLS routed packets.	0×0
11	minTtlToCpu	If this is set then packets below minimum TTL will be send to CPU instead of dropped.	0×0
12	ipv4HitUpdates	Enable updates of the Next Hop Hit Status for routed IPv4 packets. 0 = Disable 1 = Enable	0×0
13	ipv6HitUpdates	Enable updates of the Next Hop Hit Status for routed IPv6 packets. 0 = Disable 1 = Enable	0x0
14	mplsHitUpdates	Enable updates of the Next Hop Hit Status for routed MPLS packets. 0 = Disable 1 = Enable	0×0
15	ecmpUseIpDa	Use IP destination address as part of ECMP hash key.	0x1
16	ecmpUseIpSa	Use IP source address as part of ECMP hash key.	0x1
17	ecmpUseIpTos	Use IP TOS/Traffic Class as part of ECMP hash key.	0×0
18	ecmpUseIpProto	Use IP Protocol/Next Header as part of ECMP hash key.	0×1
19	ecmpUseIpL4Sp	Use TCP/UDP source port as part of ECMP hash key.	0x1
20	ecmpUselpL4Dp	Use TCP/UDP destination port as part of ECMP hash key.	0x1
21	mmpValid	If set, this entry contains a valid MMP pointer. Only valid when packets get routed	0x0
26:22	mmpPtr	Ingress MMP pointer.	0x0
28:27	mmpOrder	Ingress MMP pointer order.	0x0
29	send To Cpu Or Drop	When a check if the packet protocols are allowed on this Ingress Router Table shall the packets be dropped or sent-to-CPU? 0 = Dropped. 1 = Sent-To-CPU	0×0

35.10.122 Ingress VID Ethernet Type Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

Number of Entries: 4

 ${\sf Type\ of\ Operation:} \quad {\sf Read/Write}$

Addressing : Ingress VID Ethernet Type Range Search Data hit index

Address Space : 126904 to 126907

Bits	Field Name	Description	Default Value
11:0	ingressVid	Ingress VID.	0×0
13:12	order	Order for this assignment. If the ingress VID can be assigned from other packet field ranges, the one with the highest order wins.	0×0

35.10.123 Ingress VID Ethernet Type Range Search Data

This Ethernet type range can be used to assign the ingress VID. The search starts from entry 0 and returns the first match to lookup in the Ingress VID Ethernet Type Range Assignment Answer table.

Number of Entries: 4 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space: 128319 to 128326

Field Description

Bits	Field Name	Description	Default Value
10:0	ports	Ports that this range search is activated on.	0×0
26:11	start	Start of Ethernet type range.	0×0
42:27	end	End of Ethernet type range.	0x0

35.10.124 Ingress VID Inner VID Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

Number of Entries: 4

Type of Operation : Read/Write

Addressing: Ingress VID Inner VID Range Search Data hit index

Address Space: 126908 to 126911

Field Description

Bits	Field Name	Description	Default Value
11:0	ingressVid	Ingress VID.	0×0
13:12	order	Order for this assignment. If the ingress VID can be assigned from other packet field ranges, the one with the highest order wins.	0×0

35.10.125 Ingress VID Inner VID Range Search Data

If a packet has an inner VLAN tag, this inner VID range can be used to assign the ingress VID. The search starts from entry 0 and returns the first match to lookup in the **Ingress VID Inner VID Range Assignment Answer** table.

Number of Entries: 4 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space: 128327 to 128334

Field Description

Bits	Field Name	Description	Default Value
10:0	ports	Ports that this range search is activated on.	0×0
11	vtype	Shall this entry match S-Type or C-Type VLAN. $0 = \text{C-Type}$ $1 = \text{S-Type}$	0x0
23:12	start	Start of VID range.	0×0
35:24	end	End of VID range.	0×0

35.10.126 Ingress VID MAC Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

Number of Entries: 4

Type of Operation: Read/Write

Addressing: Ingress VID MAC Range Search Data hit index

Address Space: 126916 to 126919

Field Description

Bits	Field Name	Description	Default Value
11:0	ingressVid	Ingress VID.	0×0
13:12	order	Order for this assignment. If the ingress VID can be assigned from other packet field ranges, the one with the highest order wins.	0×0

35.10.127 Ingress VID MAC Range Search Data

This MAC address range can be used to assign the ingress VID. The search starts from entry 0 and returns the first match to lookup in the **Ingress VID MAC Range Assignment Answer** table.

Number of Entries: 4 Number of Addresses per Entry: 4

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space : 128125 to 128140

Bits	Field Name	Description	Default Value
10:0	ports	Ports that this range search is activated on.	0×0
11	saOrDa	$\begin{array}{l} \text{Is this rule for source or destination MAC address.} \\ 0 = \text{Source MAC} \\ 1 = \text{Destination MAC} \end{array}$	0x0
59:12	start	Start of MAC address range.	0×0
107:60	end	End of MAC address range.	0x0

35.10.128 Ingress VID Outer VID Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

Number of Entries: 4

Type of Operation : Read/Write

Addressing: Ingress VID Outer VID Range Search Data hit index

Address Space: 126912 to 126915

Field Description

Bits	Field Name	Description	Default Value
11:0	ingressVid	Ingress VID.	0x0
13:12	order	Order for this assignment. If the ingress VID can be assigned from other packet field ranges, the one with the highest order wins.	0×0

35.10.129 Ingress VID Outer VID Range Search Data

If a packet has an outer VLAN tag, this outer VID range can be used to assign the ingress VID. The search starts from entry 0 and returns the first match to lookup in the **Ingress VID Outer VID Range Assignment Answer** table.

Number of Entries: 4 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space: 128335 to 128342

Bits	Field Name	Description	Default Value
10:0	ports	Ports that this range search is activated on.	0×0
11	vtype	Shall this entry match S-Type or C-Type VLAN. $0 = \text{C-Type}$ $1 = \text{S-Type}$	0x0
23:12	start	Start of VID range.	0×0
35:24	end	End of VID range.	0x0

35.10.130 L2 Action Table

The L2 action table can be used to limit what type of traffic shall be able to enter a port depending on which port its coming from and going to. There are three table results which can be taken into consideration, the I2 destination MAC lookup, the I2 source MAC lookup and finally the ingress ACL lookup. The L2 Action Table Egress Port State defines the highest bit in the address. This table is looked up for each of the destiantion ports which the packet is going to. If a packet is dropped then it is recorded in the drop counter L2 Action Table Drop.

 $\begin{array}{ll} \text{Number of Entries}: & 128 \\ \text{Type of Operation}: & \text{Read/Write} \end{array}$

•	
Address Bit 0:	Source Port State Bit from Source Port Table
	field I2ActionTablePortState.
Address Bit 1:	L2 SA Table was a hit.
	$egin{array}{ll} 0 &= & Miss. \ 1 &= & Hit. \end{array}$
Address Bit 2:	L2 SA Table - L2 Action Table Status bit. If this
	table was a miss then this bit will be zero.
Address Bit 3:	L2 DA Table - L2 Action Table Status bit. If
	this table was a miss then this bit will be zero.
Address Bit [5:4]:	1.2 Packet Type
Address Dit [3.4].	L2 Packet Type.
Address Dit [3.4].	0 = L2 Dest Table was a Unicast. 1 = L2 Dest Table was Multicast.
Address Bit [3.4].	0 = L2 Dest Table was a Unicast. 1 = L2 Dest Table was Multicast. 2 = L2 DA table was a miss and packet is being
Address Bit [5.4].	0 = L2 Dest Table was a Unicast. 1 = L2 Dest Table was Multicast.
Address Bit 6:	 0 = L2 Dest Table was a Unicast. 1 = L2 Dest Table was Multicast. 2 = L2 DA table was a miss and packet is being flooded. 3 = Packet was a Broadcast packet and L2 Dest Table did not hit. If both flooded and L2 Broadcast packet then this option will be

Address Space:

Addressing:

114138 to 114265

Bits	Field Name	Description	Default Value
0	noLearningUc	The packet shall not be learned. This is applied to L2 DA MAC unicast packets.	0x0
1	noLearningMc	If the packet is a L2 Multicast then the packet shall not be learned. If a packet is a L2 Multicast depends on if the SA MAC MC bit is set.	0×0
2	dropAll	The packet shall drop all instances and update counter L2 Action Table Drop. However special packets which are allowed will still be allowed into the switch (using the field useSpecialAllow set to one and register Allow Special Frame Check For L2 Action Table)	0×0
3	drop	The packet shall only drop on the ports which hits this action.	0x0
4	dropPortMove	The packet shall be dropped if the result from the learning lookup is port-move.	0x0
5	sendToCpu	The packet shall be send to the CPU.	0×0
6	forceSendToCpuOrigPkt	Force the packet to the CPU to be the originial, unmodified, packet. The exception to this is rule is the tunnel exit which will still be carried out.	0×0
7	noPortMove	No port move is allowed for this packet.	0x0

Bits	Field Name	Description	Default Value
8	useSpecialAllow	Use the special frame checks on this port.	0×0
		$egin{array}{ll} 0 &= & No. \\ 1 &= & Yes. \end{array}$	
10:9	allowPtr	Pointer to allow special packets defined in Allow	0×0
		Special Frame Check For L2 Action Table.	
11	mmpValid	If set, this entry contains a valid MMP pointer	0×0
16:12	mmpPtr	Ingress MMP pointer.	0×0
18:17	mmpOrder	Ingress MMP pointer order.	0×0

35.10.131 L2 Action Table Egress Port State

The egress port state for the L2 Action Table Lookup.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124804

Field Description

Bits	Field Name	Description	Default Value
10:0	state	What is the egress port status bits in the L2 Action Table for the egress port. Bit [0] are used for port 0, Bits [1] are used for port 1 and so on.	0x0

35.10.132 L2 Action Table Source Port

The L2 action table for source port is looked up at the same time as the L2 Action Table and its result is merged with the lookup from the L2 Action Table table, this lookup is active when enabled in the Source Port Table field enableL2ActionTable is set to one. The L2 Action Table is enabled for each of the destination ports the packet is going to, this table is looked up based on the source port and even if the packet is going to no destination ports this lookup is still carried out. Another difference between L2 Action Table and this table is that the highest address bit (bit 6) which uses the status from the L2 SA Lookup and if the packet is going to do a port move then this address bit is high.

 $\begin{array}{ll} \text{Number of Entries}: & 128 \\ \text{Type of Operation}: & \text{Read/Write} \end{array}$

Address Bit 0:	Source Port State Bit from Source Port Table field I2ActionTablePortState .
Address Bit 1:	L2 SA Table was a hit. 0 = Miss. 1 = Hit.
Address Bit 2:	L2 SA Table - L2 Action Table Status bit.
Address Bit 3:	L2 DA Table - L2 Action Table Status bit. If this table was a miss then this bit will be zero.
Address Bit [5:4]:	L2 Packet Type. 0 = L2 Dest Table was a Unicast. 1 = L2 Dest Table was Multicast. 2 = L2 DA table was a miss and packet is being flooded. 3 = Packet was a Broadcast packet and L2 Dest Table did not hit. If both flooded and L2 Broadcast packet then this option will be selected.
Address Bit [6]:	Port Move. Result bit from L2 SA lookup if the packet shall do a port move or not.

Address Space : 114266 to 114393

Field Description

Addressing :

Bits	Field Name	Description	Default Value
0	noLearningUc	The packet shall not be learned. This is applied to L2 DA MAC unicast packets.	0x0
1	noLearningMc	If the packet is a L2 Multicast then the packet shall not be learned. If a packet is a L2 Multicast depends on if the SA MAC MC bit is set.	0×0
2	dropAll	The packet shall drop all instances and update counter L2 Action Table Drop. However special packets which are allowed will still be allowed into the switch (using the field useSpecialAllow set to one and register Allow Special Frame Check For L2 Action Table)	0×0
3	drop	The packet shall only drop on the ports which hits this action.	0x0
4	dropPortMove	The packet shall be dropped if the result from the learning lookup is port-move.	0x0
5	sendToCpu	The packet shall be send to the CPU.	0×0
6	forceSendToCpuOrigPkt	Force the packet to the CPU to be the originial,unmodified, packet. The exception to this is rule is the tunnel exit which will still be carried out.	0×0
7	noPortMove	No port move is allowed for this packet.	0×0
8	useSpecialAllow	Use the special frame checks on this port. $0 = \text{No.}$ $1 = \text{Yes.}$	0×0
10:9	allowPtr	Pointer to allow special packets defined in Allow Special Frame Check For L2 Action Table.	0×0
11	mmpValid	If set, this entry contains a valid MMP pointer	0x0
16:12	mmpPtr	Ingress MMP pointer.	0x0
18:17	mmpOrder	Ingress MMP pointer order.	0x0

35.10.133 L2 Aging Collision Shadow Table

This table traces the **valid** field of the **L2 Aging Collision Table** and is used by L2 forwarding to check if a hit in the **L2 Lookup Collision Table** is valid. Any software write to this table shall be updated to the **valid** field of the **L2 Aging Collision Table**.

Number of Entries: 32

Type of Operation : Read/Write

Addressing: L2 Lookup Collision Table hit index

Address Space: 125796 to 125827

Field Description

Bits	Field Name	Description	Default Value
0	valid	If this is set, then the corresponding L2 Lookup Collision Ta- ble entry is valid.	0x0

35.10.134 L2 Aging Collision Table

This table holds the status of the entries in the L2 Lookup Collision Table. Any software write to the valid field in this table shall be done in the L2 Aging Collision Shadow Table.

Number of Entries: 32

Type of Operation : Read/Write

Addressing: L2 Lookup Collision Table hit index

Address Space: 321 to 352

Field Description

Bits	Field Name	Description	Default Value
0	valid	If this is set, then the corresponding L2 Lookup Collision Ta-	0×0
		ble entry is valid.	
1	stat	If this is set, then the corresponding L2 Lookup Collision Ta-	0×0
		ble entry will not be aged out.	
2	hit	If this is set, then the corresponding L2 Lookup Collision Ta-	0×0
		ble entry has a L2 SA/DA search hit since the last aging scan.	

35.10.135 L2 Aging Status Shadow Table

This table traces the valid field of the L2 Aging Table and is used by L2 forwarding to check if a hit in the L2 DA Hash Lookup Table is valid. Any software write to this table shall be updated to the valid field of the L2 Aging Table. Any software write to this table shall be copied to the L2 Aging Status Shadow Table - Replica

Number of Entries: 4096 Type of Operation: Read/Write

Address Space : 81306 to 85401

Bits	Field Name	Description	Default Value
0	valid	If this is set, then the corresponding hash table entry is valid.	0×0

35.10.136 L2 Aging Status Shadow Table - Replica

This table traces the **valid** field of the **L2 Aging Table** and is used by L2 forwarding to check if a hit in the **L2 SA Hash Lookup Table** is valid. Content of this table shall be identical as the **L2 Aging Status Shadow Table**.

Number of Entries: 4096 Type of Operation: Read/Write

Addressing: address[0:9]: hash of {GID, source MAC}

address[10:11]: bucket number

Address Space : 105914 to 110009

Field Description

Bits	Field Name	Description	Default Value
0	valid	If this is set, then the corresponding hash table entry is valid.	0×0

35.10.137 L2 Aging Table

This table uses the same addressing as the L2 DA Hash Lookup Table to show the status of each entries in that table. Any software write to any valid field in this table shall be done in the L2 Aging Status Shadow Table. Any software write to this table shall be copied to the L2 Aging Status Shadow Table - Replica

Number of Entries: 4096 Type of Operation: Read/Write

Address Space: 364 to 4459

Field Description

Bits	Field Name	Description	Default Value
0	valid	If set, then the corresponding hash table entry is valid.	0×0
1	stat	If set, then the corresponding hash table entry will not be aged out.	0x0
2	hit	If set, then the corresponding hash table entry has a L2 DA search hit since the last aging scan.	0x0

35.10.138 L2 DA Hash Lookup Table

Table. When performing a L2 destination port lookup, {GID, destination MAC} is used as key for a hash calculation (see Section MAC Table Hashing). The hash is then used as index into this table to read out the 4 buckets. The incoming {GID, destination MAC} are compared to all the buckets. If any of the buckets match then address was known. The result of the lookup will be read from the L2 Destination Table at the same address as the matching hash index and bucket. Any software write to this table shall be copied to the L2 SA Hash Lookup Table.

Number of Entries: 4096 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: address[0:9]: hash of {GID, destination MAC}

address[10:11]: bucket number

Address Space : 85402 to 93593

Field Description

Bits	Field Name	Description	Default Value
47:0	macAddr	MAC address.	0×0
59:48	gid	Global identifier from the VLAN Table.	0×0

35.10.139 L2 Destination Table

This table contains either a destination port or a pointer to the L2 multicast table. Any software write to this table shall be copied to the L2 Destination Table - Replica.

Number of Entries: 4128
Type of Operation: Read/Write

address 0 to 4095L2 DA Hash Lookup Table address

Addressing : address 4096 to L2 Lookup Collision Table address

4127 :

Address Space : $\overline{93594}$ to 97721

Field Description

Bits	Field Name	Description	Default Value
0	uc	Unicast if set; multicast if cleared. Multicast	0×0
		means that a lookup to the L2 Multicast Ta-	
		ble will occur and determine a list of destination	
		ports.	
6:1	destPort_or_mcAddr	Destination port number or pointer into the L2	0×0
		Multicast Table.	
7	pktDrop	If set, the packet will be dropped and the L2	0×0
		Lookup Drop incremented.	
8	I2ActionTableDaStatus	The status DA bit to be used in the addressing for	0×0
		the table L2 Action Table Lookup.	
9	I2ActionTableSaStatus	The status SA bit to be used in the addressing for	0x0
		the table L2 Action Table Lookup.	

Bits	Field Name	Description	Default Value
25:10	metaData	Meta data for to CPU tag.	0×0

35.10.140 L2 Destination Table - Replica

This table is replicated from the L2 Destination Table and used by the learning engine allowing the learning engine and packet forwarding to process in parallel. Content of this table shall be identical as the L2 Destination Table.

Number of Entries : 4128 Type of Operation : Read/Write

address 0 to 4095L2 SA Hash Lookup Table address

Addressing:

address 4096 toL2 Lookup Collision Table address

4127:

Address Space : 110010 to 114137

Field Description

Bits	Field Name	Description	Default Value
0	uc	Unicast if set; multicast if cleared. Multicast	0x0
		means that a lookup to the L2 Multicast Ta-	
		ble will occur and determine a list of destination	
		ports.	
6:1	$destPort_or_mcAddr$	Destination port number or pointer into the L2	0×0
		Multicast Table.	
7	pktDrop	If set, the packet will be dropped and the L2	0×0
		Lookup Drop incremented.	
8	I2ActionTableDaStatus	The status DA bit to be used in the addressing for	0×0
		the table L2 Action Table Lookup.	
9	I2ActionTableSaStatus	The status SA bit to be used in the addressing for	0x0
		the table L2 Action Table Lookup.	
25:10	metaData	Meta data for to CPU tag.	0x0

35.10.141 L2 Lookup Collision Table

Collision table for the **L2 DA Hash Lookup Table**. If there is a hash collision and all the buckets for that hash index are occupied then additional entries can be stored in the collision table. When searching this table, all entries are compared in parallel and the matching entry with the lowest address will be used as a match result. Chapter Learning and Aging describes how to search and write to this table.

Number of Entries: 32 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space : 128255 to 128318

362 Packet Architects AB

Field Description

Bits	Field Name	Description	Default Value
47:0	macAddr	MAC address	0×0
59:48	gid	Global identifier for learning	0×0

35.10.142 L2 Lookup Collision Table Masks

Masks for collision memory for the MAC address and the global identifier. Only the first 4entries has masks on them.

Number of Entries: 4 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Addressing : All entries are read out in parallel

Address Space: 128247 to 128254

Field Description

Bits	Field Name	Description	Default Value
47:0	macAddr	MAC address mask	$2^{48} - 1$
59:48	gid	Global identifier for learning mask	0×fff

35.10.143 L2 Multicast Handling

Exceptions for L2 multicast flag handling, only valid for the Multicast Broadcast Storm Control and the Ingress Egress Port Packet Type Filter. The switch sets by default a L2 multicast flag when DA is an Ethernet multicast address (i.e. DA with the least-significant bit of the first octet equals 1 (e.g. 01:80:c2:00:00:00) but not equal to ff:ff:ff:ff:ff).

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124805

Field Description

Bits	Field Name	Description	Default Value
0	excIIPv4Mc	If set, IPv4 packets with IPv4 multicast MAC ad-	0×0
		dress will NOT have a L2 multicast flag.	
1	excIIPv6Mc	If set, IPv6 packets with IPv6 multicast MAC ad-	0×0
		dress will NOT have a L2 multicast flag.	
2	inclL2McLut	If set, packets that are forwarded by L2 Multicast	0×1
		Table will internally be treated as the L2 multicast	
		bit in the L2 DA address would have been set to	
		one.	

Bits	Field Name	Description	Default Value
3	inclMultiPorts	If set, packets that end up in more than one destination port but not due to broadcast or flooding will have a L2 multicast flag. Observe that mirroring is not a valid multiport destination.	0×0
4	unknownL2McFilterRule	Select the filtering rules for unknown L2 multi- cast MAC DA in the Ingress Egress Port Packet Type Filter. 0 = dropL2FloodingFrames 1 = dropL2MulticastFrames	0×0

35.10.144 L2 Multicast Table

L2 multicast table.

Number of Entries: 64

Type of Operation: Read/Write

Addressing: mcAddr field from L2 Destination Table or from Next Hop Table

Address Space: 125732 to 125795

Field Description

Bits	Field Name	Description	Default Value
10:0	mcPortMask	L2 portmask entry members. If set, the port is part	0x7ff
		of multicast group and shall be transmitted to.	
26:11	metaData	Meta data for to CPU tag.	0x0

35.10.145 L2 Reserved Multicast Address Action

If the higher bits of the incoming packets MAC DA address matches the **L2 Reserved Multicast Address Base** then the lower bits are used as index into this table. The action can be to drop the packet, send the packet to the CPU or just process the packet in the normal L2 pipeline.

Number of Entries: 256

Type of Operation: Read/Write
Addressing: MAC DA[7:0]
Address Space: 127554 to 127809

Field Description

Bits	Field Name	Description	Default Value
10:0	dropMask	Determines which source ports that are not allowed to receive this multicast address. Each bit set to 1 will result in dropping this multicast address on that source port. Bit 0 is port 0, bit 1 is port 1 etc. Each drop will be counted in L2 Reserved Multicast Address Drop.	0×0

Bits	Field Name	Description	Default Value
21:11	sendToCpuMask	Received packets on these source ports will be sent to the CPU. Bit 0 represents port 0, bit 1 represents port 1 etc. LLDP frames sent to the CPU takes priority over this.	0×0

35.10.146 L2 Reserved Multicast Address Base

Certain L2 Destination MAC addresses shall be treated special when entering the switch. If the first 40 bits of the Destination MAC address matches the macBase field then the lowest 8 bits are used as index into the **L2 Reserved Multicast Address Action** table.

Number of Entries : 1
Number of Addresses per Entry : 2

 $\begin{tabular}{lll} Type of Operation: & Read/Write \\ Address Space: & 128189 \\ \end{tabular}$

Field Description

Bits	Field Name	Description	Default Value
39:0	macBase	The first 40 bits of the reserved MAC address, and	0×180c20000
		the lower 16 bits of it can be masked. The default is	
		01:80:c2:00:00	
55:40	mask	Bit comparison mask for the lower 2 bytes in macBase	0xffff
		(marked with XX as in 01:80:c2:XX:XX). If a bit is	
		set in the mask then the corresponding bit will be	
		compared. Otherwise the bits are dont care.	

35.10.147 L2 SA Hash Lookup Table

L2 table used for hash search based on the source MAC and a GID from the **VLAN Table**. When performing a SA MAC learning check {GID, Source MAC} is used as key for a hash function (see Section MAC Table Hashing) which calculates a hash index. The hash index points to this table that has 4 buckets. The incoming {GID, source MAC} are compared to all the 4 buckets. If any of the buckets match then address was known. The result of the lookup will be read from the **L2 Destination Table** - **Replica** at the same address as the matching hash index and bucket. Content of this table shall be identical as the **L2 DA Hash Lookup Table**.

Number of Entries: 4096 Number of Addresses per Entry: 2

Type of Operation : Read/Write

Address Space : 97722 to 105913

Field Description

365 Packet Architects AB

Bits	Field Name	Description	Default Value
47:0	macAddr	MAC address.	0×0
59:48	gid	Global identifier from the VLAN Table.	0×0

35.10.148 L2 Tunnel Decoder Setup

The tunnel TPID setup is setup in this register. This is used by the tunnel packet decoder. Besides the configurable values the default Ethernet Type values of 0x8100 is detected as a C-type VLAN ID while 0x9100, 0x9200 and 0x88A8 is descoverable as S-type VLAN IDs.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
0	defaultEthCTypeValid	The configurable Ethernet Type C-type is valid.	0×0
16:1	defaultEthCType	A configurable Ethernet Type which shall be used	0×0
		to determine a C-Type VLAN.	
17	defaultEthSTypeValid	The configurable Ethernet Type S-type is valid.	0×0
33:18	defaultEthSType	A configurable Ethernet Type which shall be used	0×0
		to determine a S-Type VLAN.	

35.10.149 L3 LPM Result

This is the longest prefix routing table result. The index into the table is the hit index from the **L3 Routing TCAM**.

Number of Entries: 16

 $\label{type of Operation: Read/Write} Type of Operation: Read/Write$

Addressing: L3 Routing TCAM hit index

Address Space : 60810 to 60825

Field Description

Bits	Field Name	Description	Default Value
0	useECMP	Enables the use of ECMP hash to calculate the next hop pointer. $0 = \text{Use ECMP hash.} \\ 1 = \text{Do not use ECMP hash.}$	0x0
6:1	ecmpMask	How many bits of the ECMP hash will be used when calculating the ECMP offset. This byte is AND:ed with the ECMP hash to determine which bits shall be used as offset.	0×0

Bits	Field Name	Description	Default Value
9:7	ecmpShift	How many bits the masked ECMP hash will be right	0×0
		shifted.	
19:10	nextHopPointer	Index into the Next Hop Table for this destination.	0×0

35.10.150 L3 Routing Default

The default router to be used if the destination lookup in L3 tables fails, i.e does not match either the LPM or the hash tables.

Number of Entries: 4

Type of Operation : Read/Write

Addressing: vrf

Address Space: 126900 to 126903

Field Description

Bits	Field Name	Description	Default Value
9:0	nextHop	The default next hop to be used. Index into the Next Hop	0x0
		Table.	
10	pktDrop	If set the packet will be drop and the L3 Lookup Drop	0×0
		counter incremented.	
11	sendToCpu	If set then the packet will be sent to the CPU.	0x0
12	mmpValid	If set, this entry contains a valid MMP pointer	0x0
17:13	mmpPtr	Ingress MMP pointer.	0x0
19:18	mmpOrder	Ingress MMP pointer order.	0x0

35.10.151 L3 Routing TCAM

This is the longest prefix match routing table used to determine the next hop. This table is compared from the highest address and downwards. The match which has the highest entry number is selected. The selected entry number is used to index the L3 LPM Result table to provide the next hop result. For each entry the mask determines which bits that shall be compared. An entry contains three parts: valid flag, comparison fields and field masks. Each comparison field is associated with a mask to optionally ignore several bits or even the entire field during comparison. To allow any value on a certain bit, the corresponding bit in the mask shall be set to 1. As a consequence, the field will have that bit nailed to 0 if read and ignored during lookup. Hit in multiple entries will return the first hit index (lowest address/index) to lookup in the result table.

367

Number of Entries: 16 Number of Addresses per Entry: 16

Type of Operation : Read/Write
Addressing : Entry number
Address Space : 132848 to 133103

Bits	Field Name	Description	Default Value
1:0	proto	Select if this is an IPv4, IPv6 or MPLS entry. 0 = Reserved 1 = MPLS Entry. 2 = IPv4 entry. 3 = IPv6 entry. protoMaskN determines the bits in the field that can be ignored for comparison.	0x0
3:2	vrf	This entries VRF. The packets assigned VRF will be compared with this field. vrfMaskN determines the bits in the field that can be ignored for comparison.	0x0
131:4	destIPAddr	The IP or MPLS address to be matched. If the entry is an IPv4 entry then bits [31:0] should be set to the IPv4 address. If the entry is an MPLS entry then bits [4-1:0] should contain the source port while bits [4+19:4] should contain the MPLS label. destIPAddrMaskN determines the bits in the field that can be ignored for comparison.	0x0
133:132	protoMaskN	Mask for the proto field. For each bit in the mask, 0 means the bit is valid for comparison, 1 means the comparison ignores this bit.	0×0
135:134	vrfMaskN	Mask for the vrf field. For each bit in the mask, 0 means the bit is valid for comparison, 1 means the comparison ignores this bit.	0×0
263:136	destIPAddrMaskN	Mask for the destIPAddr field. For each bit in the mask, 0 means the bit is valid for comparison, 1 means the comparison ignores this bit.	0×0
264	valid	If set, this entry is valid	0×0

35.10.152 LACP Packet Decoder Options

This is the MAC address used to determine that a packet is a LACP packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1
Number of Addresses per Entry: 4

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled.	0×1
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
48:1	mac	The value to be used to find this packet type.	0x180c2000002
59:49	drop	If a packet comes in on this source port then drop the packet. 0 = Do not drop this packet. 1 = Drop this packet and update the drop counter.	0x0

Bits	Field Name	Description	Default Value
70:60	toCpu	If a packet comes in on this source port then send the packet to the CPU port.	0x0
		0 = Do not sent to CPU. Normal Processing of packet.	
		$1 = {\sf Send}$ to ${\sf CPU}$, bypass normal packet processing.	

35.10.153 LLDP Configuration

A LLDP packet is identified as a LLDP frame if the packets MAC DA matches one of the mac1-mac3 fields and the packets EtherType matches eth. The portmask field determines if an identified LLDP packet will bypass the normal packet processing and instead be sent to the CPU or if the packet should pass through normal packet processing.

Number of Entries: 1
Number of Addresses per Entry: 8

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
47:0	mac1	DA MAC address to match for LLDP packet.	0x180c200000e
95:48	mac2	DA MAC address to match for LLDP packet.	0×180c2000003
143:96	mac3	DA MAC address to match for LLDP packet.	0x180c2000000
159:144	eth	The Ethernet Type for a LLDP	0x88cc
160	bpduOption	If both LLDP and BPDU are valid, because the BPDU has same MAC address as LLDP, then this option allows the BPDU identification to be turned off 0 = Don't do anything. Both LLDP and BPDU can be valid at same time. 1 = Remove BPDU valid causing that the packet will only be seen as a LLDP packet and not a BPDU frame and the new frame will not be sent to the CPU because the switch will no longer consider it a BPDU frame, this includes Rapid Spanning Tree BPDUs also.	0x0
171:161	portmask	One bit per source port, bit 0 for port 0, bit 1 for port 1 etc. 0 = Do not sent a matched LLDP packet to the CPU from this port. Packet will pass through normal packet processing. 1 = Send a matched LLDP packet to CPU from this source port and hence bypassing normal processing.	0x3ff

35.10.154 Learning And Aging Enable

Enable/Disable the learning and aging function. If software needs to take fully control over learning and aging tables by writting to the FIB directly, the learning and aging units should be completely turned off, which means all fields in this register have to be cleared to 0, partly reset is not allowed. When the learning and aging units are turned on, software still has controllablity over learning and aging by injecting user defined learning packets.

Number of Entries: 1

Type of Operation : Read/Write

Address Space: 302

Field Description

Bits	Field Name	Description	Default Value
0	learningEnable	If set, the learning unit will be activated.	0×1
1	agingEnable	If set, the aging unit will be activated.	0×1
2	daHitEnable	If set, MAC DA hit in the forwarding information base	0×1
		will update the hit bit for non-static entries.	
3	lru	If set, the learning unit will try to overwrite a least recently used non-static entry in either the hash table or the collision table when there is no free entry to use. Otherwise the learning unit will try to overwrite a non-static entry in the collision table.	0×0

35.10.155 Learning And Aging Writeback Control

Determine how the hardware learning and aging engine act on injected learning packets. By default all the hardware and software learning/aging/hit results can be updated to the FIB. If software needs more controllability, the learning/aging/hit decisions from hardware can be configured to only send to corresponding writeback FIFOs but not write to the FIB.

Number of Entries: 1

Type of Operation: Read/Write

Address Space: 304

Bits	Field Name	Description	Default Value
0	hwLearningWriteBack	If set, the hardwrae learning result from unknown or port moved source MAC will be pushed to the Learning Data FIFO and written to the FIB simultaneously. Otherwise the result is only pushed to the FIFO.	0×1
1	hwAgingWriteBack	If set, the aging result will be pushed to the Aging Data FIFO and written to the FIB simultaneously. Otherwise the result is only pushed to the FIFO and software has to read it out then send in a corresponding learning packet if this aging result should be written to the tables.	0x1
2	hwHitWriteBack	If set, the hit update of a learned destination MAC will be pushed to Hit Update Data FIFO and written to the FIB simulatneously. Otherwise the result is only pushed to the FIFO and then software decides the FIB writes.	0×1

Bits	Field Name	Description	Default Value
3	adfPushOption	By default the Aging Data FIFO contains all	0x0
		hardware aging requests, including modifing the	
		hit state and clearing the entry. Set this field	
		to 1 to only push when an entry needs to be	
		cleared/aged out.	

35.10.156 Learning Conflict

Status register for the failed port move operation. A valid status means the L2 Forwarding Information Base cannot bind the existing GID, MAC to a new port. Once the status register is updated from the hardware, no more fails can be updated untill the software clears the valid field.

Number of Entries: 1
Number of Addresses per Entry: 4

Type of Operation : Read/Write Address Space : 294

Field Description

Bits	Field Name	Description	Default Value
0	valid	Indicates hardware has written a learning conflict to this	0×0
		status register. Write 0 to clear.	
48:1	macAddr	MAC address.	0x0
60:49	gid	Global identifier from the VLAN Table.	0x0
64:61	port	Port number.	0×0

35.10.157 Learning DA MAC

The MAC address to be used by packets which are injected by software to be learned.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
47:0	mac	The destination MAC address to be used by software when in-	0×0
		jecting new addresses to be learned	
48	enable	Shall the switch accept learning packets? $0 = \text{No}$ $1 = \text{Yes}$	0×0

35.10.158 Learning Data FIFO

This register exposes the output of a FIFO which is holding all learning requests that have been processed by the learning unit. A read from this register will pop one entry from the fifo. Under hardware learning writeback mode, all valid entries have been updated to the FIB regardless of hardware or software learning. When hardware learning writeback is turned off, software takes full control of the learning unit, hardware learning result will only be pushed to this FIFO but not update the related L2 tables.

Number of Entries: 1
Number of Addresses per Entry: 4

Type of Operation : Read Only Address Space : 4461

Field Description

Bits	Field Name	Description	Default Value
47:0	mac	MAC address for a learning request.	0×0
63:48	gid	Global IDentifier from the gid field in the VLAN Table .	0x0
76:64	destAddress	The L2 Destination Table address decided by the learning unit.	0x0
77	ис	The uc field in the L2 Destination Table decided by the learning unit.	0×0
83:78	port_or_ptr	The destPort or mcAddr field in the L2 Destination Table decided by the learning unit.	0x0
84	drop	The pktDrop field in the L2 Destination Table decided by the learning unit.	0x0
85	I2ActionTableDaStatus	I2ActionTableDaStatus field in the L2 Destination Table	0x0
86	I2ActionTableSaStatus	I2ActionTableSaStatus field in the L2 Destination Table	0x0
102:87	metaData	metaData field in the L2 Destination Table	0×0
105:103	status	Entry status either refers to the L2 Aging Table or the L2 Aging Collision Table based on the destAddress field.	0x0
106	type	Type of the learning request. 0 = Hardware learning result 1 = Software learning result from a injected learning packet	0x0
107	valid	0 = FIFO is empty $1 = FIFO$ is not empty and the data is valid	0x0

35.10.159 Learning Data FIFO High Watermark Level

The High Watermark Interrupt will occur when a push to **Learning Data FIFO** is done and the number of existing entries after the push is larger than this setting.

Number of Entries: 1

Type of Operation: Read/Write

Address Space: 305

Field Description

372 Packet Architects AB

Bits	Field Name	Description	Default Value
5:0	level	Number of used entries.	0×0

35.10.160 Learning Overflow

Status register for the failed hardware learning operation. A valid status means the L2 Forwarding Information Base cannot find an available slot for the unknown GID, MAC. Once the status register is updated from the hardware, no more fails can be updated untill the software clears the valid field.

Number of Entries: 1
Number of Addresses per Entry: 4

Type of Operation : Read/Write

Address Space: 298

Field Description

Bits	Field Name	Description	Default Value
0	valid	Indicates hardware has written a learning overflow to this	0x0
		status register, Write 0 to clear.	
48:1	macAddr	MAC address.	0×0
60:49	gid	Global identifier from the VLAN Table.	0×0
64:61	port	Port number.	0x0

35.10.161 Link Aggregate Weight

The link aggregate hash will index into this table to determine which physical port within the aggregate that a packet should be output to. The number of bits set for a port will determine the ratio of packets that will go out on that port. For each hash index only one of the ports that belong to the same link aggregate must be set. The number of bits set divided by number of hash values determines the ratio of traffic going to that port. All link aggregates share this table since each physical port can only belong to one link aggregate. When a link aggregate only has one port then all bits for that port must be set.

Number of Entries: 256

Type of Operation : $\mathsf{Read}/\mathsf{Write}$

Addressing: The link aggregate hash. Address Space: 124866 to 125121

Bits	Field Name	Description	Default Value
10:0	ports	One bit per physical port.	0×0

35.10.162 Link Aggregation Ctrl

This register controls whether link aggregation is enabled and which packet header fields that will be used to calculate the link aggregate hash value.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124778

Field Description

Bits	Field Name	Description	Default Value
0	enable	Is Link aggregation enabled or not. 0 = Link Aggregation is disabled 1 = Link Aggregation is enabled	0x0
1	useSaMacInHash	The packets source MAC address shall be part of the hash key when calculating the link aggregate hash value	0×0
2	useDaMacInHash	The packets destination MAC addresses shall be part of the hash key when calculating the link aggregate hash value	0×0
3	uselpInHash	The packets IP source and destination addresses shall be part of the hash key when calculating the link aggregate hash value	0×0
4	useL4InHash	The packets L4 SP / DP and L4 protocol byte shall be part of the hash key when calculating the link aggregate hash value	0×0
5	useTosInHash	The incoming packets TOS byte shall be part of the hash key when calculating the link aggregate hash value	0×0
6	useNextHopInHash	For routed packets the next hop entry shall be part of the hash key when calculating the link aggregate hash value.	0×0
7	useVlanIdInHash	The packets VLAN Identifier tag shall be part of the hash key when calculating the link aggregate hash value.	0×0

35.10.163 Link Aggregation Membership

This register is used to determine which link aggregation a specific source port is membership of. If link aggregation is enabled then this port number is used for all source lookups instead of the port where the packet enterned the switch.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Ingress port
Address Space: 127814 to 127824

Field Description

Bits	Field Name	Description	Default Value
3:0	la	The Link aggregation which this port is a member of	0×0

35.10.164 Link Aggregation To Physical Ports Members

This link aggregate portmasks are setup to determine which physical ports are members of each link aggregate.

Number of Entries: 11

Type of Operation : Read/Write

Addressing : The link aggregate number.

Address Space: 124855 to 124865

Field Description

Bits	Field Name	Description	Default Value
10:0	members	Physical ports that are members of this link aggregate. One bit per port.	0x0

35.10.165 MPLS EXP Field To Egress Queue Mapping Table

Mapping table from MPLS EXP priority fields to egress queues.

Number of Entries: 8

Type of Operation : Read/Write

Addressing: Incoming packets MPLS EXP priority bits

Address Space: 126372 to 126379

Field Description

Bits	Field Name	Description	Default Value
2:0	pQueue	Egress queue	0×1

35.10.166 MPLS EXP Field To Packet Color Mapping Table

Mapping table from MPLS EXP priority fields to packet initial color.

Number of Entries: 8

 $Type\ of\ Operation: \qquad Read/Write$

Addressing: Incoming packets MPLS EXP priority bits

Address Space: 125836 to 125843

Bits	Field Name	Description	Default Value
1:0	color	Packet initial color	0×0

NAT Action Table 35.10.167

At end of ingress processing a check is done to determine what to do with the packets. This table is used to setup operations based on the port states Egress Port NAT State and natPortState

Number of Entries: 512 Type of Operation:

Read/Write

read/ write				
Address Bit 0 :	Source Port NAT State natPortState			
Address Bit 1 :	Egress Port NAT State Egress Port NAT State			
Address Bit [3:2]	Was packet Switched or Routed			
:	 0 = Other - sendToCpu,sendToPort from classification. 1 = Routed. 2 = Flooded. 3 = Switched - The packet hit a DA table entry and was not routed. 			
Address Bit 4 :	Was ingress ACL NAT operation enabled. $0 = \text{No}$ $1 = \text{Yes}$			
Address Bit 5 :	Was egress ACL NAT operation enabled. $0 = \text{No}$ $1 = \text{Yes}$			
Address Bit 6 :	Was the packet switched/routed unicast/multicast. Only valid for switching and routing. Otherwise set to zero. $0 = \text{Multicast.} \\ 1 = \text{Unicast.}$			
Address Bit [8:7]	L3 Packet Type 0 = IPv4 1 = IPv6 2 = MPLS 3 = Other			

Address Space:

Addressing:

125133 to 125644

Field Description

Bits	Field Name	Description	Default Value
1:0	action	What to do with the packet depending on what port states are. 0 = No Operation 1 = Send to CPU Reason NAT Action Table Code 1 2 = Send to CPU Reason NAT Action Table Code 2 3 = Drop the packet. Update counter NAT Action Table Drop.	0×0

35.10.168 NAT Action Table Force Original Packet

If the NAT Action Table forces packets to be send to the CPU then they can either be the processed packet or the original packet. This register sets up for each reason what the packet to the CPU shall be.

Number of Entries:

Type of Operation: Read/Write Address Space : 124808

Field Description

376 Packet Architects AB

Bits	Field Name	Description	Default Value
0	reasonOne	Force the packet to the CPU from the NAT action table	0×0
		Reason type 1 to be the original packet.	
1	reasonTwo	Force the packet to the CPU from the NAT action table	0×0
		Reason type 2 to be the original packet.	

35.10.169 Next Hop Packet Modifications

Determines the VLAN operations to perform on the packet exiting the router. One or two VLAN headers can be added to the outgoing packet.

Number of Entries: 1024 Number of Addresses per Entry: 2

 $\label{type of Operation: Read/Write} Type of Operation: Read/Write$

Addressing : nextHopPacketMod
Address Space : 79258 to 81305

Bits	Field Name	Description	Default Value
0	valid	Is this a valid entry. If the router points to an entry with this field cleared the packet will be sent to CPU. $0 = Invalid$ $1 = Valid$	0x0
1	outerVlanAppend	Insert/push an outer VLAN header in the packet. The information used to create the new VLAN header is controlled by the fields outerVid , outerPcpSel , outerCfiDeiSel and outerEthType . If the selected outermost VLAN header field doesn't exist in the packet then the new VLAN header field will be taken from Router Egress Queue To VLAN Data . 0 = No operation. 1 = Insert/push an outer VLAN tag.	0×0
3:2	outerPcpSel	Selects which PCP bits to use when building an outer VLAN header. 0 = From outermost VLAN header in the original packet (if any). 1 = From this entrie's outerPcp field. 2 = From Router Egress Queue To VLAN Data.	0×0
5:4	outerCfiDeiSel	Selects which CFI/DEI bit to use when building an outer VLAN header. 0 = From outermost VLAN header in the original packet (if any). 1 = From this entrie's outerCfiDei field. 2 = From Router Egress Queue To VLAN Data.	0×0
7:6	outerEthType	Pointer to the VLAN type. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN.	0×0
19:8	outerVid	The VID used when building an outer VLAN header.	0×0

Bits	Field Name	Description	Default Value
22:20	outerPcp	The PCP bits to use when building an outer VLAN	0x0
		header. If selected by outerPcpSel.	
23	outerCfiDei	The CFI/DEI bit to use when building an outer VLAN header. If selected by outerCfiDeiSel .	0x0
24	innerVlanAppend	Insert/push an inner VLAN header in the packet. The information used to create the new VLAN header is controlled by the fields innerVid, innerPcpSel, innerCfiDeiSel and innerEthType. If the selected innermost VLAN header field doesn't exist in the packet then the new VLAN header field will be taken from Router Egress Queue To VLAN Data. 0 = No operation 1 = Insert/push an inner VLAN tag.	0x0
26:25	innerPcpSel	Selects which PCP bits to use when building an inner VLAN header. 0 = From innermost VLAN header in the original packet (if any). 1 = From this entrie's innerPcp field. 2 = From Router Egress Queue To VLAN Data.	0×0
28:27	innerCfiDeiSel	Selects which CFI/DEI bit to use when building an inner VLAN header. 0 = From innermost VLAN header in the original packet (if any). 1 = From this entrie's innerCfiDei field. 2 = From Router Egress Queue To VLAN Data.	0×0
30:29	innerEthType	Pointer to the VLAN type. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN.	0×0
42:31	innerVid	The VID used when building an inner VLAN header.	0x0
45:43	innerPcp	The PCP bits to use when building an inner VLAN header. If selected by innerPcpSel .	0×0
46	innerCfiDei	The CFI/DEI bit to use when building an inner VLAN header. If selected by innerCfiDeiSel .	0×0
50:47	msptPtr	The multiple spanning tree to be used by packets for egress spanning tree check for this next hop. Points to an entry in Egress Multiple Spanning Tree State	0x0

35.10.170 Next Hop Table

Forwarding decision for a routed packet including destination port(s), or if packet shall be dropped or sent to the CPU port.

Number of Entries: 1024 Number of Addresses per Entry: 2

Type of Operation : Read/Write
Addressing : Next Hop Pointer
Address Space : 77210 to 79257

Field Description

378 Packet Architects AB

Bits	Field Name	Description	Default Value
0	validEntry	Is this a valid entry or not. If the entry is not valid then the packet shall be sent to the CPU for further processsing	0×0
1	srv6Sid	If set, this entry is a locally instantiated SRv6 segment identifier	0x0
11:2	nextHopPacketMod	Pointer into the Next Hop Packet Modifications table and the Next Hop DA MAC table.	0x0
12	l2Uc	L2 unicast or multicast. A multicast means that a lookup in the L2 Multicast Table will take place to determine the destination portmask. $0 = L2$ multicast. $1 = L2$ unicast.	0×0
18:13	destPort_or_mcAddr	Destination port number or a pointer into the L2 Multicast Table	0x0
19	pktDrop	If set then the packet will be dropped and the L3 Lookup Drop incremented.	0x0
20	sendToCpu	If set then the packet will be sent to the CPU.	0×0
21	tunnelEntry	Shall this packet enter into a tunnel.	0×0
25:22	tunnelEntryPtr	The tunnel entry which this packet shall enter upon exiting the router. If field I2Uc is set to L2 multicast then Tunnel Entry Instruction Table uses the egress port as a offset from this base pointer.	0x0
26	tunnelExit	Shall this packet do a tunnel exit. 0 = No 1 = Yes	0x0
30:27	tunnelExitPtr	Pointer to tunnel exit described in Egress Tunnel Exit Table .	0x0
46:31	metaData	Meta data for to CPU tag.	0x0

35.10.171 Port Move Options

Determine if port move is allowed on static entries.

Number of Entries: 1

 $\begin{array}{ll} \hbox{Type of Operation:} & \hbox{Read/Write} \\ \hbox{Address Space:} & \hbox{124803} \end{array}$

Bits	Field Name	Description	Default Value
10:0	allowPortMoveOnStatic	This field configures which source ports that are allowed to change their static GID and MAC to other ports. One bit for each port where bit 0 corresponds to port 0. When the L2 forwarding information base identifies a GID, MAC SA and source port combination that conflicts with a existing static entry, if the previous binded port has a coressponding bit set to 1 in this field, it allows the learning engine to update the GID and MAC to the current source port.	0x7ff

35.10.172 RARP Packet Decoder Options

The Ethernet type used to determine if a packet is a RARP packet.. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write Address Space : Read/Write

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled. 0 = No	0×1
		1 = Yes	
16:1	eth	The value to be used to find this packet type.	0×8035
27:17	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0×0
38:28	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0×0

35.10.173 Reserved Destination MAC Address Range

The mac addresses ranges that the packets destination MAC address are compared with and the corresponding actions. A range is matched if the packets MAC address is \geq startAddr and the address is \leq stopAddr. The table is searched starting from entry 0. When a range is matched the corresponding actions (drop, send to cpu, force egress queue) will be activated. If multiple ranges are matched, any matching range that sets drop will cause a drop. Any match that sets sendToCpu will cause send to CPU (this has priority over drop). When multiple ranges that match has set the forceQueue field then the highest numbered entry will determine the value.

Number of Entries : 4 Number of Addresses per Entry : 4

Type of Operation : Read/Write

Addressing : All entries are read out in parallel

Address Space : 128157 to 128172

Field Description

Bits	Field Name	Description	Default Value
47:0	startAddr	The start MAC address of the range. A packets destination MAC address must be equal or greater than this value to	0×0
		match the range.	
95:48	stopAddr	The end MAC address of the range. A packets destination MAC address must be equal or less than this value to match the range.	0×0

Bits	Field Name	Description	Default Value
96	dropEnable	If the MAC address was within the range the packet shall	0×0
		be dropped and the Reserved MAC DA Drop counter	
		incremented.	
97	sendToCpu	If the MAC address was within the range the packet shall	0×0
		be sent to the CPU.	
98	forceQueue	If set, the packet shall have a forced egress queue. Please	0×0
		see Egress Queue Selection Diagram in Figure 21.1	
101:99	eQueue	The egress queue to be assigned if the forceQueue field in	0×0
		this entry is set to 1.	
103:102	color	Inital color of the packet.	0×0
104	forceColor	If set, the packet shall have a forced color.	0×0
105	mmpValid	If set, this entry contains a valid MMP pointer	0×0
110:106	mmpPtr	Ingress MMP pointer.	0×0
112:111	mmpOrder	Ingress MMP pointer order.	0×0
123:113	enable	Enable the reserved MAC DA check per source port. One	0×0
		bit for each port where bit 0 corresponds to port 0. If a	
		bit is set to one, the reserved MAC DA range is activated	
		for that source port.	

35.10.174 Reserved Source MAC Address Range

The mac addresses ranges that the packets source MAC address are compared with and the corresponding actions. A range is matched if the packets MAC address is \geq startAddr and the address is \leq stopAddr. The table is searched starting from entry 0. When a range is matched the corresponding actions (drop, send to cpu, force egress queue) will be activated. If multiple ranges are matched, any matching range that sets drop will cause a drop. Any match that sets sendToCpu will cause send to CPU (this has priority over drop). When multiple ranges that match has set the forceQueue then the highest numbered entry will determine the value.

Number of Entries: 4 Number of Addresses per Entry: 4

Type of Operation : Read/Write

Addressing : All entries are read out in parallel

Address Space : 128141 to 128156

Bits	Field Name	Description	Default Value
47:0	startAddr	The start MAC address of the range. A packets source	0×0
		MAC address must be equal or greater than this value to	
		match the range.	
95:48	stopAddr	The end MAC address of the range. A packets source MAC	0×0
		address must be equal or less than this value to match the	
		range.	
96	dropEnable	If the MAC address was within the range the packet shall	0×0
		be dropped and the Reserved MAC SA Drop counter	
		incremented.	
97	sendToCpu	If the MAC address was within the range the packet shall	0×0
		be sent to the CPU.	

Bits	Field Name	Description	Default Value
98	forceQueue	If set, the packet shall have a forced egress queue. Please	0×0
		see Egress Queue Selection Diagram in Figure 21.1	
101:99	eQueue	The egress queue to be assigned if the forceQueue field in	0×0
		this entry is set to 1.	
103:102	color	Inital color of the packet.	0×0
104	forceColor	If set, the packet shall have a forced color.	0×0
105	mmpValid	If set, this entry contains a valid MMP pointer	0×0
110:106	mmpPtr	Ingress MMP pointer.	0×0
112:111	mmpOrder	Ingress MMP pointer order.	0×0
123:113	enable	Enable the reserved source MAC check per source port.	0×0
		One bit for each port where bit 0 corresponds to port 0.	
		If a bit is set to one, the reserved source MAC range is	
		activated for that source port.	

35.10.175 Router Egress Queue To VLAN Data

Map from egress queue number to VLAN PCP and CFI/DEI values to be used in router VLAN operations selected by **Next Hop Packet Modifications**.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: Egress Queue
Address Space: 125828 to 125835

Field Description

Bits	Field Name	Description	Default Value
0	cfiDei	Map from egress queue to CFI/DEI	0×0
3:1	рср	Map from egress queue to PCP	0×0

35.10.176 Router MTU Table

An MTU check is done on each routed packet by comparing the IPv4 Total Length field with the max-IPv4MTU limit. Correspondingly IPv6 Payload Length field is compared with maxIPv6MTU. If the length field exceeds the limit the packet will be sent to the CPU. Each router VRF has a MTU limit for each port.

Number of Entries: 44

Type of Operation : Read/Write

Addressing : destination-port * 4 + VRF

Address Space: 125677 to 125720

Bits	Field Name	Description	Default Value
15:0	maxIPv4MTU	The maximum MTU allowed for IPv4 packets	0×ffff

Bits	Field Name	Description	Default Value
31:16	maxIPv6MTU	The maximum MTU allowed for IPv6 packets	0×ffff

35.10.177 Router Port MAC Address

The incoming packets destination MAC address is compared against all the entries in the table. If there is a match after the macMask has been applied the packet will enter the routing function with the VRF identifier assigned from the matching entry. The table must be configured so that only one match is possible.

 $\begin{array}{ll} \text{Number of Entries:} & 16 \\ \text{Number of Addresses per Entry:} & 8 \\ \end{array}$

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space : 129607 to 129734

Field Description

Bits	Field Name	Description	Default Value
47:0	macAddress	The base destination MAC address that is used	0x0
		to identify packets to the router.	
95:48	macMask	Each bit says if the bit in the DA MAC shall be compared.	0x0
		0 = Dont compare bit.	
		1 = Compare bit.	
106:96	selectMacEntryPortMask	Portmask to select which MAC address to use.	0×0
		One bit per source port.	
		0= use macAddress. $1=$ use altMacAddress.	
154:107	altMacAddress	The alternative base destination MAC address	0×0
		that is used to identify packets to the router.	
155	valid	If set, this entry is valid for comparison.	0×0
157:156	vrf	The VRF to use for this router	0x0

35.10.178 SCTP Packet Decoder Options

The L4 protocol number which is used to determine if the packet has a SCTP header. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124783

Field Description

Bits	Field Name	Description	Default Value
0	enabled	Is this decoding enabled.	0×1
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	

Bits	Field Name	Description	Default Value
8:1	I4Proto	The value to be used to find this packet type.	0×84
19:9	drop	If a packet comes in on this source port then drop the packet. $0 = Do$ not drop this packet. $1 = Drop$ this packet and update the drop counter.	0×0
30:20	toCpu	If a packet comes in on this source port then send the packet to the CPU port. $0 = Do$ not sent to CPU. Normal Processing of packet. $1 = Send$ to CPU, bypass normal packet processing.	0×0

35.10.179 SMON Set Search

If both source port and VLAN ID match one of the entries, the corresponding SMON counter will be updated.

Number of Entries: 4

Type of Operation: Read/Write
Addressing: SMON set number
Address Space: 127539 to 127542

Field Description

Bits	Field Name	Description	Default Value
3:0	srcPort	Source port	0x0
15:4	vid	VLAN ID	0x0

35.10.180 SNAP LLC Decoding Options

When a SNAP/LLC packet is received there are some options which allows the packet if not recoginzed to be sent to the CPU. The packet will have a special reason code

Number of Entries: 1

Type of Operation : Read/Write Address Space : 124780

Bits	Field Name	Description	Default Value
15:0	ethSize	What maximum size of packet shall be interpreted as SNAP	0x5dc
		packet.	
26:16	sendToCpu	When a LLC is not equal to (dsap==0xAA and	0×0
		ssap==0xAA and $ctrl==0x03$) then packet will be sent	
		to cpu. Bit 0 is from port 0, bit 1 is for port 1, etc.	

35.10.181 Second Tunnel Exit Lookup TCAM

The extracted key from packet which is described in the tunnel exit lookup.

Number of Entries: 16 Number of Addresses per Entry: 8

Type of Operation : Read/Write

Addressing: All entries are read out in parallel

Address Space: 129479 to 129606

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
80:1	pktKey₋mask	Mask for pktKey.	$2^{80} - 1$
160:81	pktKey	The extracted key from the packet according to the first	0×0
		lookup.	
162:161	tabKey_mask	Mask for tabKey.	0×3
164:163	tabKey	The key from the first tunnel exit lookup result table.	0×0

35.10.182 Second Tunnel Exit Lookup TCAM Answer

This is the table holding the answer for the **Second Tunnel Exit Lookup TCAM**.

Number of Entries: 16 Number of Addresses per Entry: 2

Type of Operation : ${\sf Read/Write}$

Addressing : Second Tunnel Exit Lookup TCAM hit index

Address Space : 128359 to 128390

Field Description

Bits	Field Name	Description	Default Value
7:0	howManyBytesToRemove	How many bytes to remove.	0×0
8	updateEthType	If packet is removed after L2+VLAN headers then update the Ethernet Header Type Field	0×0
24:9	ethType	If packet is removed after L2+VLAN headers then the New Ethernet Type which will overwrite the existing lowest 16 bits after the removal operation.	0×0
25	removeVlan	If packet is removed after L2+VLAN headers then remove the VLAN headers on the incoming packet.	0×0
26	updateL4Protocol	If packet is removed after L3 headers then update the L4 Protocol in IP header.	0x0
34:27	I4Protocol	If packet is removed after L3 headers then this new L4 Protocol will be written.	0x0
36:35	whereToRemove	Where to do the tunnel exit from 0 = At Byte Zero 1 = After L2 and up to two VLAN headers. 2 = After L3 IPv4/IPv6 headers. 3 = Reserved.	0×0
37	dropPkt	Drop the packet.	0x0

Bits	Field Name	Description	Default Value
38	dontExit	Do not do a tunnel exit on this packet.	0×0
39	replaceVid	Replace the assigned VID. This is the VID which shall be used in the VLAN table lookup. This forces a new VID into this packet and bypassing all but the ACL force VID operation.	0×0
51:40	newVid	The new to be used VID.	0x0
56:52	tunnelExitEgressPtr	Tunnel Exit Egress Pointer. Shall point to same tunnel / packet decapsulation operation but setup in egress pipeline in Egress Tunnel Exit Table	0×0
57	removeFromCpuTag	If packet came in and had a From CPU Tag does the tunnel exit lookup remove the From CPU Tag or should the design remove this TAG? 0 = Ignore the FROM CPU Tag, the tunnel exit will remove this. 1 = The hardware should remove the From CPU Tag.	0x0

35.10.183 Second Tunnel Exit Miss Action

When a packet misses in the tunnel second lookup table shall this packet be dropped or not?

Number of Entries: 4

Type of Operation : Read/Write

Addressing: The tablindex result field from the first tunnel exit lookup

Address Space: 127810 to 127813

Field Description

Bits	Field Name	Description	Default Value
0	droplfMiss	If miss in this table then drop packet $0 = \text{No} \\ 1 = \text{Yes}$	0×0

35.10.184 Send to CPU

Configuration of MAC addresses used to redirect packets to CPU.

Number of Entries: 1
Number of Addresses per Entry: 4

 $\begin{tabular}{lll} Type of Operation: & Read/Write \\ Address Space: & 128173 \end{tabular}$

Field Description

Bits	Field Name	Description	Default Value
10:0	allowBpdu	Send to CPU portmask, bit 0 port 0, bit 1 port 1 etc.	0×7ff
		If source port bit is set then packets that have the	
		destination MAC address equal to 01:80:C2:00:00:00	
		are sent to the CPU port.	

Bits	Field Name	Description	Default Value
21:11	allowRstBpdu	Send to CPU portmask, bit 0 port 0, bit 1 port 1 etc. If the source port bit is set then packets that have the destination MAC address equal to 01:00:0C:CC:CC:CD are sent to the CPU port.	0×7ff
32:22	uniqueCpuMac	If set then unicast packets can not be switched or routed to the CPU port. Other mechanism for sending to the CPU port are not affected (e.g. ACL's). This also enables detection of a specific MAC address, cpuMacAddr, that will be sent to the CPU.	0×0
80:33	cpuMacAddr	Packets with this destination MAC address will be sent to the CPU. Only valid if uniqueCpuMac on the source port is set.	0x0

35.10.185 Software Aging Enable

If set, the hardware aging unit will stop the countdown - age out loop, instead software is responsible for counting down and triggering an age out round by **Software Aging Start Latch**.

Number of Entries: 1

 $Type\ of\ Operation: \qquad Read/Write$

Address Space : 303

Field Description

Bits	Field Name	Description	Default Value
0	enable	Enable software aging.	0×0

35.10.186 Software Aging Start Latch

This is used under software aging mode when Software Aging Enable is set.

Number of Entries: 1

Type of Operation : Write Only Address Space : 4460

Bits	Field Name	Description	Default Value
0	start	When register is written with start bit set an age out process is	0x0
		started.	

35.10.187 Source Port Default ACL Action

The default ACL action which will be taken on a source port if the **enableDefaultPortAcl** is set and the ACL lookup misses. The action will also be taken if the **forcePortAclAction** is set and then it will override the result from the ACL even if the ACL was hit or not.

Number of Entries: 11
Number of Addresses per Entry: 8

Type of Operation : Read/Write
Addressing : Source Port
Address Space : 44318 to 44405

Bits	Field Name	Description	Default Value
0	metaDataValid	Is the meta_data field valid.	0x0
16:1	metaData	Meta data for packets going to the CPU.	0×0
17	inputMirror	If set, input mirroring is enabled for this rule. In	0×0
		addition to the normal processing of the packet a	
		copy of the unmodified input packet will be send	
		to the destination Input Mirror port and exit on	
		that port. The copy will be subject to the normal	
		resource limitations in the switch.	
21:18	destInputMirror	Destination physical port for input mirroring.	0×0
22	noLearning	If set this packets MAC SA will not be learned.	0×0
23	updateCounter	When set the selected statistics counter will be updated.	0×0
29:24	counter	Which counter in Ingress Configurable ACL	0×0
		Match Counter to update.	
30	updateTosExp	Force TOS/EXP update.	0×0
38:31	newTosExp	New TOS/EXP value.	0×0
46:39	tosMask	Mask for TOS value. Setting a bit to one means	0×0
		this bit will be selected from the newTosExp field	
		, while setting this bit to zero means that the bit	
		will be selected from the packets already existing	
		TOS byte bit.	
47	forceVidValid	Override the Ingress VID, see chapter VLAN Processing.	0×0
59:48	forceVid	The new Ingress VID.	0×0
60	updateCfiDei	The CFI/DEI value of the packets outermost	0×0
		VLAN should be updated.	
		0 = Do not update the value.	
		1 = Update the value.	
61	newCfiDeiValue	The value to update to.	0x0
62	updatePcp	The PCP value of the packets outermost VLAN	0×0
		should be updated.	
		0 = Do not update the value.	
		1 = Update the value.	
65:63	newPcpValue	The PCP value to update to.	0x0
66	updateVid	The VID value of the packets outermost VLAN	0x0
	'	should be updated.	
		0 = Do not update the value.	
		1 = Update the value.	
78:67	newVidValue	The VID value to update to.	0×0
78:67	newVidValue		0×0

Bits	Field Name	Description	Default Value
79	updateEType	The VLANs TPID type should be updated. $0 = Do$ not update the TPID. $1 = Update$ the TPID.	0×0
81:80	newEthType	Select which TPID to use in the outer VLAN header. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag.	0×0
82	enableUpdateIp	If this entry is hit then update SA or DA IPv4 address in ingress packet processing, this value will be used by the routing function and egress ACL if this is exists, this only works for IPv4. 0 = Disable 1 = Enable	0x0
83	updateSaOrDa	Update the SA or DA IPv4 address. The Destiantion IP address updated will be used in the routing functionality and Egress ACL functionality. If the source IP address is updated then the updated value will be used in the egress ACL keys. 0 = Source IP Address 1 = Destination IP Address	0x0
115:84	newlpValue	Update the SA or DA IPv4 address value.	0x0
116	enableUpdateL4	If this entry is hit then update L4 Source Port or Destination port in ingress packet processing, this value will be used in the Egress ACL. 0 = Disable 1 = Enable	0×0
117	updateL4SpOrDp	Update the source or destination L4 port. 0 = Source L4 Port 1 = Destination L4 Port	0×0
133:118	newL4Value	Update the L4 SP or DP with this value	0x0
134	dropEnable	If set, the packet shall be dropped and the Ingress Configurable ACL Drop counter is incremented.	0×0
135	sendToCpu	If set, the packet shall be sent to the CPU port.	0x0
136	forceSendToCpuOrigPkt	If packet shall be sent to CPU then setting this bit will force the packet to be the incoming originial packet. The exception to this is rule is the tunnel exit which will still be carried out	0×0
137	sendToPort	Send the packet to a specific port. 0 = Disabled. 1 = Send to port configured in destPort.	0x0
141:138	destPort	The port which the packet shall be sent to.	0x0
142	ptp	When the packet is sent to the CPU the packet will have the PTP bit in the To CPU Tag set to one. The timestamp in the To CPU Tag will also be set to the timestamp from the incoming packet.	0×0
143	tunnelEntry	Shall all of these packets enter into a tunnel.	0x0
-	,		

Bits	Field Name	Description	Default Value
144	tunnelEntryUcMc	Shall this entry point to the Tunnel Entry Instruction Table with or without a egress port offset. 0 = Unicast Tunnel Entry Instruction Table without offset for each port 1 = Multicast Tunnel Entry Instruction Table with offset for each port.	0x0
148:145	tunnelEntryPtr	The tunnel entry which this packet shall enter upon exiting the switch.	0×0
149	forceColor	If set, the packet shall have a forced color.	0×0
151:150	color	Initial color of the packet if the forceColor field is set.	0x0
152	mmpValid	If set, this entry contains a valid MMP pointer	0×0
157:153	mmpPtr	Ingress MMP pointer.	0×0
159:158	mmpOrder	Ingress MMP pointer order.	0×0
160	forceQueue	If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 21.1	0×0
163:161	eQueue	The egress queue to be assigned if the forceQueue field in this entry is set to 1.	0×0
164	natOpValid	NAT operation pointer is valid.	0x0
175:165	natOpPtr	NAT operation pointer.	0x0

35.10.188 Source Port Table

This table configures various functions that are dependent on which port the packet enters the switch. A VLAN operation (e.g. push, pop, swap) to be performed can be selected by the **vlanSingleOp** field in **Source Port Table**. For the push and swap operations the information used to create the new VLAN header is controlled by the fields **vidSel**, **cfiDeiSel**, **pcpSel** and **typeSel**. Other configurations are VLAN LUT index, input mirroring, spanning tree state, Ingress VID offset, special VID treatment, multicast learning, min/max number of VLANs and L3 priority selection.

Number of Entries: 11 Number of Addresses per Entry: 4

Type of Operation : Read/Write
Addressing : Ingress port
Address Space : 127825 to 127868

Bits	Field Name	Description	Default Value
0	learningEn	If hardware learning is turned on and this	0×1
		is set to one, the unknown source MAC	
		address from this port will be learned.	
1	dropUnknownDa	If set to one packets with unknown des-	0×0
		tination MAC address from this port will	
		be dropped.	
2	prioFromL3	If the packet is IP/MPLS and this is set	0×0
		the egress queue will be selected from	
		Layer 3 decoding described in Determine	
		Egress Queue.	

Bits	Field Name	Description	Default Value
3	colorFromL3	If the packet is IP/MPLS and this bit is set the packet initial color will be selected from Layer 3 decoding.	0x0
4	useAcl0	Use ACL on this source port. $0 = \text{No. No ACL lookup is done}$ $1 = \text{Yes.}$ The aclRule0 pointer selects which fields that are part of the lookup .	0×0
7:5	aclRule0	Pointer into the Ingress Configurable ACL 0 Rules Setup table selecting which ACL fields to select to do the ACL lookup with.	0x0
8	useAcl1	Use ACL on this source port. 0 = No. No ACL lookup is done 1 = Yes. The aclRule1 pointer selects which fields that are part of the lookup	0×0
11:9	aclRule1	Pointer into the Ingress Configurable ACL 1 Rules Setup table selecting which ACL fields to select to do the ACL lookup with.	0×0
12	useAcl2	Use ACL on this source port. 0 = No. No ACL lookup is done 1 = Yes. The aclRule2 pointer selects which fields that are part of the lookup	0×0
15:13	aclRule2	Pointer into the Ingress Configurable ACL 2 Rules Setup table selecting which ACL fields to select to do the ACL lookup with.	0×0
16	useAcl3	Use ACL on this source port. 0 = No. No ACL lookup is done 1 = Yes. The aclRule3 pointer selects which fields that are part of the lookup	0×0
19:17	aclRule3	Pointer into the Ingress Configurable ACL 3 Rules Setup table selecting which ACL fields to select to do the ACL lookup with.	0×0
22:20	vlanSingleOp	The source port VLAN operation to perform on the packet. 0 = No operation. 1 = Swap. 2 = Push. 3 = Pop. 4 = Penultimate pop(remove all VLAN headers).	0x0

Bits	Field Name	Description	Default Value
24:23	vidSel	Selects which VID to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultVid will be used. 0 = From outermost VLAN in the original packet (if any). 1 = From this table entry's defaultVid . 2 = From the second VLAN in the original packet (if any).	0x0
26:25	cfiDeiSel	Selects which CFI/DEI to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultCfiDei will be used. 0 = From outermost VLAN in the original packet (if any). 1 = From this table entry's defaultCfiDei. 2 = From the second VLAN in the original packet (if any).	0x0
28:27	pcpSel	Selects which PCP to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultPcp will be used. 0 = From outermost VLAN in the original packet. (if any) 1 = From this table entry's defaultPcp . 2 = From the second VLAN in the original packet (if any).	0×0
30:29	nrVlansVidOperationIf	This alternative VID operation for port VLAN operation is selected if the following operation is true. 0 = Nr of VLANS in incoming packet is zero. 1 = Nr of VLANS in incoming packet is one. 2 = Nr of VLANS in incoming packet is two. 3 = Reserved and Disabled	0x3
33:31	vlanSingleOpIf	If the field nrVlansVidOperationIf is true then this operation will override the default port vid operation vlanSingleOp. The source port VLAN operation to perform on the packet. 0 = No operation. 1 = Swap. 2 = Push. 3 = Pop. 4 = Penultimate pop(remove all VLAN headers).	0x0

Bits	Field Name	Description	Default Value
35:34	vidSellf	If the field nrVlansVidOperationIf is true then this operation will override the default port vid operation vidSel. Selects which VID to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultVidIf will be used. 0 = From outermost VLAN in the original packet (if any). 1 = From this table entry's defaultVid. 2 = From the second VLAN in the original packet (if any).	0x0
37:36	cfiDeiSelIf	If the field nrVlansVidOperationIf is true then this operation will override the default port vid operation cfiDeiSel. Selects which CFI/DEI to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultCfiDeiIf will be used. 0 = From outermost VLAN in the original packet (if any). 1 = From this table entry's defaultCfiDei. 2 = From the second VLAN in the original packet (if any).	0×0
39:38	pcpSellf	If the field nrVlansVidOperationIf is true then this operation will override the default port vid operation pcpSel. Selects which PCP to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultPcpIf will be used. 0 = From outermost VLAN in the original packet. (if any) 1 = From this table entry's defaultPcp. 2 = From the second VLAN in the original packet (if any).	0x0
41:40	typeSellf	If the field nrVlansVidOperationIf is true then this operation will override the default port vid operation typeSel . Selects which TPID to use when building a new VLAN header in a source port push or swap operation. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag .	0×0

Bits	Field Name	Description	Default Value
53:42	defaultVidIf	The default VID if nrVlansVidOpera-	0×0
		tionIf is true. This is used in source port	
		VLAN operations (see vidSel). It is used	
		to assign Ingress VID (see vlanAssign-	
		ment). It is used when creating an in-	
		ternal VLAN header for incoming packets	
		that has no VLAN header.	
54	defaultCfiDeilf	The default CFI / DEI bit if nrVlansVi-	0×0
		dOperationIf is true. This is used	
		in source port VLAN operations (see	
		cfiDeiSel). It is used when creating an	
		internal VLAN header for incoming pack-	
-7.FF	16 10 16	ets that has no VLAN header.	0.0
57:55	defaultPcplf	The default PCP bits if nrVlansVidOp-	0×0
		erationIf is true. This is used in source	
		port VLAN operations (see .pcpSel). It	
		is used when creating an internal VLAN	
		header for incoming packets that has no VLAN header.	
59:58	typeSel	Selects which TPID to use when building	0×0
		a new VLAN header in a source port push	
		or swap operation.	
		0 = C-VLAN - 0x8100.	
		1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from reg-	
		ister Egress Ethernet Type for	
		VLAN tag.	
61:60	vlanAssignment	Controls how a packets Ingress VID is as-	0×0
		signed. If the selected source is from a	
		VLAN header in the incoming packet and	
		the packet doesn't have that header, then	
		this table entry's defaultVid will be used.	
		0 = packet based - the Ingress VID is assigned from the incoming packets	
		outermost VLAN header.	
		1 = port-based - the packets Ingress VID	
		is assigned from this table entry's default Vid	
		2 = mixed - if there are two VLANs	
		in the incoming packet, the inner VLAN is chosen. If the incoming	
		packet has only 0 or 1 VLAN, then it	
		will select this table entry's default -	
		Vid	
73:62	defaultVid	The default VID. This is used in source	0x0
		port VLAN operations (see vidSel). It is	
		used to assign Ingress VID (see vlanAs-	
		signment). It is used when creating an	
		internal VLAN header for incoming pack-	
7.6	L.C. L.CCD	ets that has no VLAN header.	0.0
74	defaultCfiDei	The default CFI / DEI bit. This is	0×0
		used in source port VLAN operations (see	
		cfiDeiSel). It is used when creating an internal VI AN boader for incoming pack	
		internal VLAN header for incoming packets that has no VLAN header.	
		ets that has no veally header.	

Bits	Field Name	Description	Default Value
77:75	defaultPcp	The default PCP bits. This is used in source port VLAN operations (see .pcpSel). It is used when creating an internal VLAN header for incoming packets that has no VLAN header.	0×0
79:78	defaultVidOrder	When a new hit is done in the result in the L2,L3,L4 VID range checks the ingress VID will only be changed if the result has a higher order value.	0×0
81:80	minAllowedVlans	The minimum number of VLAN headers a packet must have to be allowed on this port. Otherwise the packet will be dropped and the Minimum Allowed VLAN Drop will be incremented. 0 = All packets are accepted. 1 = 1 or more tags are accepted. 2 = 2 or more tags are accepted. 3 = No packets are accepted.	0x0
83:82	maxAllowedVlans	The maximum number of VLAN headers a packet is allowed to have to enter on this port. Otherwise the packet will be dropped and the Maximum Allowed VLAN Drop will be incremented. 0 = Only untagged packets are accepted. 1 = 0 to 1 tags are accepted. 2 = Any number of VLANs are accepted. 3 = Any number of VLANs are accepted.	0×2
84	ignoreVlanMembership	By default packets on non-VLAN member source port are dropped before entering the L2 lookup process. Set this field to one to ignore the VLAN membership check on the source port. However L2 lookup can never forward packets to non-VLAN member destinations.	0x0
85	learnMulticastSaMac	If set, the learning engine allows Ethernet multicast source MAC addresses to be learned.	0x0
86	inputMirrorEnabled	If set, input mirroring is enabled on this port. In addition to the normal processing of the packet a copy of the unmodified input packet will be send to the destinputMirror port and exit on that port. The copy will be subject to the normal resource limitations in the switch.	0×0
87	imUnderVlanMembership	If set, input mirroring to a destination that not a member of the VLAN will be ignored.	0x0
88	imUnderPortIsolation	If set, input mirroring to a destination that isolated the source port in the sr-cPortFilter will be ignored.	0x0
92:89	destInputMirror	Destination physical port for input mirroring. Only valid if inputMirrorEnabled is set.	0x0

Bits	Field Name	Description	Default Value
95:93	spt	The spanning tree state for this ingress port. The state Disabled implies that spanning tree protocol is not enabled and hence frames will be forwarded on this egress port. 0 = Disabled.	0x0
		 1 = Blocking. 2 = Listening. 3 = Learning. 4 = Forwarding. 	
96	enablePriorityTag	An outer VLAN tag with VID matching priorityVid will have PCP bits extracted and used to determine output queue but in remaining VLAN processing this tag will not be treated as a VLAN tag. If the packet has an inner VLAN tag this will be treated as an outer VLAN tag in the following VLAN processing. The VID will only be matched in a VLAN header located immediately after DA and SA MAC, i.e. no custom tags allowed. In egress processing the outer VLAN tag will be removed. 0 = Disable comparison. 1 = Enable comparison.	0x0
108:97	priorityVid	The VID used in the outer VLAN tag comparison, see enablePriorityTag.	0x0
109	enableFromCpuTag	This option can validate the from CPU tag decoding on packets from non-CPU ports. The CPU port is not affected by this field and always decode the from CPU tag.	0×0
110	disableTunnelExit	On this source port are the packets allowed to do a tunnel exit. $0 = \text{Yes}$ $1 = \text{No}$	0×0
111	firstHitSecondMissSendToCpu	If first tunnel lookup exit hit but second tunnel exit lookup fails then send the packet to the CPU. 0 = Do nothing. 1 = Send the packet to the CPU.	0×0
112	disableRouting	On this source port are the packets allowed to do L3 routing. $0 = \text{No}$ $1 = \text{Yes}$	0×0
113	natActionTableEnable	Packets coming in on this source port should be checked in the NAT Action Table. 0 = No. 1 = Yes.	0×0
114	natPortState	What is this ports NAT status. 0 = Private 1 = Public	0x0

Bits	Field Name	Description	Default Value
115	enableL2ActionTable	On packets coming in on this port should be checked with the L2 Action Table and L2 Action Table Source Port. 0 = No, Do not lookup on the L2 Action Table and L2 Action Table Source Port. 1 = Yes. Do Lookup in the L2 Action Table and L2 Action Table Source Port	0×0
116	I2ActionTablePortState	What is the source port status bit. Used in table L2 Action Table and L2 Action Table Source Port.	0×0
117	enableDefaultPortAcl	If enabled then the default acl for this port will be done if the ACL misses in its lookup. 0 = Disabled. No default action taken. 1 = Enabled. If ACL lookup misses then this ACL actil will be carried out instead.	0×0
118	forcePortAclAction	If enabled then the default acl for this port will always be done, if the ACL is hit then the port ACL will overwrite the ACL result. 0 = Disabled. Not action forced. 1 = Enabled. The port ACL overwrites and result from the ingress ACL.	0×0
120:119	preLookupAclBits	Pre lookup bits which is used by this port in the pre-lookup tables in the ingress ACLS. Same value is used for all pre ACL lookups which has the source port bits in it.	0×0

35.10.189 Time to Age

Interval period after which FIB entries are aged out.

Number of Entries: 1
Number of Addresses per Entry: 2

Type of Operation : Read/Write

Address Space: 319

Bits	Field Name	Description	Default Value
31:0	tickCnt	Number of ticks (see Chapter Tick) between starts of	$2^{32}-1$
		the aging process.	
34:32	tick	Select one of the 5 available ticks. The tick frequen-	0×0
		cies are configured globaly in the Core Tick Config-	
		uration register.	

35.10.190 Tunnel Entry MTU Length Check

If a packet is routed and if the tunnel entry updates the IPv4 or IPv6 packet length then this table shall be setup to enable the too long packets to be sent to the CPU for fragmentation.

Number of Entries: 16

Type of Operation : Read/Write

Addressing : Tunnel entry pointer Address Space : 124762 to 124777

Field Description

Bits	Field Name	Description	Default Value
6:0	length	The added length of a IPv4 or IPv6 packet.	0×0

35.10.191 Tunnel Exit Lookup TCAM

The tunnel exit lookup which is performed on the incoming original packet

Number of Entries: 16 Number of Addresses per Entry: 32

Type of Operation : Read/Write

Addressing : All entries are read out in parallel

Address Space : 128391 to 128902

Field Description

Bits	Field Name	Description	Default Value
0	valid	Is this entry valid.	0×0
		$egin{array}{ll} 0 &= & No \ 1 &= & Yes \end{array}$	
1	snapLlc_mask	Mask for snapLlc.	0x1
2	snapLlc	This is a SNAP and LLC packet.	0×0
18:3	ethType_mask	Mask for ethType.	0×ffff
34:19	ethType	Ethernet Type for the incoming packet.	0×0
37:35	I3Type_mask	Mask for I3Type.	0×7
40:38	ІЗТуре	The L3 type which shall be matched. If unknown L3 type then this will set to 7. 0 = IPv4 1 = IPv6 2 = One MPLS Label 3 = Two MPLS Labels 4 = Three MPLS labels 5 = Four MPLS labels	0x0
43:41	frag_mask	Mask for frag.	0x7
46:44	frag	IPv4 header fragments bits, if IPv6/MPLS then these bits are set to zero. The bit 0 is the dont-fragment flag (DF bit), bit 1 is the multi-fragment bit (MF bit), bit 2 is if fragment offset is non-zero.	0x0
174:47	ipSa_mask	Mask for ipSa.	$2^{128} - 1$
302:175	ipSa	The IP Source Address. IPv4 is located in bits [31:0].	0×0

Bits	Field Name	Description	Default Value
430:303	ipDa_mask	Mask for ipDa.	$2^{128}-1$
558:431	ipDa	The IP Destination or MPLS Address. IPv4 is lo-	0x0
		cated in bits [31:0]. First MPLS bits are located	
		at [19:0], second MPLS label [39:20],third MPLS	
		label is [59:40] and forth label is at [79:60].	
560:559	I4Type_mask	Mask for I4Type.	0×3
562:561	I4Type	The L4 type which shall be matched. If not UDP	0×0
		or TCP value 2 will be set in this register.	
		0 = TCP	
		1 = UDP 2 = Others	
		3 = Reserved.	
570:563	I4Protocol_mask	Mask for I4Protocol.	0xff
578:571	I4Protocol	The L4 protocol from the IPv4 or IPv6 headers	0×0
		which shall be matched.	
594:579	I4Sp_mask	Mask for I4Sp.	0×ffff
610:595	I4Sp	L4 Source port, if packet is a TCP or UDP, other-	0×0
		wise set to zero.	
626:611	I4Dp_mask	Mask for I4Dp.	0×ffff
642:627	I4Dp	L4 destination port, if packet is a TCP or UDP,	0×0
		otherwise set to zero.	
643	fromCpuTag_mask	Mask for fromCpuTag.	0x1
644	fromCpuTag	This packet contains a From CPU Tag.	0x0
		0 = No.	
		1 = Yes.	

35.10.192 Tunnel Exit Lookup TCAM Answer

This is the table holding the answer for the **Tunnel Exit Lookup TCAM**.

Number of Entries: 16 Number of Addresses per Entry: 8

Type of Operation : $\mathsf{Read}/\mathsf{Write}$

Addressing : Tunnel Exit Lookup TCAM hit index

Address Space : 4606 to 4733

Bits	Field Name	Description	Default Value
10:0	srcPortMask	Which source ports shall this tunnel exit be done on? The portmask which has one bit per source port. 0 = No, do not do tunnel exit 1 = Yes, if second tunnel lookup is a hit then do tunnel exit.	0×0
11	sendToCpu	This packet shall be sent to the CPU. $0 = \text{No}$. $1 = \text{Yes}$.	0×0
19:12	secondShift	Second tunnel exit lookup shift to get the data for the second lookup, this value is in number of bytes, this value can at maximum be 154.	0x0

Bits	Field Name	Description	Default Value
20	secondIncludeVlan	Shall second tunnel exit lookup shift be updated according to how many VLANs the packet has? $0 = \text{No} \\ 1 = \text{Yes}$	0×0
21	direct	Use direct value in this table in the Second Tunnel Exit Lookup Table Lookup. $0 = \text{False}$ $1 = \text{True}$	0×0
101:22	key	Direct Value to use in instead of value from packet.	0×0
181:102	lookupMask	Mask for second tunnel exit lookup data. Before the lookup in the second lookup takes place this value from first lookup/packet data is AND:ed with this value.	0×0
183:182	tabIndex	Index to be used in second tunnel exit dleft lookup. This is used in conjunction with the key extracted from this table or from packet data.	0×0

35.10.193 VLAN PCP And DEI To Color Mapping Table

Mapping table from VLAN PCP and DEI field to packet initial color.

Number of Entries: 16

Type of Operation: Read/Write

address[0:2]: Addressing:

PCP address[3]: DEI

Address Space: 126356 to 126371

Field Description

Bits	Field Name	Description	Default Value
1:0	color	Packet initial color.	0×0

35.10.194 VLAN PCP To Queue Mapping Table

Mapping table from VLAN PCP priority bits to ingress/egress queues.

Number of Entries:

Type of Operation : Read/Write

Incoming packets VLAN priority bits Addressing:

Address Space : 126892 to 126899

Bits	Field Name	Description	Default Value
2:0	pQueue	Egress queue.	0×1

35.10.195 VLAN Table

Defines the VLAN port membership, which GID to use in L2 lookups, the MSPT to use, if routing is allowed and a VLAN operation (e.g. push, pop, swap) to be performed.

The VLAN operation is selected by the **vlanSingleOp** field. For the push and swap operations the information used to create the new VLAN header is controlled by the fields **vidSel**, **cfiDeiSel**, **pcpSel** and **typeSel**.

Number of Entries: 4096 Number of Addresses per Entry: 4

Type of Operation : $\mathsf{Read}/\mathsf{Write}$

Addressing: The packet's Ingress VID plus offset as defined in **Source Port Table**.

Address Space : 44406 to 60789

Field Description

Bits	Field Name	Description	Default Value
10:0	vlanPortMask	VLAN membership portmask. The packets source port must be a member of the VLAN, otherwise the packet will be dropped and the VLAN Member Drop will be incremented. The membership mask will also limit the destination ports for L2 unicast, multicast, broadcast and flooding. If this results in an empty destination port mask then the packet is dropped and the Empty Mask Drop will be incremented.	0x7ff
22:11	gid	The packet will be assigned a global identifier that is used during L2 lookup to allow multiple VLANs to share the same L2 tables.	0x0
23	mmpValid	If set, this entry contains a valid MMP pointer	0x0
28:24	mmpPtr	Ingress MMP pointer.	0x0
30:29	mmpOrder	Ingress MMP pointer order.	0x0
34:31	msptPtr	The multiple spanning tree to be used by packets on this VLAN. Points to entries in the Ingress Multiple Spanning Tree State and Egress Multiple Spanning Tree State tables	0×0
37:35	vlanSingleOp	The ingress VLAN operation to perform on the packet. 0 = No operation. 1 = Swap. 2 = Push. 3 = Pop. 4 = Penultimate Pop(remove all VLANS).	0x0
39:38	vidSel	Selects which VID to use when building a new VLAN header in a push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's vid will be used. 0 = From the outermost VLAN in the original packet (if any). 1 = From this table entry's vid . 2 = From the second VLAN in the original packet (if any).	0×0

Bits	Field Name	Description	Default Value
41:40	cfiDeiSel	Selects which CFI/DEI to use when building a new VLAN header in a push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's cfiDei will be used. 0 = From outermost VLAN in the original packet (if any). 1 = From this table entry's cfiDei . 2 = From the second VLAN in the original packet (if any).	0x0
43:42	pcpSel	Selects which PCP to use when building a new VLAN header in a push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's pcp will be used. 0 = From outermost VLAN in the original packet. (if any) 1 = From this table entry's pcp. 2 = From the second VLAN in the original packet (if any).	0×0
55:44	vid	The VID used in VLAN push or swap operation if selected by vidSel .	0x0
58:56	рср	The PCP used in VLAN push or swap operation if selected by pcpSel .	0x0
59	cfiDei	The CFI/DEI used in VLAN push or swap operation if selected by cfiDeiSeI	0x0
61:60	typeSel	Selects which TPID to use when building a new VLAN header in a push or swap operation. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag field typeValue.	0x0
83:62	nrVlansVidOperationIf	A per source port setting. Port 0 uses bits [1:0], port 2 uses bits [3:2] and so on. If the packet coming in on the source port has this amount of VLANs then this operation will override the VLAN Tables VID operation and all associated data. This operation does take into account what operation the source port VID operation performed on the packet. If a already has 2 VLANs and a push operation is done it will still be counted as a packet with two vlans. If a packet has zero vlans and a pop operation is carried out it will still have zero VLANs. Swap operations does not change the number of VLANs on the packet. 0 = Incoming packet after source port VID op has zero VLANs 1 = Incoming packet after source port VID op has one VLAN 2 = Incoming packet after source port VID op has Two VLANs 3 = Reserved and Disabled	$2^{22} - 1$

Bits	Field Name	Description	Default Value
86:84	vlanSingleOpIf	This operation depends on if the nrVlansVid-OperationIf is done on this port. Then the default operation is overriden with this value. The ingress VLAN operation to perform on the packet. 0 = No operation. 1 = Swap. 2 = Push. 3 = Pop. 4 = Penultimate Pop(remove all VLANS).	0x0
88:87	vidSellf	This operation depends on if the nrVlansVid-OperationIf is done on this port. Then the default operation is overriden with this value. Selects which VID to use when building a new VLAN header in a push or swap operation. this table entry's pcp will be used. 0 = From outermost VLAN in the original packet. (if any) 1 = From this table entry's pcp. 2 = From the second VLAN in the original packet (if any).	0×0
90:89	cfiDeiSellf	This operation depends on if the nrVlansVid-OperationIf is done on this port. Selects which CFI/DEI to use when building a new VLAN header in a push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's cfiDei will be used. 0 = From outermost VLAN in the original packet (if any). 1 = From this table entry's cfiDei. 2 = From the second VLAN in the original packet (if any).	0x0
92:91	pcpSellf	This operation depends on if the nrVlansVid-OperationIf is done on this port. Selects which PCP to use when building a new VLAN header in a push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's pcp will be used. 0 = From outermost VLAN in the original packet. (if any) 1 = From this table entry's pcp. 2 = From the second VLAN in the original packet (if any).	0x0
94:93	typeSellf	This operation depends on if the nrVlansVid-OperationIf is done on this port. Then the default operation is overriden with this value. Selects which TPID to use when building a new VLAN header in a push or swap operation. 0 = C-VLAN - 0x8100. 1 = S-VLAN - 0x88A8. 2 = User defined VLAN type from register Egress Ethernet Type for VLAN tag field typeValue.	0x0

Bits	Field Name	Description	Default Value
106:95	vidlf	If this data is used depends on if the nrVlansVi-	0x0
		dOperationIf is done on this port. Then the de-	
		fault operation is overriden with this value. The	
		VID used in VLAN push or swap operation if se-	
		lected by vidSel.	
109:107	pcplf	If this data is used depends on if the nrVlansVi-	0×0
		dOperationIf is done on this port. Then the de-	
		fault operation is overriden with this value. The	
		PCP used in VLAN push or swap operation if	
		selected by pcpSel.	
110	cfiDeilf	If this data is used depends on if the nrVlansVi-	0×0
		dOperationIf is done on this port. Then the de-	
		fault operation is overriden with this value. The	
		CFI/DEI used in VLAN push or swap operation	
		if selected by cfiDeiSel	
111	allowRouting	Allow routing.	0×1
		0 = The router will not process the packet but	
		L2 processing will be done normally.	
		1 = Packet will be processed by the router.	
112	sendIpMcToCpu	Send all IPv4 and IPv6 multicast packets to	0×0
		CPU, bypassing L2 processing and L3 routing.	

35.11 MBSC

35.11.1 L2 Broadcast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Broadcast Storm Control

Number of Entries: 11

 $\begin{array}{lll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Addressing}: & \mbox{Egress Ports} \\ \mbox{Address Space}: & 203 \mbox{ to } 213 \end{array}$

Field Description

Bits	Field Name	Description		t
			Index	Value
15:0	bucketCapacity	Capacity of the token bucket	0-1	0xf0
			2-10	0x3fc

35.11.2 L2 Broadcast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Broadcast Storm Control

Number of Entries: 11

Type of Operation : Read/Write Addressing : Egress Ports Address Space : 214 to 224

Field Description

Bits	Field Name	Description Default Value		
			Index	Value
15:0	threshold	Minimum number of tokens in bucket for the status to be set	0-1	0x78
		to accept.	2-10	0×1fe

35.11.3 L2 Broadcast Storm Control Enable

Bitmask to turn L2 Broadcast Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries: 1

Type of Operation : Read/Write

Address Space: 225

Field Description

Bits	Field Name	Description	Default Value
10:0	enable	Bitmask where the index is the Egress Ports	0×0

35.11.4 L2 Broadcast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Broadcast Storm Control

Number of Entries: 11

Type of Operation : Read/Write Addressing : Egress Ports Address Space : 192 to 202

Bits	Field	Description	Default	t
	Name	Beschiption	Value	
0	packetsNotBytes	If set the bucket will count packets, if cleared bytes	0×1	
			Index	Value
12:1	tokens	The number of tokens added each tick	0-1	0xc
			2-10	0×33
			Index	Value
15:13	tick	Select one of the five available core ticks. The tick	0-1	0×1
		frequencies are configured globaly in the core Tick	2-10	0x2
		Configuration register.		
23:16	ifgCorrection	Extra bytes per packet to correct for IFG in byte mode.	0×18	
		Default is 4 byte FCS plus 20 byte IFG.		

35.11.5 L2 Flooding Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Flooding Storm Control

Number of Entries: 11

Type of Operation : Read/Write Addressing : Egress Ports Address Space : 271 to 281

Field Description

Bits	Field Name	Description	Default Value	t
			Index	Value
15:0	bucketCapacity	Capacity of the token bucket	0-1	0xf0
			2-10	0x3fc

35.11.6 L2 Flooding Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Flooding Storm Control

Number of Entries: 11

 $\begin{array}{lll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Addressing}: & \mbox{Egress Ports} \\ \mbox{Address Space}: & 282 \ \mbox{to} \ 292 \\ \end{array}$

Field Description

Bits	Field Name	Description	Default Value	
			Index	Value
15:0	threshold	Minimum number of tokens in bucket for the status to be set	0-1	0×78
		to accept.	2-10	0x1fe

35.11.7 L2 Flooding Storm Control Enable

Bitmask to turn L2 Flooding Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries: 1

Type of Operation: Read/Write

Address Space: 293

Bits	Field Name	Description	Default Value
10:0	enable	Bitmask where the index is the Egress Ports	0×0

35.11.8 L2 Flooding Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Flooding Storm Control

Number of Entries: 11

Type of Operation : Read/Write Addressing : Egress Ports Address Space : 260 to 270

Field Description

Bits	Field Name	Description	Default Value	t
0	packetsNotBytes	If set the bucket will count packets, if cleared bytes	0×1	
12:1	tokens	The number of tokens added each tick	Index 0-1 2-10	Value 0xc 0x33
15:13	tick	Select one of the five available core ticks. The tick frequencies are configured globaly in the core Tick Configuration register.	0-1 2-10	Value 0x1 0x2
23:16	ifgCorrection	Extra bytes per packet to correct for IFG in byte mode. Default is 4 byte FCS plus 20 byte IFG.	0×18	

35.11.9 L2 Multicast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Multicast Storm Control

Number of Entries: 11

Type of Operation : Read/Write Addressing : Egress Ports Address Space : 237 to 247

Field Description

Bits	Field Name	Description	Default Value	
15:0	bucketCapacity	Capacity of the token bucket	Index 0-1	Value 0xf0
	. ,		2-10	0x3fc

35.11.10 L2 Multicast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Multicast Storm Control

Number of Entries: 11

Type of Operation : Read/Write Addressing : Egress Ports Address Space : 248 to 258

Field Description

Bits	Field Name	Description Default Value		
			Index	Value
15:0	threshold	Minimum number of tokens in bucket for the status to be set	0-1	0x78
		to accept.	2-10	0×1fe

35.11.11 L2 Multicast Storm Control Enable

Bitmask to turn L2 Multicast Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries: 1

Type of Operation: Read/Write

Address Space: 259

Field Description

Bits	Field Name	Description	Default Value
10:0	enable	Bitmask where the index is the Egress Ports	0×0

35.11.12 L2 Multicast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Multicast Storm Control

Number of Entries: 11

Type of Operation : Read/Write Addressing : Egress Ports Address Space : 226 to 236

Bits	Field Name	Description	Default Value	i .
0	packetsNotBytes	If set the bucket will count packets, if cleared bytes	0×1	
			Index	Value
12:1	tokens	The number of tokens added each tick	0-1	0xc
			2-10	0×33
			Index	Value
15:13	tick	Select one of the five available core ticks. The tick	0-1	0×1
		frequencies are configured globaly in the core Tick	2-10	0x2
		Configuration register.		
23:16	ifgCorrection	Extra bytes per packet to correct for IFG in byte mode. Default is 4 byte FCS plus 20 byte IFG.	0×18	

35.12 Scheduling

35.12.1 DWRR Bucket Capacity Configuration

Token Bucket Capacity Configuration for DWRR

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress Ports
Address Space: 135564 to 135574

Field Description

Bits	Field Name	Description	Default Value
17:0	bucketCapacity	Capacity of the byte bucket	$2^{18} - 1$

35.12.2 DWRR Bucket Misc Configuration

Bucket Configurations for DWRR

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress Ports
Address Space: 135575 to 135585

Field Description

Bits	Field Name	Description	Default Value
4:0	threshold	When the number of bytes in any bucket goes below 2**thr, all buckets mapped to the same prio will be replenished.	0xf
5	packetsNotBytes	If set the bucket will count packets, if cleared bytes	0×0
13:6	ifgCorrection	Extra bytes per packet to correct for IFG in byte mode.	0×14

35.12.3 DWRR Weight Configuration

Weight Configuration for DWRR

Number of Entries: 88

Type of Operation : Read/Write

 $\begin{array}{lll} \mbox{Addressing:} & \mbox{Egress port * 8 + queue} \\ \mbox{Address Space:} & 135586 \ \mbox{to} \ 135673 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
7:0	weight	The relative weight of the queue. A queue with weight 0 is not part of the round robin scheduling but will always be selected last.	0×1

35.12.4 Map Queue to Priority

Map from egress queue to egress priority. Note that this setting must not be changed for any queue with packets queued.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress port
Address Space: 134788 to 134798

Field Description

Bits	Field Name	Description	Default Value
2:0	prio0	The priority for queue 0	0×0
5:3	prio1	The priority for queue 1	0×1
8:6	prio2	The priority for queue 2	0×2
11:9	prio3	The priority for queue 3	0×3
14:12	prio4	The priority for queue 4	0×4
17:15	prio5	The priority for queue 5	0×5
20:18	prio6	The priority for queue 6	0x6
23:21	prio7	The priority for queue 7	0×7

35.12.5 Output Disable

Bitmask for disabling the egress queues on egress ports.

Number of Entries: 11

 $\begin{array}{lll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Addressing}: & \mbox{Egress port} \\ \mbox{Address Space}: & 135553 \mbox{ to } 135563 \end{array}$

Bits	Field	Description	Default
Dits	Name	Bescription	Value
0	egressQueue0Disabled	If set, stop scheduling new packets for output from	0×0
		queue 0 on this egress port.	
1	egressQueue1Disabled	If set, stop scheduling new packets for output from	0×0
		queue 1 on this egress port.	
2	egressQueue2Disabled	If set, stop scheduling new packets for output from	0×0
		queue 2 on this egress port.	
3	egressQueue3Disabled	If set, stop scheduling new packets for output from	0×0
		queue 3 on this egress port.	

Bits	Field Name	Description	Default Value
4	egressQueue4Disabled	If set, stop scheduling new packets for output from queue 4 on this egress port.	0×0
5	egressQueue5Disabled	If set, stop scheduling new packets for output from queue 5 on this egress port.	0×0
6	egressQueue6Disabled	If set, stop scheduling new packets for output from queue 6 on this egress port.	0x0
7	egressQueue7Disabled	If set, stop scheduling new packets for output from queue 7 on this egress port.	0x0

35.13 Shapers

35.13.1 Port Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Port Shaper

Number of Entries: 11

Type of Operation : Read/Write
Addressing : Egress Port
Address Space : 136221 to 136231

Field Description

Bits	Field Name	Description	Default Value	
16:0	bucketCapacity	Capacity of the token bucket	0-1 2-10	Value 0xfe4c 0x65b8

35.13.2 Port Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Port Shaper

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress Port
Address Space: 136232 to 136242

Field Description

Bits	Field Name	Description	Default Value	
			Index	Value
16:0	threshold	Minimum number of tokens in bucket for the status to be set	0-1	0×54c4
		to accept.	2-10	0×21e8

35.13.3 Port Shaper Enable

Bitmask to turn Port Shaper ON/OFF (1/0) for Egress Port

Number of Entries: 1

Type of Operation : Read/Write Address Space : 136243

Field Description

Bits	Field Name	Description	Default Value
10:0	enable	Bitmask where the index is the Egress Port	0×0

35.13.4 Port Shaper Rate Configuration

Token Bucket rate Configuration for Port Shaper

Number of Entries: 11

 $\begin{array}{lll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Addressing}: & \mbox{Egress Port} \\ \mbox{Address Space}: & 136210 \ \mbox{to} \ 136220 \\ \end{array}$

Field Description

Bits	Field Name	Description	Default Value	t
0	packetsNotBytes	If set the bucket will count packets, if cleared bytes	0×0	
			Index	Value
13:1	tokens	The number of tokens added each tick	0-1	0x87a
			2-10	0×364
16:14	tick	Select one of the five available core ticks. The tick	0x0	
		frequencies are configured globaly in the core Tick		
		Configuration register.		
24:17	ifgCorrection	Extra bytes per packet to correct for IFG in byte mode.	0×18	
		Default is 4 byte FCS plus 20 byte IFG.		

35.13.5 Prio Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Prio Shaper

Number of Entries: 88

 $Type \ of \ Operation: \qquad Read/Write$

Addressing : Egress Port * 8 + Egress Prio

Address Space: 136030 to 136117

Field Description

Bits	Field Name	Description	Default Value	
			Index	Value
16:0	bucketCapacity	Capacity of the token bucket	0-15	0xfe4c
			16-87	0×65b8

35.13.6 Prio Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Prio Shaper

Number of Entries: 88

Type of Operation : Read/Write

Addressing : Egress Port * 8 +Egress Prio

Address Space: 136118 to 136205

Field Description

Bits	Field Name	Description	Default Value	
			Index	Value
16:0	threshold	Minimum number of tokens in bucket for the status to be set	0-15	0×54c4
		to accept.	16-87	0x21e8

35.13.7 Prio Shaper Enable

Bitmask to turn Prio Shaper ON/OFF (1/0) for Egress Port * 8 + Egress Prio

Number of Entries: 1
Number of Addresses per Entry: 4

Type of Operation : Read/Write Address Space : 136206

Field Description

Bits	Field Name	Description	Default Value
87:0	enable	Bitmask where the index is the Egress Port * $8 +$ Egress Prio	0×0

35.13.8 Prio Shaper Rate Configuration

Token Bucket rate Configuration for Prio Shaper

Number of Entries: 88

Type of Operation : Read/Write

Addressing : Egress Port * 8 + Egress Prio

Address Space: 135942 to 136029

Field Description

Bits	Field Name	Description	Default Value
0	packetsNotBytes	If set the bucket will count packets, if cleared bytes	0x0
			Index Value
13:1	tokens	The number of tokens added each tick	0-15 0x87a
			16-87 0x364
16:14	tick	Select one of the five available core ticks. The tick	0×0
		frequencies are configured globaly in the core Tick	
		Configuration register.	
24:17	ifgCorrection	Extra bytes per packet to correct for IFG in byte mode.	0×18
		Default is 4 byte FCS plus 20 byte IFG.	

35.13.9 Queue Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Queue Shaper

Number of Entries: 88

Type of Operation : Read/Write

Addressing : Egress Port * 8 + Egress Queue

Address Space: 135762 to 135849

Field Description

Bits	Field Name	Description	Default Value	
16:0	bucketCapacity	Capacity of the token bucket	Index 0-15 16-87	Oxfe4c 0x65b8

35.13.10 Queue Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Queue Shaper

Number of Entries: 88

Type of Operation : Read/Write

Addressing : Egress Port * 8 + Egress Queue

Address Space: 135850 to 135937

Field Description

Bits	Field Name	Description	Default Value	
			Index	Value
16:0	threshold	Minimum number of tokens in bucket for the status to be set	0-15	0×54c4
		to accept.	16-87	0x21e8

35.13.11 Queue Shaper Enable

Bitmask to turn Queue Shaper ON/OFF (1/0) for Egress Port * 8 + Egress Queue

Number of Entries: 1
Number of Addresses per Entry: 4

 $\begin{array}{ll} {\sf Type\ of\ Operation:} & {\sf Read/Write} \\ {\sf Address\ Space:} & 135938 \end{array}$

Field Description

Bits	Field Name	Description	Default Value
87:0	enable	Bitmask where the index is the Egress Port * $8 + $ Egress Queue	0×0

35.13.12 Queue Shaper Rate Configuration

Token Bucket rate Configuration for Queue Shaper

Number of Entries: 88

Type of Operation : Read/Write

Addressing : Egress Port * 8 + Egress Queue

Address Space: 135674 to 135761

Field Description

Bits	Field Name	Description	Default Value
0	packetsNotBytes	If set the bucket will count packets, if cleared bytes	0x0
13:1	tokens	The number of tokens added each tick	Index Value
16:14	tick	Select one of the five available core ticks. The tick frequencies are configured globaly in the core Tick Configuration register.	0×0
24:17	ifgCorrection	Extra bytes per packet to correct for IFG in byte mode. Default is 4 byte FCS plus 20 byte IFG.	0×18

35.14 Shared Buffer Memory

35.14.1 Buffer Free

The number of cells available in the buffer memory for incoming packets.

Number of Entries: 1

Type of Operation : Read Only

Address Space: 1

Field Description

C

Bits	Field Name	Description	Default Value
10:0	cells	Number of free cells.	0×400

35.14.2 Egress Port Depth

Number of packets available in the buffer memory for each egress port.

Number of Entries: 11

Type of Operation: Read Only
Addressing: Egress Port
Address Space: 135453 to 135463

Field Description

Bits	Field Name	Description	Default Value
10:0	packets	Number of packet currently queued.	0×0

35.14.3 Egress Queue Depth

Number of packets available in the buffer memory for each egress queue.

Number of Entries: 88

Type of Operation: Read Only

Addressing : Global queue number Address Space : 135464 to 135551

Field Description

Bits	Field Name	Description	Default Value
10:0	packets	Number of packets currently queued.	0×0

35.14.4 Minimum Buffer Free

Minimum number of cells available in the buffer memory

Number of Entries: 1

Type of Operation : Read Only Address Space : 135552

Bits	Field Name	Description	Default Value
10:0	cells	Number of cells.	0×400

35.14.5 Packet Buffer Status

Queue status of the packet buffer

Number of Entries: 1

Type of Operation : Read Only Address Space : 134785

Field Description

Bits	Field Name	Description	Default Value
10:0	empty	Empty flags for the egress ports	0×7ff

35.15 Statistics: ACL

35.15.1 Egress Configurable ACL Match Counter

Number of packets hit in entries from Egress configurable ACL lookup.

Number of Entries: 64

Type of Operation : Read/Write

Addressing: Index from result of Egress configurable ACL.

Address Space: 134260 to 134323

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.15.2 Ingress Configurable ACL Match Counter

Number of packets hit in entries from Ingress configurable ACL lookup.

Number of Entries: 64

 $\label{type of Operation: Read/Write} Type of Operation: Read/Write$

Addressing: Index from result of Ingress configurable ACL.

Address Space : 133168 to 133231

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.16 Statistics: Debug

35.16.1 Debug EPP Counter

Number of packets hit in entries from Debug points in EPP.

Number of Entries: 15

Type of Operation : Read/Write

Addressing : Epp Debug Counter table.

Address Space: 151614 to 151628

Field Description

Bits	Field Name	Description	Default Value
15:0	packets	Number of packets.	0x0

35.16.2 Debug IPP Counter

Number of packets hit in entries from Debug points in IPP.

Number of Entries: 23

Type of Operation : Read/Write

Addressing : Ipp Debug Counter table.

Address Space: 134434 to 134456

Field Description

Bits	Field Name	Description	Default Value
15:0	packets	Number of packets.	0×0

35.16.3 EPP PM Drop

Number of drops due to FIFO overflows in EPP PM.

In Figure 29.1, **epmOverflow** with process sequence **22** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 136346

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0x0

35.16.4 IPP PM Drop

Number of drops due to FIFO overflows in IPP PM.

In Figure 29.1, ipmOverflow with process sequence 12 represents the internal location of this counter.

Number of Entries: 1

 $\begin{array}{ll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Address Space}: & \mbox{4560} \end{array}$

Field Description

	Bits	Field Name	Description	Default Value
3	31:0	packets	Number of dropped packets.	0×0

35.16.5 PS Error Counter

Number of errors occured in the PS-converter.

In Figure 29.1, psError with process sequence 25 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress port
Address Space: 151666 to 151676

Field Description

Bits	Field Name	Description	Default Value
7:0	underrun	Number of packets which have empty cycles caused by the internal PS-converter but not the external halt during packet transmissions.	0x0
15:8	overflow	Number of FIFO overflows in the PS-converter. This error will cause packet corruptions.	0x0

35.16.6 SP Overflow Drop

Number of packets dropped due to: FIFO overflow in the SP-converter.

In Figure 29.1, spOverflow with process sequence 5 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read Only
Addressing: Ingress port
Address Space: 4512 to 4522

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets on this ingress port.	0×0

35.17 Statistics: EPP Egress Port Drop

35.17.1 Egress Port Disabled Drop

Number of packets dropped due to egress port disabled.

In Figure 29.1, epppDrop with process sequence 19 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress port
Address Space: 136313 to 136323

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.17.2 Egress Port Filtering Drop

Number of packets dropped due to egress port filtering.

In Figure 29.1, epppDrop with process sequence 19 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress port
Address Space: 136324 to 136334

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.17.3 Tunnel Exit Too Small Packet Modification To Small Drop

The packet modification after the tunnel exit resulted in a packet size that was less than zero. In Figure 29.1, **epppDrop** with process sequence **19** represents the internal location of this counter.

Number of Entries: 11

 $\begin{array}{lll} \mbox{Type of Operation}: & \mbox{Read/Write} \\ \mbox{Addressing}: & \mbox{Egress port} \\ \mbox{Address Space}: & 136335 \ \mbox{to } 136345 \\ \end{array}$

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.17.4 Unknown Egress Drop

Number of packets dropped during egress packet processing due to unknown reasons. Internal error caused by packet drop with an invalid Drop ID.

In Figure 29.1, epppDrop with process sequence 19 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress port
Address Space: 136302 to 136312

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.18 Statistics: IPP Egress Port Drop

35.18.1 Egress Spanning Tree Drop

Number of packets dropped due to egress spanning tree check configured in **Egress Spanning Tree State** and **Egress Multiple Spanning Tree State**

In Figure 29.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation : Read/Write

Addressing: Egress Port (not aggregated)

Address Space: 134335 to 134345

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.18.2 Ingress-Egress Packet Filtering Drop

Number of packets dropped due to ingress-egress packet filtering configured in **Ingress Egress Port Packet Type Filter**.

In Figure 29.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation : Read/Write

Addressing : Egress Port (not aggregated)

Address Space: 134357 to 134367

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.18.3 L2 Action Table Per Port Drop

Number of packets dropped due to L2 Action Table per egress port drop configured in L2 Action Table Drop.

In Figure 29.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation : Read/Write

Addressing: Egress Port (not aggregated)

Address Space: 134368 to 134378

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.18.4 MBSC Drop

Number of packets dropped due to MBSC. When the egress port exceeds the multicast/broadcast traffic limits any multicast/broadcast packets will be dropped.

In Figure 29.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write

Addressing: Egress Port (not aggregated)

Address Space : 134346 to 134356

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0x0

35.18.5 Queue Off Drop

Number of packets dropped due to the queue being turned off.

In Figure 29.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation : Read/Write

Addressing: Egress Port (not aggregated)

Address Space: 134324 to 134334

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19 Statistics: IPP Ingress Port Drop

35.19.1 AH Decoder Drop

Number of packets dropped due to setting in register **AH Header Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4592

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.2 ARP Decoder Drop

Number of packets dropped due to setting in register ARP Packet Decoder Options. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4585

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.3 BOOTP and DHCP Decoder Drop

Number of packets dropped due to setting in register BOOTP and DHCP Packet Decoder Options. In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4595

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.4 CAPWAP Decoder Drop

Number of packets dropped due to setting in register **CAPWAP Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4596

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.5 DNS Decoder Drop

Number of packets dropped due to setting in register **DNS Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4594

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.6 ESP Decoder Drop

Number of packets dropped due to setting in register **ESP Header Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4593

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.7 Egress Configurable ACL Drop

Number of packets dropped due to matching an Egress Configurable ACL with drop. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4584

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0x0

35.19.8 Empty Mask Drop

Number of packets dropped due to an empty destination port mask. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4563

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0x0

35.19.9 Expired TTL Drop

Number of packets dropped due to expired TTL.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4575

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.10 GRE Decoder Drop

Number of packets dropped due to setting in register **GRE Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4598

Field Description

Bit	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.11 IEEE 802.1X and EAPOL Decoder Drop

Number of packets dropped due to setting in register IEEE 802.1X and EAPOL Packet Decoder Options.

In Figure 29.1, **ipppDrop** with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4589

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.12 IKE Decoder Drop

Number of packets dropped due to setting in register IKE Packet Decoder Options. In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4597

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.13 IP Checksum Drop

Number of packets dropped due to incorrect IP checksum.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4577

Field Description

Bit	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.14 Ingress Configurable ACL Drop

Number of packets dropped due to matching an Ingress Configurable ACL with drop. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4583

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.15 Ingress Packet Filtering Drop

Number of packets dropped due to ingress port packet type filtering as configured in **Ingress Port Packet Type Filter**.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4568

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.16 Ingress Spanning Tree Drop: Blocking

Number of packets dropped due to that a ports's ingress spanning tree protocol state was **Blocking** or that port and packet VLAN's ingress multiple spanning tree instance state was **Discarding**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4566

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.17 Ingress Spanning Tree Drop: Learning

Number of packets dropped due to that a port's ingress spanning tree protocol state was **Learning** or that port and packet VLAN's ingress multiple spanning tree instance state was **Learning**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4565

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0x0

35.19.18 Ingress Spanning Tree Drop: Listen

Number of packets dropped due to that a port's ingress spanning tree protocol state was **Listening**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4564

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.19 Invalid Routing Protocol Drop

Number of packets dropped due to invalid routing protocol. This occurs when a packet enters the router port but the protocol type is not allowed to be routed as configured in **Ingress Router Table**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4574

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.20 L2 Action Table Drop

Number of packets dropped due to the **L2 Action Table** says drop all instances. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4601

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.21 L2 Action Table Port Move Drop

Number of packets dropped due to the **L2 Action Table** says drop due to port move packet. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4602

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.22 L2 Action Table Special Packet Type Drop

Number of packets dropped due to the **Allow Special Frame Check For L2 Action Table** dit not allow a certain packet/frame type.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4600

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.23 L2 IEEE 1588 Decoder Drop

Number of packets dropped due to setting in register IEEE 1588 L4 Packet Decoder Options. In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4587

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.24 L2 Lookup Drop

Number of packets dropped in the L2 destination port lookup process. Either due to a drop flag in an L2 Destination Table entry, or due to destination port not being member of the VLAN or due to not allowing destination port being the same as the source port.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4567

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.25 L2 Reserved Multicast Address Drop

Number of packets dropped due to the L2 Reserved Multicast Addresses on counter 0 In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4582

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0x0

35.19.26 L3 Lookup Drop

Number of packets dropped due to a drop flag in L3 Routing Default or Next Hop Table. In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4576

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.27 L4 IEEE 1588 Decoder Drop

Number of packets dropped due to setting in register **IEEE 1588 L4 Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4588

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.28 LACP Decoder Drop

Number of packets dropped due to setting in register **LACP Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4591

Field Description

Bit	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.29 Learning Packet Drop

Number of learning packets dropped. After learning information is extracted all learning packets are dropped.

In Figure 29.1, **ipppDrop** with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4581

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.30 Maximum Allowed VLAN Drop

Number of packets dropped due to too many VLAN tags. Packets are dropped if number of VLANS is above the limit setup in the **Source Port Table**.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4573

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.31 Minimum Allowed VLAN Drop

Number of packets dropped due to insufficient VLAN tags. Packets are dropped if number of VLANS is below the limit setup in the **Source Port Table**.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4572

Field Description

	Bits	Field Name	Description	Default Value
3	31:0	packets	Number of dropped packets.	0×0

35.19.32 NAT Action Table Drop

Number of packets dropped due to the NAT Action Table.

In Figure 29.1, **ipppDrop** with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4599

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.33 RARP Decoder Drop

Number of packets dropped due to setting in register RARP Packet Decoder Options. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4586

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.34 Reserved MAC DA Drop

Number of packets dropped due to the packets destination MAC address match a **Reserved Destination** MAC Address Range that is configured to be dropped.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4569

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.35 Reserved MAC SA Drop

Number of packets dropped due to the packets source MAC address match a **Reserved Source MAC Address Range** that is configured to be dropped.

In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4570

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0x0

35.19.36 SCTP Decoder Drop

Number of packets dropped due to setting in register **SCTP Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4590

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.37 Second Tunnel Exit Drop

Number of packets dropped due to second tunnel exit lookup says drop packet. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4578

Field Description

Bit	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.38 Source Port Default ACL Action Drop

Number of packets dropped due to the table **Source Port Default ACL Action** says drop. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4603

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.39 Tunnel Exit Miss Action Drop

Number of packets dropped due to second tunnel exit lookup was a miss while the tunnel exit table **Second Tunnel Exit Miss Action** says that the second tunnel table must be a hit.

In Figure 29.1, **ipppDrop** with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4579

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.40 Tunnel Exit Too Small Packet Modification Drop

The packet modification after the tunnel exit resulted in a packet size that was less than zero. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4580

Field Description

Bit	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.41 Unknown Ingress Drop

Number of packets dropped during ingress packet processing due to unknown reasons. Internal error caused by packet drop with an invalid Drop ID.

In Figure 29.1, **ipppDrop** with process sequence 11 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4562

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.19.42 VLAN Member Drop

Number of packets dropped due to the packets source port notbeing part of the packets VLAN membership. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

436

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4571

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.20 Statistics: IPP Ingress Port Receive

35.20.1 IP Multicast ACL Drop Counter

Number of IP multicast packets received and hit in ACL drop rules. IP multicast packets are counted for IPv4 packets with destination MAC in range 01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff or IPv6 packets with destination MAC matches 33:33:xx:xx:xx:xx.

In Figure 29.1, ip with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Ingress port
Address Space: 134423 to 134433

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.20.2 IP Multicast Received Counter

Number of IP multicast packets received on ingress. IP multicast packets are counted for IPv4 packets with destination MAC in range 01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff or IPv6 packets with destination MAC matches 33:33:xx:xx:xx:xx.

In Figure 29.1, ip with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Ingress port
Address Space: 134390 to 134400

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.20.3 IP Multicast Routed Counter

Number of IP multicast packets received and routed on ingress. IP multicast packets are counted for IPv4 packets with destination MAC in range 01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff or IPv6 packets with destination MAC matches 33:33:xx:xx:xx:xx.

In Figure 29.1, ip with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Ingress port
Address Space: 134412 to 134422

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.20.4 IP Unicast Received Counter

Number of IP unicast packets received on ingress. Any IP packet with destination MAC not in IP multicast range (01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff for IPv4 and 33:33:xx:xx:xx:xx for IPv6) are counted as IP unicast packets.

In Figure 29.1, ip with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Ingress port
Address Space: 134379 to 134389

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0x0

35.20.5 IP Unicast Routed Counter

Number of IP unicast packets received and routed on ingress. Any IP packet with destination MAC not in IP multicast range (01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff for IPv4 and 33:33:xx:xx:xx:xx for IPv6) are counted as IP unicast packets.

In Figure 29.1, ip with process sequence 11 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Ingress port
Address Space: 134401 to 134411

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.21 Statistics: Misc

35.21.1 Buffer Overflow Drop

Counter for the number of packets dropped due to the shared buffer memory being full. In Figure 29.1, **bmOverflow** with process sequence **16** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 134786

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.21.2 Drain Port Drop

Number of packets dropped due to the port is drained.

In Figure 29.1, drain with process sequence 21 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress port
Address Space: 136291 to 136301

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.21.3 Egress Resource Manager Drop

Number of packets dropped by the egress resource manager.

In Figure 29.1, erm with process sequence 15 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read/Write
Addressing: Egress Port
Address Space: 134774 to 134784

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.21.4 Flow Classification And Metering Drop

Number of packets dropped due to flow classification and metering.

In Figure 29.1, mmp with process sequence 14 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 134457

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.21.5 IPP Empty Destination Drop

Number of drops due to the determined destination is cleared during post-ingress packet processing and causing no cell to be enqueued in the buffer memory. This happens on single cell packet with end-of-packet drop actions.

In Figure 29.1, eopDrop with process sequence 14 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4561

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.21.6 Ingress Resource Manager Drop

Counter for the number of packets dropped due to exceeding thresholds set up in the ingress resource manager.

In Figure 29.1, irm with process sequence 16 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 134787

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets.	0×0

35.21.7 MAC RX Broken Packets

Number of broken packets dropped (packets with last=1 and valid_bytes=0). In Figure 29.1, macBrokenPkt with process sequence 3 represents the internal location of this counter.

Number of Entries: 11

Type of Operation : Read Only (unreliable)

Addressing: Ingress Port Address Space: 81 to 91

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.21.8 MAC RX Long Packet Drop

Number of packets dropped due to length above MAC RX Maximum Packet Length. In Figure 29.1, macRxMax with process sequence 4 represents the internal location of this counter.

Number of Entries: 11

Type of Operation: Read Only (unreliable)

Addressing : Ingress Port Address Space : 103 to 113

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.21.9 MAC RX Short Packet Drop

Number of packets dropped due to length below 60 bytes. In Figure 29.1, macRxMin with process sequence 4 represents the internal location of this counter.

Number of Entries: 11

Type of Operation : Read Only (unreliable)

Addressing: Ingress Port Address Space: 92 to 102

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0x0

441

35.21.10 Re-queue Overflow Drop

Counter for the number of packets dropped due to a FIFO overflow in re-queue. In Figure 29.1, **rqOverflow** with process sequence **24** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 134799

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of dropped packets	0×0

35.22 Statistics: NAT

35.22.1 Egress NAT Hit Status

Status bit is set if there was a hit in the Egress NAT Operation.

In Figure 29.1, nat with process sequence 19 represents the internal location of this counter.

Number of Entries: 1024
Type of Operation: Read/Write

 ${\sf Addressing:} \qquad \qquad {\sf Egress\;NAT\;pointer} + {\sf Egress\;Port}$

Address Space: 150590 to 151613

Field Description

Bits	Field Name	Description	Default Value
0	hit	If set, the corresponding entry in the Egress NAT Operation is hit.	0x0

35.22.2 Ingress NAT Hit Status

Status bit is set if there was a hit in the Ingress NAT Operation.

In Figure 29.1, nat with process sequence 19 represents the internal location of this counter.

Number of Entries : 2048 Type of Operation : Read/Write

 ${\sf Addressing:} \qquad \qquad {\sf Ingress} \; {\sf NAT} \; {\sf pointer} \; + \; {\sf Egress} \; {\sf Port}$

Address Space: 148542 to 150589

Bits	Field Name	Description	Default Value
0	hit	If set, the corresponding entry in the Ingress NAT Operation is hit.	0x0

35.23 Statistics: Packet Datapath

35.23.1 EPP Packet Head Counter

Number of packet first cells through the Egress Packet Process module. In Figure 29.1, **eppTxPkt** with process sequence **24** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 136347

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packet headers.	0×0

35.23.2 EPP Packet Tail Counter

Number of packet last cells through the Egress Packet Process module. In Figure 29.1, **eppTxPkt** with process sequence **24** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 136348

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packet tails.	0x0

35.23.3 IPP Packet Head Counter

Number of packet first cells through the Ingress Packet Process module. In Figure 29.1, **ippTxPkt** with process sequence **13** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4604

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packet headers.	0x0

443

35.23.4 IPP Packet Tail Counter

Number of packet last cells through the Ingress Packet Process module. In Figure 29.1, **ippTxPkt** with process sequence **13** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 4605

Field Description

Bi	Field Nam	Description	Default Value
31:) packet	Number of packet tails.	0×0

35.23.5 MAC Interface Counters For RX

Counters for the interface protocol checkers. The counters wrap.

In Figure 29.1, rxlf with process sequence 1 represents the internal location of this counter.

Number of Entries: 11 Number of Addresses per Entry: 2

Type of Operation : Read Only (unreliable)

Addressing: Ingress Port Address Space: 48 to 69

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Correct packets completed	0×0
63:32	error	Bus protocol errors.	0x0

35.23.6 MAC Interface Counters For TX

Counters for the interface protocol checkers. The counters wrap.

In Figure 29.1, txlf with process sequence 28 represents the internal location of this counter.

Number of Entries: 11 Number of Addresses per Entry: 4

Type of Operation : Read Only Addressing : Egress Port Address Space : 114 to 157

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Correct packets completed	0×0
63:32	error	Bus protocol errors.	0×0

444

Bits	Field Name	Description	Default Value
95:64	halt	Halt errors. Incremented if first, last or valid_bytes is non-zero when halt is high.	0x0

35.23.7 PB Packet Head Counter

Number of packet first cells through the Shared Buffer Memory module. In Figure 29.1, **pbTxPkt** with process sequence **18** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 136288

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packet headers.	0×0

35.23.8 PB Packet Tail Counter

Number of packet last cells through the Shared Buffer Memory module. In Figure 29.1, **pbTxPkt** with process sequence **18** represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 136289

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packet tails.	0×0

35.23.9 PS Packet Head Counter

Number of packet first cells through the Parallel to Serial module. In Figure 29.1, psTxPkt with process sequence 25 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 151664

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packet headers.	0×0

35.23.10 PS Packet Tail Counter

Number of packet last cells through the Parallel to Serial module.

In Figure 29.1, psTxPkt with process sequence 25 represents the internal location of this counter.

Number of Entries: 1

Type of Operation : Read/Write Address Space : 151665

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packet tails.	0×0

35.24 Statistics: Routing

35.24.1 Next Hop Hit Status

Status bit is set if a packet was routed using the corresponding entry in the **Next Hop Table**. In Figure 29.1, **nextHop** with process sequence **11** represents the internal location of this counter.

Number of Entries: 1024
Type of Operation: Read/Write
Addressing: Next Hop

Address Space: 133236 to 134259

Field Description

Bits	Field Name	Description	Default Value
0	ipv4	The next hop entry was hit with an IPv4 packet.	0×0
1	ipv6	The next hop entry was hit with an IPv6 packet.	0×0
2	mpls	The next hop entry was hit with an MPLS packet.	0×0

35.24.2 Received Packets on Ingress VRF

Number of packets enter a VRF on ingress.

In Figure 29.1, vrfln with process sequence 11 represents the internal location of this counter.

Number of Entries: 4

Type of Operation: Read/Write

Addressing: vrf

Address Space: 133232 to 133235

	Bits	Field Name	Description	Default Value
3	31:0	packets	Number of packets.	0×0

35.24.3 Transmitted Packets on Egress VRF

Number of packets leave a VRF on egress.

In Figure 29.1, vrfOut with process sequence 19 represents the internal location of this counter.

Number of Entries: 4

Type of Operation: Read/Write

Addressing: vrf

Address Space: 148538 to 148541

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.25 Statistics: SMON

35.25.1 SMON Set 0 Byte Counter

Number of bytes counted in SMON Set 0.

In Figure 29.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: VLAN PCP
Address Space: 133136 to 133143

Field Description

Bits	Field Name	Description	Default Value
31:0	bytes	Number of bytes.	0x0

35.25.2 SMON Set 0 Packet Counter

Number of packets counted in SMON Set 0.

In Figure 29.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: VLAN PCP
Address Space: 133104 to 133111

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.25.3 SMON Set 1 Byte Counter

Number of bytes counted in SMON Set 1.

In Figure 29.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: VLAN PCP
Address Space: 133144 to 133151

Field Description

Bit	Field Name	Description	Default Value
31:0	bytes	Number of bytes.	0×0

35.25.4 SMON Set 1 Packet Counter

Number of packets counted in SMON Set 1.

In Figure 29.1, **smon** with process sequence 11 represents the internal location of this counter.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: VLAN PCP
Address Space: 133112 to 133119

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0x0

35.25.5 SMON Set 2 Byte Counter

Number of bytes counted in SMON Set 2.

In Figure 29.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: VLAN PCP
Address Space: 133152 to 133159

Bits	Field Name	Description	Default Value
31:0	bytes	Number of bytes.	0×0

35.25.6 SMON Set 2 Packet Counter

Number of packets counted in SMON Set 2.

In Figure 29.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: VLAN PCP
Address Space: 133120 to 133127

Field Description

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

35.25.7 SMON Set 3 Byte Counter

Number of bytes counted in SMON Set 3.

In Figure 29.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: VLAN PCP
Address Space: 133160 to 133167

Field Description

Bits	Field Name	Description	Default Value
31:0	bytes	Number of bytes.	0x0

35.25.8 SMON Set 3 Packet Counter

Number of packets counted in SMON Set 3.

In Figure 29.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries: 8

Type of Operation: Read/Write
Addressing: VLAN PCP
Address Space: 133128 to 133135

Bits	Field Name	Description	Default Value
31:0	packets	Number of packets.	0×0

