
Packet Architects AB

Ethernet Switch

Advance L2/VLAN 48x1G + 5x10G

User Guide

Core Revision unknown

Datasheet Revision unknown
March 29, 2024©Packet Architects AB.

Contents

1 Overview 15
1.1 Feature Overview . 16
1.2 Port Numbering Table . 19

2 Packet Decoder 21
2.1 Decoding Sequence . 21

3 Packet Processing 27
3.1 Ingress Packet Processing . 27
3.2 Egress Packet Processing . 29

4 Latency and Jitter 31
4.1 Latency . 31
4.2 Jitter . 31

5 VLAN Processing 33
5.1 Assignment of Ingress VID . 33

5.1.1 VID Assignment from Packet Fields . 33
5.1.2 Force Ingress VID from Ingress Configurable ACL 34

5.2 VLAN membership . 34
5.3 VLAN operations . 34

5.3.1 Default VLAN Header . 35
5.3.2 Source Port VLAN Operation . 35
5.3.3 Configurable ACL VLAN Swap Operation . 36
5.3.4 VLAN Table Operation . 36
5.3.5 Egress Port VLAN Operation . 36
5.3.6 Egress Vlan Translation . 36
5.3.7 Priority Tagged Packets . 36
5.3.8 VLAN Operation Order . 36
5.3.9 VLAN Operation Examples . 37
5.3.10 VLAN Reassembly . 38

6 Switching 41
6.1 L2 Destination Lookup . 41
6.2 Software Interaction . 42
6.3 L2 Action Table . 42

6.3.1 Learning Unicast and Learning Multicast . 43
6.3.2 Drop and Learning . 43
6.3.3 Priorities Between Actions . 43
6.3.4 Using L2 Action Table for 802.1X . 43

7 Mirroring 45
7.1 Input Mirroring . 45
7.2 Output Mirroring . 45

7.2.1 Requeueing FIFO . 46

8 RSPAN - Remote Switch Port Analyzer 47
8.1 Source Device . 47

2

CONTENTS

8.2 Intermediate Device . 47
8.3 Destination Device . 48

9 Link Aggregation 49
9.0.1 One-to-one Port Mapping . 49

9.1 Example . 49
9.2 Hash Calculation . 51

10 IEEE 1588/PTP Support 53
10.1 Timestamp from RX MAC . 53

10.1.1 Timestamp to the CPU . 53
10.2 PTP Frame Decoding . 53

10.2.1 PTP over 802.3 Ethernet . 53
10.2.2 PTP over UDP . 54

10.3 Software Control of TX MAC PTP Actions . 54
10.3.1 Packet Updates by the Transmit MAC . 55

10.4 Support for Ordinary Clock . 55
10.4.1 Master sending Sync . 55
10.4.2 Slave receiving Sync . 56
10.4.3 Slave sending DelayReq . 56
10.4.4 Master receiving DelayReq . 56
10.4.5 Master sending DelayReply . 56
10.4.6 Slave receiving DelayReply . 56

10.5 Support for 1-step Peer to Peer . 56
10.5.1 Initiator sending PDelayReq . 56
10.5.2 Peer receiving PDelayReq . 56
10.5.3 Peer sending PDelayResp . 57
10.5.4 Initiator receiving PDelayResp . 57

11 Classification 59
11.1 L2 Classification . 59
11.2 Configurable Ingress ACL Engine . 59

11.2.1 Field Selection . 60
11.2.2 Example Of Selecting Fields For Configurable Ingress ACL Table 0 63
11.2.3 Example Of Selecting Fields For Configurable Ingress ACL Table 1 67
11.2.4 Example Of Selecting Fields For Configurable Ingress ACL Table 2 71
11.2.5 Example Of Selecting Fields For Configurable Ingress ACL Table 3 75
11.2.6 ACL Search . 76
11.2.7 ACL Actions . 77

11.3 Multiple ACL Lookups . 77
11.3.1 Multiple Actions . 77
11.3.2 ACL Routing . 78
11.3.3 Default Port ACL action . 79

12 VLAN and Packet Type Filtering 81

13 Attack Prevention 83

14 Hashing 85
14.1 Hashing Functions . 85

14.1.1 MAC Table Hashing . 85
14.1.2 Hash function for Ingress Configurable ACL 0 86
14.1.3 Hash function for Ingress Configurable ACL 1 89
14.1.4 Hash function for Ingress Configurable ACL 2 93
14.1.5 Hash function for Ingress Configurable ACL 3 97
14.1.6 Hash function for Egress Vlan Translation 101

15 D-left Lookup 105

3 Packet Architects AB

CONTENTS

15.1 Functions using D-left . 105
15.1.1 Egress VLAN Translation . 105
15.1.2 Ingress Configurable ACL . 106

16 Learning and Aging 109
16.1 L2 Forwarding Information Base (FIB) . 109

16.1.1 Tables for MAC DA lookup . 109
16.1.2 Status Tables . 110
16.1.3 Hash Collision Accommodation . 111

16.2 Hardware Learning and Aging . 111
16.2.1 Learning Unit . 111
16.2.2 Hardware Learning Exceptions . 112
16.2.3 Aging Unit . 113
16.2.4 MAC DA Hit Update Unit . 113

16.3 Software Learning and Aging . 113
16.3.1 Direct Access to FIB . 113
16.3.2 Software Reserved Entry . 114

17 Spanning Tree 115
17.1 Spanning Tree . 115
17.2 Multiple Spanning Tree . 115
17.3 Spanning Tree Drop Counters . 116

18 Token Bucket 117

19 Egress Queues and Scheduling 119
19.1 Determine Egress Queue . 119
19.2 Determine a packets outgoing QoS headers PCP, DEI and TOS fields 121

19.2.1 Remap Egress Queue to Packet Headers . 121
19.3 Priority Mapping . 122
19.4 Shapers . 122

19.4.1 Queue Shaper . 122
19.4.2 Prio Shaper . 122

19.5 Scheduling . 124
19.6 DWRR Scheduler . 124
19.7 Queue Management . 124
19.8 How To Make Sure A Port Is Empty . 125

20 Packet Coloring 127
20.1 Ingress Packet Initial Coloring . 127
20.2 Remap Packet Color to Packet Headers . 129

21 Admission Control 131
21.1 Ingress Admission Control . 131

21.1.1 Traffic Groups . 131
21.2 Meter-Marker-Policer . 132

22 Tick 135

23 Multicast Broadcast Storm Control 137
23.1 Inspected Traffic . 137
23.2 Rate Configuration . 138

24 Egress Resource Manager 141
24.1 Yellow Zone . 141
24.2 Red Zone . 142
24.3 Green Zone . 142
24.4 Configuration Example . 142

4 Packet Architects AB

CONTENTS

24.5 Restrictions . 143

25 Flow Control 145
25.1 Pausing . 145
25.2 Tail-Drop . 145

25.2.1 Tail-drop as police for Pausing . 146
25.3 Buffer partitioning . 146

25.3.1 Reserves . 146
25.3.2 Pausing Thresholds . 146
25.3.3 Tail-drop Thresholds . 147
25.3.4 Counters . 147

25.4 Enabling Tail-Drop . 147
25.5 Enabling Pausing . 147
25.6 Dropped packets . 147
25.7 Reconfiguration . 147
25.8 Debug Features . 147

26 Egress Port Shaper 149

27 Statistics 151
27.1 Packet Processing Pipeline Drops . 153
27.2 ACL Statistics . 154
27.3 SMON Statistics . 154
27.4 Packet Datapath Statistics . 154
27.5 Miscellaneous Statistics . 154
27.6 Debug Statistics . 154

27.6.1 Debug Statistics Accuracy . 155

28 Packets To And From The CPU 157
28.1 Packets From the CPU . 157

28.1.1 From CPU Header and Packet Modification and Operations 158
28.2 Packets To the CPU . 159

28.2.1 Reason Table . 159

29 Core Interface Description 163
29.1 Clock, Reset and Initialization interface . 163

29.1.1 Assert Reset . 164
29.2 Packet Interface . 165
29.3 Configuration Interface . 167
29.4 Pause Interfaces . 169

29.4.1 PFC Status . 169
29.4.2 External Pause . 169

29.5 Debug Read Interface . 169
29.6 Debug Write Interface . 184

30 Configuration Interface 185
30.1 Response time . 185
30.2 Out of range accesses . 185
30.3 Atomic Wide Access . 185
30.4 Accumulator Accesses . 186

31 Implementation 187
31.1 Floorplanning . 187

31.1.1 Pipelining . 187
31.1.2 Configuration and debug . 188

31.2 Clock crossings . 188
31.2.1 IPP and EPP Structure . 188

31.3 Memory wrappers . 188

5 Packet Architects AB

CONTENTS

31.4 Dual ported memories . 190
31.5 Memory timing . 190
31.6 Lint set up . 190

31.6.1 Waivers . 191

32 Registers and Tables 193
32.1 Address Space For Tables and Registers . 199
32.2 Byte Order . 199
32.3 Register Banks . 200
32.4 Registers and Tables in Alphabetical Order . 206
32.5 Active Queue Manager . 212

32.5.1 ERM Red Configuration . 212
32.5.2 ERM Yellow Configuration . 212
32.5.3 Egress Resource Manager Pointer . 213
32.5.4 Resource Limiter Set . 214

32.6 Core Information . 214
32.6.1 Core Version . 214

32.7 Egress Packet Processing . 215
32.7.1 Color Remap From Egress Port . 215
32.7.2 Color Remap From Ingress Admission Control 215
32.7.3 Disable CPU tag on CPU Port . 216
32.7.4 Drain Port . 216
32.7.5 Egress Ethernet Type for VLAN tag . 217
32.7.6 Egress MAC Operations . 217
32.7.7 Egress Multiple Spanning Tree State . 218
32.7.8 Egress Port Configuration . 218
32.7.9 Egress Queue To PCP And CFI/DEI Mapping Table 221
32.7.10 Egress RSPAN Configuration . 221
32.7.11 Egress VLAN Translation Large Table . 222
32.7.12 Egress VLAN Translation Search Mask . 222
32.7.13 Egress VLAN Translation Selection . 223
32.7.14 Egress VLAN Translation Small Table . 223
32.7.15 Egress VLAN Translation TCAM . 224
32.7.16 Egress VLAN Translation TCAM Answer . 225
32.7.17 Output Mirroring Table . 225

32.8 Flow Control . 225
32.8.1 FFA Used . 225
32.8.2 Port Pause Settings . 226
32.8.3 Port Reserved . 226
32.8.4 Port Tail-Drop FFA Threshold . 227
32.8.5 Port Tail-Drop Settings . 227
32.8.6 Port Used . 227
32.8.7 Port Xoff FFA Threshold . 228
32.8.8 Port Xon FFA Threshold . 228
32.8.9 Tail-Drop FFA Threshold . 228
32.8.10 Xoff FFA Threshold . 229
32.8.11 Xon FFA Threshold . 229

32.9 Global Configuration . 229
32.9.1 CPU Port . 229
32.9.2 Core Tick Configuration . 230
32.9.3 Core Tick Select . 230
32.9.4 MAC RX Maximum Packet Length . 231
32.9.5 Scratch . 231

32.10 Ingress Packet Processing . 231
32.10.1 AH Header Packet Decoder Options . 231
32.10.2 ARP Packet Decoder Options . 232
32.10.3 Allow Special Frame Check For L2 Action Table 232

6 Packet Architects AB

CONTENTS

32.10.4 BOOTP and DHCP Packet Decoder Options 234
32.10.5 CAPWAP Packet Decoder Options . 234
32.10.6 Check IPv4 Header Checksum . 235
32.10.7 DNS Packet Decoder Options . 235
32.10.8 Debug dstPortmask . 236
32.10.9 Debug srcPort . 236
32.10.10 ESP Header Packet Decoder Options . 237
32.10.11 Egress Spanning Tree State . 237
32.10.12 Enable Enqueue To Ports And Queues . 237
32.10.13 Expired TTL to CPU . 238
32.10.14 Flooding Action Send to Port . 238
32.10.15 Force Non VLAN Packet To Specific Color 239
32.10.16 Force Non VLAN Packet To Specific Queue 239
32.10.17 Force Unknown L3 Packet To Specific Color 239
32.10.18 Force Unknown L3 Packet To Specific Egress Queue 240
32.10.19 Forward From CPU . 240
32.10.20 GRE Packet Decoder Options . 240
32.10.21 Hairpin Enable . 241
32.10.22 Hardware Learning Configuration . 241
32.10.23 Hardware Learning Counter . 242
32.10.24 ICMP Length Check . 242
32.10.25 IEEE 1588 L2 Packet Decoder Options . 243
32.10.26 IEEE 1588 L4 Packet Decoder Options . 243
32.10.27 IEEE 802.1X and EAPOL Packet Decoder Options 244
32.10.28 IPv4 TOS Field To Egress Queue Mapping Table 245
32.10.29 IPv4 TOS Field To Packet Color Mapping Table 245
32.10.30 IPv6 Class of Service Field To Egress Queue Mapping Table 245
32.10.31 IPv6 Class of Service Field To Packet Color Mapping Table 246
32.10.32 Ingress Admission Control Current Status . 246
32.10.33 Ingress Admission Control Initial Pointer . 246
32.10.34 Ingress Admission Control Mark All Red . 247
32.10.35 Ingress Admission Control Mark All Red Enable 247
32.10.36 Ingress Admission Control Reset . 247
32.10.37 Ingress Admission Control Token Bucket Configuration 248
32.10.38 Ingress Configurable ACL 0 Large Table . 249
32.10.39 Ingress Configurable ACL 0 Pre Lookup . 252
32.10.40 Ingress Configurable ACL 0 Rules Setup . 252
32.10.41 Ingress Configurable ACL 0 Search Mask . 253
32.10.42 Ingress Configurable ACL 0 Selection . 253
32.10.43 Ingress Configurable ACL 0 Small Table . 253
32.10.44 Ingress Configurable ACL 0 TCAM . 256
32.10.45 Ingress Configurable ACL 0 TCAM Answer 256
32.10.46 Ingress Configurable ACL 1 Large Table . 258
32.10.47 Ingress Configurable ACL 1 Pre Lookup . 261
32.10.48 Ingress Configurable ACL 1 Rules Setup . 262
32.10.49 Ingress Configurable ACL 1 Search Mask . 262
32.10.50 Ingress Configurable ACL 1 Selection . 262
32.10.51 Ingress Configurable ACL 1 Small Table . 263
32.10.52 Ingress Configurable ACL 1 TCAM . 265
32.10.53 Ingress Configurable ACL 1 TCAM Answer 266
32.10.54 Ingress Configurable ACL 2 Large Table . 268
32.10.55 Ingress Configurable ACL 2 Pre Lookup . 270
32.10.56 Ingress Configurable ACL 2 Rules Setup . 271
32.10.57 Ingress Configurable ACL 2 Search Mask . 272
32.10.58 Ingress Configurable ACL 2 Selection . 272
32.10.59 Ingress Configurable ACL 2 Small Table . 272
32.10.60 Ingress Configurable ACL 2 TCAM . 275

7 Packet Architects AB

CONTENTS

32.10.61 Ingress Configurable ACL 2 TCAM Answer 275
32.10.62 Ingress Configurable ACL 3 Large Table . 277
32.10.63 Ingress Configurable ACL 3 Pre Lookup . 280
32.10.64 Ingress Configurable ACL 3 Rules Setup . 281
32.10.65 Ingress Configurable ACL 3 Search Mask . 281
32.10.66 Ingress Configurable ACL 3 Selection . 281
32.10.67 Ingress Configurable ACL 3 Small Table . 282
32.10.68 Ingress Configurable ACL 3 TCAM . 284
32.10.69 Ingress Configurable ACL 3 TCAM Answer 285
32.10.70 Ingress Drop Options . 287
32.10.71 Ingress Egress Port Packet Type Filter . 287
32.10.72 Ingress Ethernet Type for VLAN tag . 290
32.10.73 Ingress MMP Drop Mask . 290
32.10.74 Ingress Multiple Spanning Tree State . 290
32.10.75 Ingress Port Packet Type Filter . 291
32.10.76 Ingress Ports With Timestamp . 293
32.10.77 Ingress VID Ethernet Type Range Assignment Answer 294
32.10.78 Ingress VID Ethernet Type Range Search Data 294
32.10.79 Ingress VID Inner VID Range Assignment Answer 294
32.10.80 Ingress VID Inner VID Range Search Data 295
32.10.81 Ingress VID MAC Range Assignment Answer 295
32.10.82 Ingress VID MAC Range Search Data . 296
32.10.83 Ingress VID Outer VID Range Assignment Answer 296
32.10.84 Ingress VID Outer VID Range Search Data 297
32.10.85 L2 Action Table . 297
32.10.86 L2 Action Table Egress Port State . 298
32.10.87 L2 Action Table Source Port . 298
32.10.88 L2 Aging Collision Shadow Table . 300
32.10.89 L2 Aging Collision Table . 300
32.10.90 L2 Aging Status Shadow Table . 300
32.10.91 L2 Aging Table . 301
32.10.92 L2 DA Hash Lookup Table . 301
32.10.93 L2 Destination Table . 302
32.10.94 L2 Lookup Collision Table . 302
32.10.95 L2 Lookup Collision Table Masks . 303
32.10.96 L2 Multicast Handling . 303
32.10.97 L2 Multicast Table . 304
32.10.98 L2 Reserved Multicast Address Action . 304
32.10.99 L2 Reserved Multicast Address Base . 304
32.10.100 LACP Packet Decoder Options . 305
32.10.101 LLDP Configuration . 305
32.10.102 Learning And Aging Enable . 306
32.10.103 Learning Conflict . 307
32.10.104 Learning Overflow . 307
32.10.105 Link Aggregate Weight . 308
32.10.106 Link Aggregation Ctrl . 308
32.10.107 Link Aggregation Membership . 309
32.10.108 Link Aggregation To Physical Ports Members 309
32.10.109 MPLS EXP Field To Egress Queue Mapping Table 309
32.10.110 MPLS EXP Field To Packet Color Mapping Table 310
32.10.111 Mask MAC Table Lookup . 310
32.10.112 Port Move Options . 310
32.10.113 RARP Packet Decoder Options . 311
32.10.114 Reserved Destination MAC Address Range 311
32.10.115 Reserved Source MAC Address Range . 312
32.10.116 SCTP Packet Decoder Options . 313
32.10.117 SMON Set Search . 314

8 Packet Architects AB

CONTENTS

32.10.118 Send to CPU . 314
32.10.119 Source Port Default ACL Action . 315
32.10.120 Source Port Table . 316
32.10.121 TCP/UDP Flag Rules . 320
32.10.122 Time to Age . 321
32.10.123 VLAN PCP And DEI To Color Mapping Table 322
32.10.124 VLAN PCP To Queue Mapping Table . 322
32.10.125 VLAN Table . 322

32.11 MBSC . 324
32.11.1 L2 Broadcast Storm Control Bucket Capacity Configuration 324
32.11.2 L2 Broadcast Storm Control Bucket Threshold Configuration 324
32.11.3 L2 Broadcast Storm Control Enable . 325
32.11.4 L2 Broadcast Storm Control Rate Configuration 325
32.11.5 L2 Multicast Storm Control Bucket Capacity Configuration 325
32.11.6 L2 Multicast Storm Control Bucket Threshold Configuration 326
32.11.7 L2 Multicast Storm Control Enable . 326
32.11.8 L2 Multicast Storm Control Rate Configuration 326
32.11.9 L2 Unknown Multicast Storm Control Bucket Capacity Configuration 327
32.11.10 L2 Unknown Multicast Storm Control Bucket Threshold Configuration 327
32.11.11 L2 Unknown Multicast Storm Control Enable 328
32.11.12 L2 Unknown Multicast Storm Control Rate Configuration 328
32.11.13 L2 Unknown Unicast Storm Control Bucket Capacity Configuration 328
32.11.14 L2 Unknown Unicast Storm Control Bucket Threshold Configuration 329
32.11.15 L2 Unknown Unicast Storm Control Enable 329
32.11.16 L2 Unknown Unicast Storm Control Rate Configuration 329

32.12 Scheduling . 330
32.12.1 DWRR Bucket Capacity Configuration . 330
32.12.2 DWRR Bucket Misc Configuration . 330
32.12.3 DWRR Weight Configuration . 331
32.12.4 Map Queue to Priority . 331
32.12.5 Output Disable . 331

32.13 Shapers . 332
32.13.1 Port Shaper Bucket Capacity Configuration 332
32.13.2 Port Shaper Bucket Threshold Configuration 332
32.13.3 Port Shaper Enable . 333
32.13.4 Port Shaper Rate Configuration . 333
32.13.5 Prio Shaper Bucket Capacity Configuration 334
32.13.6 Prio Shaper Bucket Threshold Configuration 334
32.13.7 Prio Shaper Enable . 334
32.13.8 Prio Shaper Rate Configuration . 335
32.13.9 Queue Shaper Bucket Capacity Configuration 335
32.13.10 Queue Shaper Bucket Threshold Configuration 335
32.13.11 Queue Shaper Enable . 336
32.13.12 Queue Shaper Rate Configuration . 336

32.14 Shared Buffer Memory . 337
32.14.1 Buffer Free . 337
32.14.2 Egress Port Depth . 337
32.14.3 Egress Queue Depth . 337
32.14.4 Minimum Buffer Free . 338
32.14.5 Packet Buffer Status . 338

32.15 Statistics: ACL . 338
32.15.1 Ingress Configurable ACL Match Counter . 338

32.16 Statistics: Debug . 339
32.16.1 EPP PM Drop . 339
32.16.2 IPP PM Drop . 339
32.16.3 PS Error Counter . 339
32.16.4 SP Overflow Drop . 340

9 Packet Architects AB

CONTENTS

32.17 Statistics: EPP Egress Port Drop . 340
32.17.1 Egress Port Disabled Drop . 340
32.17.2 Egress Port Filtering Drop . 340
32.17.3 Unknown Egress Drop . 341

32.18 Statistics: IPP Egress Port Drop . 341
32.18.1 Egress Spanning Tree Drop . 341
32.18.2 Ingress-Egress Packet Filtering Drop . 341
32.18.3 L2 Action Table Per Port Drop . 342
32.18.4 MBSC Drop . 342
32.18.5 Queue Off Drop . 343

32.19 Statistics: IPP Ingress Port Drop . 343
32.19.1 AH Decoder Drop . 343
32.19.2 ARP Decoder Drop . 343
32.19.3 Attack Prevention Drop . 344
32.19.4 BOOTP and DHCP Decoder Drop . 344
32.19.5 CAPWAP Decoder Drop . 344
32.19.6 DNS Decoder Drop . 345
32.19.7 ESP Decoder Drop . 345
32.19.8 Empty Mask Drop . 345
32.19.9 Expired TTL Drop . 346
32.19.10 GRE Decoder Drop . 346
32.19.11 IEEE 802.1X and EAPOL Decoder Drop . 346
32.19.12 IP Checksum Drop . 347
32.19.13 Ingress Configurable ACL Drop . 347
32.19.14 Ingress Packet Filtering Drop . 347
32.19.15 Ingress Spanning Tree Drop: Blocking . 348
32.19.16 Ingress Spanning Tree Drop: Learning . 348
32.19.17 Ingress Spanning Tree Drop: Listen . 348
32.19.18 L2 Action Table Drop . 349
32.19.19 L2 Action Table Port Move Drop . 349
32.19.20 L2 Action Table Special Packet Type Drop 349
32.19.21 L2 Destination Table SA Lookup Drop . 350
32.19.22 L2 IEEE 1588 Decoder Drop . 350
32.19.23 L2 Lookup Drop . 350
32.19.24 L2 Reserved Multicast Address Drop . 351
32.19.25 L4 IEEE 1588 Decoder Drop . 351
32.19.26 LACP Decoder Drop . 351
32.19.27 Maximum Allowed VLAN Drop . 352
32.19.28 Minimum Allowed VLAN Drop . 352
32.19.29 RARP Decoder Drop . 352
32.19.30 Reserved MAC DA Drop . 353
32.19.31 Reserved MAC SA Drop . 353
32.19.32 SCTP Decoder Drop . 353
32.19.33 Source Port Default ACL Action Drop . 354
32.19.34 Unknown Ingress Drop . 354
32.19.35 VLAN Member Drop . 354

32.20 Statistics: Misc . 355
32.20.1 Buffer Overflow Drop . 355
32.20.2 Drain Port Drop . 355
32.20.3 Egress Resource Manager Drop . 355
32.20.4 Flow Classification And Metering Drop . 356
32.20.5 IPP Empty Destination Drop . 356
32.20.6 Ingress Resource Manager Drop . 356
32.20.7 MAC RX Broken Packets . 357
32.20.8 MAC RX Long Packet Drop . 357
32.20.9 MAC RX Short Packet Drop . 357
32.20.10 Re-queue Overflow Drop . 358

10 Packet Architects AB

32.21 Statistics: Packet Datapath . 358
32.21.1 EPP Packet Head Counter . 358
32.21.2 EPP Packet Tail Counter . 358
32.21.3 IPP Packet Head Counter . 359
32.21.4 IPP Packet Tail Counter . 359
32.21.5 PB Packet Head Counter . 359
32.21.6 PB Packet Tail Counter . 360
32.21.7 PS Packet Head Counter . 360
32.21.8 PS Packet Tail Counter . 360

32.22 Statistics: SMON . 361
32.22.1 SMON Set 0 Byte Counter . 361
32.22.2 SMON Set 0 Packet Counter . 361
32.22.3 SMON Set 1 Byte Counter . 361
32.22.4 SMON Set 1 Packet Counter . 362
32.22.5 SMON Set 10 Byte Counter . 362
32.22.6 SMON Set 10 Packet Counter . 362
32.22.7 SMON Set 11 Byte Counter . 363
32.22.8 SMON Set 11 Packet Counter . 363
32.22.9 SMON Set 12 Byte Counter . 363
32.22.10 SMON Set 12 Packet Counter . 364
32.22.11 SMON Set 13 Byte Counter . 364
32.22.12 SMON Set 13 Packet Counter . 364
32.22.13 SMON Set 14 Byte Counter . 365
32.22.14 SMON Set 14 Packet Counter . 365
32.22.15 SMON Set 15 Byte Counter . 365
32.22.16 SMON Set 15 Packet Counter . 366
32.22.17 SMON Set 2 Byte Counter . 366
32.22.18 SMON Set 2 Packet Counter . 366
32.22.19 SMON Set 3 Byte Counter . 367
32.22.20 SMON Set 3 Packet Counter . 367
32.22.21 SMON Set 4 Byte Counter . 367
32.22.22 SMON Set 4 Packet Counter . 368
32.22.23 SMON Set 5 Byte Counter . 368
32.22.24 SMON Set 5 Packet Counter . 368
32.22.25 SMON Set 6 Byte Counter . 369
32.22.26 SMON Set 6 Packet Counter . 369
32.22.27 SMON Set 7 Byte Counter . 369
32.22.28 SMON Set 7 Packet Counter . 370
32.22.29 SMON Set 8 Byte Counter . 370
32.22.30 SMON Set 8 Packet Counter . 370
32.22.31 SMON Set 9 Byte Counter . 371
32.22.32 SMON Set 9 Packet Counter . 371

Index 372

List of Figures

1.1 Switch Core Overview . 15

4.1 Jitter Overview . 32

11

5.1 VLAN Packet Operations . 35

15.1 D-left Function . 106

16.1 Learning and Aging Engine . 110

18.1 General Token Bucket Illustration . 117

19.1 Egress Queue Selection Diagram . 120
19.2 Egress Queue Scheduling example. Here using half the priorities, with two queues mapped

to each. 123

20.1 Packet Initial Color Selection Diagram . 128

21.1 MMP pointer Selection Diagram . 132

24.1 Buffer memory congestion zones . 141

27.1 Location of Statistics Counters . 153

28.1 Packet from CPU with CPU tag . 158
28.2 Packet to CPU with CPU tag . 159

29.1 Core Initialization . 164

31.1 Timing diagram for a single ported memory used in the dual ported memory wrapper. In
this case a concurrent read and write to the same address of a memory wrapper set for one
cycle latency and with the write through attribute set. 190

32.1 Address space usage by tables . 200

List of Tables

1.1 Port Numbering Table . 20

10.1 PTP Header Format . 54
10.2 PTP over 802.3 Ethernet . 54
10.3 PTP over UDP/IPv4 . 54
10.4 PTP over UDP/IPv6 . 55

11.1 Ingress ACL Engine Settings . 61
11.4 Hash Key Example for Ethernet Type . 64
11.5 Hash Key Example for Destiantion MAC Address and Outer LAN VID 64
11.6 Hash Key Example for Simple L2 ACL . 64
11.7 Hash Key Example for L4 ACL . 64
11.10Hash Key Example for Outer VLAN ID . 67
11.11Hash Key Example for Destiantion MAC Address and Outer LAN VID 67
11.12Hash Key Example for Simple L2 ACL . 68
11.13Hash Key Example for L3 IPv4 ACL . 68
11.14Hash Key Example for L4 ACL . 68
11.15Hash Key Example for Openflow Entry . 68
11.18Hash Key Example for IPv4 DA . 71
11.19Hash Key Example for Destiantion MAC Address and Outer LAN VID 71

12

LIST OF TABLES

11.20Hash Key Example for Complex L2 ACL . 72
11.21Hash Key Example for L3 IPv6 ACL . 72
11.22Hash Key Example for L4 ACL . 72
11.23Hash Key Example for Openflow Entry . 72
11.26Hash Key Example for TOS Byte . 75
11.27Hash Key Example for Destiantion MAC Address and Outer LAN VID 75
11.28Hash Key Example for Simple L2 ACL . 76
11.29Hash Key Example for L3 IPv4 ACL . 76
11.30Hash Key Example for L4 ACL . 76
11.31Hash Key Example for Openflow Entry . 76
11.32Actions that will take effect if one or more is set. 77
11.33The lowest numbered takes effect if no priority else the highest numbered with priority set. 78

16.1 Hardware Aging Operations . 113

20.1 Code for Colors . 127

21.1 Rate Configuration Example (Assume tickFreqList = [1MHz, 100KHz, 10KHz, 1KHz, 100Hz])134

27.1 Sequence of Statistics Counters . 153

28.1 From CPU tag format . 157
28.2 To CPU tag format . 159
28.3 Reason for packet sent to CPU . 160

29.1 Clock and Reset interfaces . 164
29.2 Packet RX interface for ports 0-47. N is the ingress interface number. 165
29.3 Packet TX interface for ports 0-47. N is the egress interface number. 166
29.4 Packet RX interface for ports 48-52. N is the ingress interface number. 167
29.5 Packet TX interface for ports 48-52. N is the egress interface number. 168
29.6 The APB interface signals . 168
29.7 ThePFC status and External Pause interfaces, where N is the packet interface number . . 169
29.8 The Debug Read interface . 169
29.9 Debug Selection Map . 184
29.10The Debug Write interface . 184

31.1 The settings for pipeline flops between floorplan blocks 187
31.2 The settings for input and output flops for the floorplan blocks 187
31.3 The memory macros needed for this core.Types: dp=two ports, one read and one write,

running on the same clock. dc=two ports, one read and one write, with separate clocks for
read and write. 189

13 Packet Architects AB

LIST OF TABLES

14 Packet Architects AB

Chapter 1

Overview

This L2 Ethernet Switching Core offers full wire-speed on all 53 ports. Each port has 8 egress queues
which are controlled by a multi-level scheduler.

The core is built around a shared buffer memory architecture capable of simultaneous wire-speed switching
on all ports without head of line blocking. Packets are stored in the shared buffer memory as fixed size
cells of 160 bytes. In total the buffer memory has a capacity of 13466 cells.

Ingress Egress

Register
&

Table
Controller

Ingress
Packet

Processing

3rd Party IPs

Ethernet
1G/10G MAC

Ethernet
40G MAC

Ethernet
100G MAC

Interlaken
100G+ MAC

Ethernet
MAC

Ethernet
MAC

Ethernet
MAC

Ethernet
MAC

TX MACs
3rd Party IPs

Ethernet
1G/10G MAC

Ethernet
40G MAC

Ethernet
100G MAC

Interlaken
100G+ MAC

Ethernet
MAC

Ethernet
 MAC

Ethernet
MAC

Ethernet
MAC

RX MACs

S
erial to P

arall el

P
arallel to S

eri al

Q
ueue

M
anage r

S
chedu ler

Ingress VLAN table
L2 Tables

L2 Multcast Table

Shared
Buffer

Memory

CPU
Interface

CPU
RX Port CPU

TX Port

MC/BC Control

Egress
Packet

Processing

Gray Area Represents IP

Egress VLAN table

Figure 1.1: Switch Core Overview

Configuring tables and registers are done through a Configuration interface. However it is not required
to perform any configuration. The core is ready to receive and forward Ethernet frames once the reset
sequence has been completed.

15

CHAPTER 1. OVERVIEW

1.1 Feature Overview

• 48 ports of 1 Gigabit Ethernet.

• 5 ports of 10 Gigabit Ethernet.

• Full wire-speed on all ports and all Ethernet frame sizes.

• Store and forward shared memory architecture.

• Support for jumbo packets up to 16359 bytes.

• Passes maximum overlap mesh test (RFC2899) excluding the CPU port, for all packet sizes up to
1601 bytes.

• Queue management operations:

– Disable scheduling of packets on a port.

– Disable queuing new packets to a port.

– Allow a port to be drained without sending out packets.

– Allow checking if a port is empty or not.

• Input and output mirroring.

• RSPAN - Remote Switch Port Analyzer

• 8 source MAC address ranges with a number of different actions.

• 8 destination MAC address ranges with a number of different actions.

• 32,768 entry L2 MAC table, hash based 8-way.

• 4,096 entry VLAN table.

• 64 entry synthesized CAM to solve hash collisions.

• 8 entries of the synthesized CAM are fully maskable.

• 1,024 entry L2 multicast table.

• Automatic aging and wire-speed learning of L2 addresses. Does not require any CPU/software
intervention.

• Spanning tree support, ingress and egress checks.

• 64 multiple spanning trees, ingress and egress checks.

• Egress VLAN translation table allowing unique VID-to-VID translation per egress port.

• VLAN priority tag can bypass VLAN processing and be popped on egress.

• Support for masking all look-up keys for L2 MAC table.

• 4432 entries of ingress classification / ACL Lookups. The classification / ACL keys are configurable for
each source port and the fields are selected from a incoming packets L2, L3 or L4 fields. The selection
is described in 11.2 The classificaiton / ACL key can be up to 322 bits long. The classification /
ACL lookup is based on a combination of hash and TCAM. The actions which can be done is listed
below:

– Multiple actions can be assigned to each result. All results can be done in parallel if the user
so wishes.

– Result action can be to drop a packet.

– Result action can be to send a packet to the CPU port.

– Result action can be to send a packet to a specific port.

16 Packet Architects AB

CHAPTER 1. OVERVIEW

– Result action can be to update a counter. There are 256 counters which can be used by the
classification / ACL engine.

– Result action can be to force packet to a specific queue on a egress port.

– Result action can be to assign a meter/market/policer to measure the packet bandwidth.

– Result action can be to assign a color to the packet which is used by the meter/marker/policer.

– Result action can be to force the packet to use a specific VID when doing the VLAN table
lookup.

– Result action can be to do a input mirror on a packet.

– Result action can be to not allow the packet to be learned in L2 MAC table.

• The ingress configurable classification / ACL engine can use the type and code fields from ICMP
frames.

• The ingress configurable classification / ACL engine can use the fields, including the group address,
from IGMP frames.

• 17236480 bits shared packet buffer memory for all ports divided into 13466 cells each of 160 bytes
size

• 8 priority queues per egress port.

• Configurable mapping of egress queue from IP TOS, MPLS exp/tc or VLAN PCP bits.

• 128 ingress admission control entries.

• Deficit Weighted Round Robin Scheduler.

• Bandwidth shapers per port.

• Individual bandwidth shapers for each priority on each port.

• Individual bandwidth shapers for each queue on each port.

• Egress queue resource limiter with 27 sets of configurations.

• Configuration interface for accessing configuration and status registers/tables.

• Multicast/Broadcast storm control with separate token buckets for flooding, broadcast and multicast
packets.

• Multicast/Broadcast storm control is either packet or byte-based, configurable per egress port.

• LLDP frames can optionally be sent to the CPU.

• Attack prevention by TCP flag rules combined with TCP-port and IP address checks, this also
includes IMCP length attack checks.

• IEEE 1588 / PTP support for 1-step and 2-step Ordinary Clock mode. The switch supports transfer
of 8 byte timestamp from receive MAC to software and form software to transmit MAC.

17 Packet Architects AB

CHAPTER 1. OVERVIEW

A Packets Way Through The Core

This section describes the path of a packet through the core from reception to transmission, i.e from the
RX MAC bus to the TX MAC bus. See Figure 1.1.

1. A packet is received on the RX MAC bus with a start of packet signal.

2. Ingress port counters are updated.

3. The asynchronous ingress FIFO synchronizes the incoming data from the data rate of the MAC clock
to the data rate of the core clock.

4. The serial to parallel converter accumulates 160 bytes to build a cell, and the cell is sent to ingress
processing, if a packet consists of more than 160 bytes then a new cell is built. This is repeated until
the end of packet signal is asserted.

5. Ingress processing (see chapter 3.1) determines the destination port (or ports) and egress queue of
the packet. It then decides whether the packet shall be queued or dropped. Many different tables
and registers are used in the process to determine the final portmask and final egress queue for the
packet.

6. If the packet matches a certain traffic type whose bandwidth is monitored by the core, it will be
pointed to one of the 128 meter-marker-droppers to do the rate measurement. The result may drop
the packet or change the packet color.

7. Packets are never modified before they are written into the buffer memory. Rather an ingress to
egress header (I2E header) is appended to the packet. Any modifications are done in the egress
packet processing pipeline, based on the I2E header.

8. Unless the packet is dropped, the packet is written cell-by-cell into the buffer memory with the I2E
header appended.

9. The buffer memory has enough read and write performance for any traffic scenario and will never
cause head of line blocking due to read / write conflicts.

10. Once the entire packet is written to buffer memory, it is placed in one or more egress queues and
made available to the egress scheduler.

11. Each queue is a linked list of pointers to the first cell in each packet linked to the queue. Each egress
queue can link all the packets in the buffer memory even if the buffer memory is filled with only
minimum size packets.

12. Counters of the number of cells per ingress port, per ingress port priority, per egress port and egress
port queue are updated according to where the packet is sent.

13. A port with packets available for transmission, will only transmit a new packet if the port shaper
allows it to.

14. When an instance of the packet is selected for output by the egress scheduler, the queue manager
will read the packet from the buffer memory and send it, cell-by-cell to the egress packet processing.

15. Egress processing (see chapter 3.2) determines how and if the packet shall be sent out and does the
final modifications of the packet. A packet can be re-queued again if it shall be sent out multiple
times, which could be the case if input/output mirroring is used.

16. Once the packet is no longer part of any egress queue, the cells it occupied in the buffer memory are
deallocated so they can be used by other packets.

17. The parallel to serial converter divides the cell into MAC-bus sized chunks.

18. One asynchronous FIFO per egress port synchronizes the outgoing data from the core clock to the
MAC clock.

19. Data is transmitted on the output port.

20. Egress port counters are updated.

18 Packet Architects AB

CHAPTER 1. OVERVIEW

1.2 Port Numbering Table

Table 1.1 shows the port numbering. Register CPU Port determines the port that can serve as a CPU
port, the default CPU port number is 52.

Interface
Number

BW Clock Clock
Frequency

Sync
With
Core
Clock

Port
Number
&
Multicast
Table
Bit

CPU
Port

0 1.0Gbit/s clk mac rx/tx 0 125.00MHz No 0 Optional
1 1.0Gbit/s clk mac rx/tx 1 125.00MHz No 1 Optional
2 1.0Gbit/s clk mac rx/tx 2 125.00MHz No 2 Optional
3 1.0Gbit/s clk mac rx/tx 3 125.00MHz No 3 Optional
4 1.0Gbit/s clk mac rx/tx 4 125.00MHz No 4 Optional
5 1.0Gbit/s clk mac rx/tx 5 125.00MHz No 5 Optional
6 1.0Gbit/s clk mac rx/tx 6 125.00MHz No 6 Optional
7 1.0Gbit/s clk mac rx/tx 7 125.00MHz No 7 Optional
8 1.0Gbit/s clk mac rx/tx 8 125.00MHz No 8 Optional
9 1.0Gbit/s clk mac rx/tx 9 125.00MHz No 9 Optional
10 1.0Gbit/s clk mac rx/tx 10 125.00MHz No 10 Optional
11 1.0Gbit/s clk mac rx/tx 11 125.00MHz No 11 Optional
12 1.0Gbit/s clk mac rx/tx 12 125.00MHz No 12 Optional
13 1.0Gbit/s clk mac rx/tx 13 125.00MHz No 13 Optional
14 1.0Gbit/s clk mac rx/tx 14 125.00MHz No 14 Optional
15 1.0Gbit/s clk mac rx/tx 15 125.00MHz No 15 Optional
16 1.0Gbit/s clk mac rx/tx 16 125.00MHz No 16 Optional
17 1.0Gbit/s clk mac rx/tx 17 125.00MHz No 17 Optional
18 1.0Gbit/s clk mac rx/tx 18 125.00MHz No 18 Optional
19 1.0Gbit/s clk mac rx/tx 19 125.00MHz No 19 Optional
20 1.0Gbit/s clk mac rx/tx 20 125.00MHz No 20 Optional
21 1.0Gbit/s clk mac rx/tx 21 125.00MHz No 21 Optional
22 1.0Gbit/s clk mac rx/tx 22 125.00MHz No 22 Optional
23 1.0Gbit/s clk mac rx/tx 23 125.00MHz No 23 Optional
24 1.0Gbit/s clk mac rx/tx 24 125.00MHz No 24 Optional
25 1.0Gbit/s clk mac rx/tx 25 125.00MHz No 25 Optional
26 1.0Gbit/s clk mac rx/tx 26 125.00MHz No 26 Optional
27 1.0Gbit/s clk mac rx/tx 27 125.00MHz No 27 Optional
28 1.0Gbit/s clk mac rx/tx 28 125.00MHz No 28 Optional
29 1.0Gbit/s clk mac rx/tx 29 125.00MHz No 29 Optional
30 1.0Gbit/s clk mac rx/tx 30 125.00MHz No 30 Optional
31 1.0Gbit/s clk mac rx/tx 31 125.00MHz No 31 Optional
32 1.0Gbit/s clk mac rx/tx 32 125.00MHz No 32 Optional
33 1.0Gbit/s clk mac rx/tx 33 125.00MHz No 33 Optional
34 1.0Gbit/s clk mac rx/tx 34 125.00MHz No 34 Optional
35 1.0Gbit/s clk mac rx/tx 35 125.00MHz No 35 Optional
36 1.0Gbit/s clk mac rx/tx 36 125.00MHz No 36 Optional
37 1.0Gbit/s clk mac rx/tx 37 125.00MHz No 37 Optional
38 1.0Gbit/s clk mac rx/tx 38 125.00MHz No 38 Optional
39 1.0Gbit/s clk mac rx/tx 39 125.00MHz No 39 Optional
40 1.0Gbit/s clk mac rx/tx 40 125.00MHz No 40 Optional
41 1.0Gbit/s clk mac rx/tx 41 125.00MHz No 41 Optional
42 1.0Gbit/s clk mac rx/tx 42 125.00MHz No 42 Optional
43 1.0Gbit/s clk mac rx/tx 43 125.00MHz No 43 Optional

19 Packet Architects AB

CHAPTER 1. OVERVIEW

Interface
Number

BW Clock Clock
Frequency

Sync
With
Core
Clock

Port
Number
&
Multicast
Table
Bit

CPU
Port

44 1.0Gbit/s clk mac rx/tx 44 125.00MHz No 44 Optional
45 1.0Gbit/s clk mac rx/tx 45 125.00MHz No 45 Optional
46 1.0Gbit/s clk mac rx/tx 46 125.00MHz No 46 Optional
47 1.0Gbit/s clk mac rx/tx 47 125.00MHz No 47 Optional
48 10.0Gbit/s clk mac rx/tx 48 312.50MHz No 48 Optional
49 10.0Gbit/s clk mac rx/tx 49 312.50MHz No 49 Optional
50 10.0Gbit/s clk mac rx/tx 50 312.50MHz No 50 Optional
51 10.0Gbit/s clk mac rx/tx 51 312.50MHz No 51 Optional
52 10.0Gbit/s clk mac rx/tx 52 312.50MHz No 52 Default

Table 1.1: Port Numbering Table

20 Packet Architects AB

Chapter 2

Packet Decoder

The packet decoder identifies protocols and extracts information to be used in the packet processing.

2.1 Decoding Sequence

In the following diagram the decoding of the incoming packet header is described. The comparison used to
determine protocol types are described as well as the order they are decoded. The end of decoding process
is denote by an X.

|

+----------+

[Timestamp] |

+----------+

|

+-->[MAC DA == BPDU]---+

+-->[MAC DA == SSTP]---+

+-->[MAC DA == cpuMacAddr]---+

+-->[MAC DA == other]---+

+-->[MAC DA == LLDP.mac1/2/3]---+

+-->[MAC DA == LACP.mac]---+

|

+--------------------------------+

|

[MAC SA]

|

+---[EType==fromCpu]

| [19 byte CPU tag]-----+

| |

+<----------------------------+

|

+<----------------------------+

| |

| 0,1,2 VLAN tags |

+---[EType==C-/S-VLAN TPID]-+

| [2 byte VLAN TCI]

| |

+-->[EType==LLDP.eth]--> X

+-->[EType==IEEE 1722 AVTP.eth]--> X

+-->[EType==ARP.eth]--> X

+-->[EType==RARP.eth]--> X

+-->[EType==ieee1588EthType.eth]--> X

+-->[EType==ieee8021xEthType.eth]--> X

21

CHAPTER 2. PACKET DECODER

+-->[EType==PTP]--> X

+---[EType==MPLS]

| [MPLS tag 1]--> X

|

+-->[EType==unknown]--> X

|

+-->[EType==PPPoE]

| [PPPoE header]

| |

| +-->[EType!=IPv6 or EType !=IPv4]--> X

| +-->[EType==IPv6]-----+

| +-->[EType==IPv4] |

| | |

+-->[EType==IPv6]-----------+

| | |

+-->[EType==IPv4]----+ |

| | |

v v v

[IPv4 Header] [IPv6 Header]

| |

+-----------------+-----------+

|

+-->[TCP Header]--> X

+-->[L4Proto == ahHeader.l4Proto]--> X

+-->[L4Proto == espHeader.l4Proto]--> X

+-->[L4Proto == gre.l4Proto]--> X

+-->[L4Proto == sctp.l4Proto]--> X

+-->[IGMP Header]--> X

+-->[ICMP Header]--> X

+-->[UDP Header]----+

|

+--+

|

+-->[UDP Dest Port == bootp.udp1/udp2] --> X

+-->[UDP Dest Port == capwap.udp1/udp2] --> X

+-->[UDP Dest Port == gre.udp1/udp2] --> X

+-->[UDP Dest Port == Unknown] --> X

The packet decoding is done according to the figure above. The packet decoding steps are described
below.

1. A packet arrives at the ingress packet processing pipeline.

2. A packet can optionally have a timestamp prepended to the Ethernet frame by the MAC. This is
configured per source port in Ingress Ports With Timestamp.

3. The destination MAC address is extracted and compared.

(a) If the address matches the BPDU multicast address (01:80:C2:00:00:00) the packet can be
sent to the CPU if enabled in Send to CPU. There is no decoding done apart from the MAC
address comparison. BPDU frames are usually 802.3 encapsulated with a 802.2 LLC header.
This decoding is not done by the switch. Note that packets that match the LLDP criteria
described below will not be considered BPDU packets.

(b) If the address matches the SSTP (Shared Spanning Tree Protocol) multicast address (01:00:0C:CC:CC:CD)
the packet can be sent to the CPU if enabled in Send to CPU. There is no decoding done
apart from the MAC address comparison.

22 Packet Architects AB

CHAPTER 2. PACKET DECODER

(c) If the address matches the configurable cpuMacAddr and this feature is enabled then the
packet will be sent to the CPU port.

(d) If the address matches one of the mac1/mac2/mac3 addresses in the LLDP Configuration
the packet will subject to further LLDP decoding.

(e) If the DA MAC is equal to the register LACP Packet Decoder Options field mac then the
field source port bit in the toCpu determines if the packet shall be sent directly to the CPU,
bypassing normal forwarding process. The source port bit in the field drop determines if the
packet shall be dropped.

4. The source MAC address is extracted from the packet.

5. The Ethernet type is extracted from the packet and is then compared to known types.

(a) LLDP
If the MAC DA address is equal to any of the LLDP Configuration mac1/mac2/mac3 ad-
dresses and the Ethernet Type is equal to the register LLDP Configuration field eth then the
field portmask determines if the packet shall be sent directly to the CPU, bypassing normal
forwarding process. Default is to forward LLDP frames to the CPU port. A packet that matches
the LLDP critera will not be considered a BPDU packet even if it matches the BPDU multicast
address.

(b) ARP
If the Ethernet Type field is equal to the ARP Packet Decoder Options field eth then the
field source port bit in the toCpu determines if the packet shall be sent directly to the CPU,
bypassing normal forwarding process. The source port bit in the field drop determines if the
packet shall be dropped.

(c) RARP
If the Ethernet Type field is equal to the register RARP Packet Decoder Options field eth
then the field source port bit in the toCpu determines if the packet shall be sent directly to the
CPU, bypassing normal forwarding process. The source port bit in the field drop determines if
the packet shall be dropped.

(d) 802.1X and EAPOL Packets
If the Ethernet Type field is equal to register IEEE 802.1X and EAPOL Packet Decoder
Options field eth then the field source port bit in the toCpu determines if the packet shall be
sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field
drop determines if the packet shall be dropped. The drop counter is located in IEEE 802.1X
and EAPOL Decoder Drop.

(e) IEEE 1588 L2 Ethernet Type
If the Ethernet Type field is equal to register IEEE 1588 L2 Packet Decoder Options field
eth then the field source port bit in the toCpu determines if the packet shall be sent directly to
the CPU, bypassing normal forwarding process. The source port bit in the field drop determines
if the packet shall be dropped.

(f) PTP
When identified as a PTP/1588 packet by the EtherType and if the packet is sent to the CPU
with a To CPU Tag then the ptp bit will be set.

(g) VLAN Tags
There are a number of fixed VLAN types that are identified as well as configurable types. The
VLAN processing will use the VLAN tags that decoding has identified and ignore intermediate
tags of other types.

i. Customer VLAN Type - 0x8100

ii. Service VLAN Tag - 0x88A8

iii. Configurable VLAN Type setup Ingress Ethernet Type for VLAN tag.

23 Packet Architects AB

CHAPTER 2. PACKET DECODER

When using the Configurable Customer/Service VLAN Type the egress pipeline needs to be
setup with the same values if there are actions configured that pushes new VLAN tags to the
packet. This is setup in register Egress Ethernet Type for VLAN tag.

(h) MPLS.
One MPLS tag is decoded. No other L3 decoding will be done after this.

(i) From CPU Tags
Packets from CPU will use a Ethernet type value of 0x9988.The From CPU Tag is further
described in Chapter 28.

(j) IPv4 or IPv6.
If the type identifies these protocols (potentially also after a PPPoE header) the following IPv4
or IPv6 headers are decoded. IPv4 packet with wrong header checksum can be accepted or
dropped according to the Check IPv4 Header Checksum register. If the L4 protocol is TCP
or UDP these headers are also decoded.

(k) L4 Protocol.
If the packet is either a IPv4 or IPv6 and if the L4 protocol is either UDP or TCP then the
source port and destination port fields will be extracted.

i. ICMP header
The ICMP type along with the code extracted.

ii. IGMP header
The IGMP type along with the code and IPv4 group address is extracted.

iii. AH Header
If the next protocol field in IPv4 or IPv6 is equal to the register AH Header Packet
Decoder Options field l4Proto then the field source port bit in the toCpu determines if
the packet shall be sent directly to the CPU, bypassing normal forwarding process. The
source port bit in the field drop determines if the packet shall be dropped.

iv. ESP Header
If the next protocol field in IPv4 or IPv6 is equal to the register ESP Header Packet
Decoder Options field l4Proto then the field source port bit in the toCpu determines if
the packet shall be sent directly to the CPU, bypassing normal forwarding process. The
source port bit in the field drop determines if the packet shall be dropped.

v. GRE
If the next protocol field in IPv4 or IPv6 is equal to the register GRE Packet Decoder
Options field l4Proto then the field source port bit in the toCpu determines if the packet
shall be sent directly to the CPU, bypassing normal forwarding process. The source port
bit in the field drop determines if the packet shall be dropped.

vi. SCTP
If the next protocol field in IPv4 or IPv6 is equal to the register SCTP Packet Decoder
Options field l4Proto then the field source port bit in the toCpu determines if the packet
shall be sent directly to the CPU, bypassing normal forwarding process. The source port
bit in the field drop determines if the packet shall be dropped.

(l) UDP or TCP Source or Destination Port Checks

i. GRE
If the Destination Port in UDP is equal to the GRE Packet Decoder Options field udp1
or field udp2 then the field source port bit in the toCpu determines if the packet shall be
sent directly to the CPU, bypassing normal forwarding process. The source port bit in the
field drop determines if the packet shall be dropped.

ii. DNS
If the Destination Port in UDP or TCP is equal to the DNS Packet Decoder Options
field l4Port then the field source port bit in the toCpu determines if the packet shall be

24 Packet Architects AB

CHAPTER 2. PACKET DECODER

sent directly to the CPU, bypassing normal forwarding process. The source port bit in the
field drop determines if the packet shall be dropped.

iii. BOOTP or DHCP
If the Destination Port in UDP is equal to the register BOOTP and DHCP Packet
Decoder Options field udp1 or field udp2 then the field source port bit in the toCpu
determines if the packet shall be sent directly to the CPU, bypassing normal forwarding
process. The source port bit in the field drop determines if the packet shall be dropped.

iv. CAPWAP
If the Destination Port in UDP is equal to the register CAPWAP Packet Decoder Options
field udp1 or field udp2 then the field source port bit in the toCpu determines if the packet
shall be sent directly to the CPU, bypassing normal forwarding process. The source port
bit in the field drop determines if the packet shall be dropped.

v. IEEE 1588 L4
If the Destination Port, and IPv4 or IPv6 and the UDP is equal to the register IEEE 1588
L4 Packet Decoder Options then the field source port bit in the toCpu determines if the
packet shall be sent directly to the CPU, bypassing normal forwarding process. The source
port bit in the field drop determines if the packet shall be dropped.

(m) Unknown.
After an unknown Ethernet type no further decoding is done.

25 Packet Architects AB

CHAPTER 2. PACKET DECODER

26 Packet Architects AB

Chapter 3

Packet Processing

3.1 Ingress Packet Processing

The ingress packet processing is done as soon as the packet enters the switch. The packet is not sent to
the buffer memory until the ingress packet processing is done.

1. Source Port to Link Aggregate
Source port is mapped to a link aggregate through the Link Aggregation Membership table. From
this point all references to source ports are actually link aggregate numbers. For details see the Link
Aggregation chapter.

2. Packet Decoding
The packet headers are decoded and data extracted. For details see the Packet Decoding chapter.

3. Destination MAC Address Range Classification
The destination MAC address is compared with Reserved Destination MAC Address Range table
to determine if it should be dropped, sent to CPU or if priority should be forced.

4. Source MAC Address Range Classification
The destination MAC address is compared with Reserved Source MAC Address Range table to
determine if it should be dropped, sent to CPU or if priority should be forced.

5. SMON
If the packets source port and the VID for the outermost VLAN matches an SMON counter then
that counter will be updated (see the Statistics chapter).

6. Ingress Port Packet Type Filter
The ingress packet type filter, setup through Ingress Port Packet Type Filter per source port,
determines if the packet will be dropped or be processed further. This is based on protocol type and
type of VLAN. See the VLAN and Packet Type Filtering chapter.

7. Configurable ACL
The incoming packet is classified on a configurable selection of L2, L3 and L4 fields. The ACL lookup
is a d-left hash search, described in Dleft Lookup. There are numerous actions that can be applied
when a packet matches an ACL entry. For details see the Configurable ACL Engine section.

8. Ingress Spanning Tree
The ingress spanning tree state of the source port (from the Source Port Table) is checked to
determine if packet processing should continue. STP is further described in the Spanning Tree
chapter.

9. Ingress VLAN Processing
VLAN processing consists of two parts. Determining the VLAN membership and performing VLAN
header modifications.

The VLAN membership is determined from the assigned ingress VID. See the Assignment of Ingress
VID section. This will then be used to index into the VLAN Table to determine, among other things,

27

CHAPTER 3. PACKET PROCESSING

VLAN port membership , MSTP and Global ID used in L2 lookups.

10. Ingress MSTP
The VLAN membership determines which MSTP the packet belongs to by pointing into the Ingress
Multiple Spanning Tree State table. The state of the source port within this MSTP is checked to
determine if packet processing should continue. MSTP is further described in the Spanning Tree
chapter.

11. TTL routing check and drop
TTL check is enabled when the packet has an ACL action to decrease the TTL. Expired TTL to
CPU determines if the packet with expired TTL shall be dropped or sent to the CPU port.

12. IPv4 checksum check and drop.
For IPv4 packets calculate the checksum value and optionally drop the packet with wrong checksum
value. For a routed IPv4 packet the check and drop is always performed.

13. Attack prevention drop
TCP/UDP packets are checked by TCP/UDP Flag Rules to prevent security or DOS attacks.

14. L2 Switching
The destination MAC address is searched for in the L2 DA Hash Lookup Table. If the address is
found the corresponding entry in the L2 Destination Table will return a single destination port or
multiple egress ports (if the destination address points to a multicast entry). The status in the L2
Aging Table is also updated. If the destination address is not found then the packet will be flooded
to all ports that are members of the packets VLAN. See chapter L2 Switching for details.

15. L2 Action Table Lookup
The L2 Action Table Lookups provides a extra level of controll over what shall be done with the L2
packets. It can be used to archive 802.1X compliance and be used to secure the switch. The function-
ality has a enable bit in the Source Port Table field enableL2ActionTable. Depending on the result
from both the L2 SA Lookup , L2 DA Lookup and status on source port (l2ActionTablePortState)
and destination port(s) L2 Action Table Egress Port State a address is formed to read out L2
Action Tables. The L2 Action Table is based on the packets destiantion ports, while L2 Action
Table Source Port is based on the packets incoming source port. If the packet is going to no egress
port (portmask==0) then none of the L2 Action Table actions will be done while the L2 Action
Table Source Port is always carried out (When function is enabled).

16. Egress Spanning Tree
When the destination port(s) are known, the spanning tree state for the destination ports are checked
in Egress Spanning Tree State register.

17. Egress MSTP
The MSPT state for the destination ports are checked in the Egress Multiple Spanning Tree State
register. The MSTP id, determined above, is used to index the table.

18. Learning Lookup
The source MAC address is searched in the L2 DA Hash Lookup Table. If the address is not found
or it has moved to a different port then the Learning Engine will update the tables unless the packet
was marked to be dropped. See the Learning and Aging chapter for details.

19. Ingress/Egress Port Packet Type Filter
As the packet is ready to be queued, the Ingress Egress Port Packet Type Filter is applied for each
egress port where the the packet is to be queued. See chapter VLAN and Packet Type Filtering.

20. Link Aggregation
The destination ports are now mapped to physical ports using a hash function on the packet headers.
The hash index selects which of the physical member ports of this link aggregate that the packet
should be sent to. See the Link Aggregation chapter.

21. Multicast Broadcast Storm Control
Multicast packets that are destined for physical ports that have exceeded the MBSC limits will be
dropped at this point. See chapter Multicast Broadcast Storm Control.

28 Packet Architects AB

CHAPTER 3. PACKET PROCESSING

22. Input Mirroring
If the source port is setup to be input mirrored the mirror port is now added to the list of destination
ports. A copy of the input packet, without modifications, will be transmitted on the selected mirror
port.

23. Determine Egress Queue Priority
Egress queues are assigned to packets based on their L2/L3 protocols or classification results. See
the Determine Egress Queue Priority section.

24. Packet Initial Coloring
Initial colors are assigned to packets based on their L2/L3 protocols or classification results to
represent the drop precedence. See the Ingress Packet Initial Coloring section.

25. Queue Management
If queue management has turned off queuing to a port the packet will be dropped at this point. See
section Queue Management for details.

26. Drop Statistics
If the preceding processing has not set any destination ports then the packet is dropped and the
Empty Mask Drop counter is incremented.

27. Ingress Admission Control
Packets are grouped into traffic groups based on source port numbers and packet headers, and the
bandwidth of each traffic group is measured. If a traffic group exceeds the configured bandwidth or
burst size, the initial packet color can be remarked or the packet can be dropped. See the Ingress
Admission Control section. While the groupping process is through sequence of ingress packet
processing steps, the metering process is after all other ingress packet processing are done and before
the enqueuing of the packet.

3.2 Egress Packet Processing

After ingress packet processing the packet is stored in the packet buffer memory. The egress packet
processing is done when the packet is scheduled for transmission. A single packet can be sent out in
multiple copies, for example due to broadcast or mirroring. If the copies are not identical, or multiple
copies should be transmitted on the same port, then the packet will be re-queued. This means that it
will be re-inserted into the queue engine, where it will again be selected for output and passed once more
through the egress packet processing.

1. Output Mirroring
If output mirroring is enabled for the egress port then the packet is re-queued, so that a copy of
the outgoing packet will be transmitted on the output mirror destination port. See the Mirroring
chapter.

2. Egress Port VLAN
A VLAN header operation can be performed based on the physical output port. See the VLAN
Processing chapter.

3. Egress Port Packet Type Filter
The egress packet type filter, setup through Egress Port Configuration per egress port, determines
if the packet will be dropped or be allowed to be transmitted. See the VLAN and Packet Type
Filtering chapter.

4. Egress VLAN Translation
Potentially replace the outgoing VID and Ethernet Type on a specific port with a specific VID. Uses
a Dleft lookup in Egress VLAN Translation Small Table, Egress VLAN Translation Large Table
and Egress VLAN Translation TCAM.

5. RSPAN
Perform a push or pop of an RSPAN tag if enabled in Egress RSPAN Configuration.

6. Reassemble Packet Headers
The final step in the egress processing is to reassembly the outgoing packet header.

29 Packet Architects AB

CHAPTER 3. PACKET PROCESSING

30 Packet Architects AB

Chapter 4

Latency and Jitter

This chapter is meant as an introduction to the causes of latency and jitter in the core. It gives some
numbers, but mostly points out the general principles.

The switch has a fixed minimal latency, the bulk of which comes from the ingress and egress packet
processing, the store-and-forward operation, and the dataflow registers between design units.

4.1 Latency

The major contributors to latency:

1. The Serial to Parallel converter (SP) gathers the data chunks from the MAC into wider cells.

2. The IPP has a fixed latency of 15 core clock cycles.

3. The queue engine stores the entire packet in buffer memory before adding it to the queues.

4. The EPP has a fixed latency of 2 core clock cycles.

5. Packet modifications that decrease the packet size (for example removing a VLAN) will cause a
packet to be delayed one scheduling slot for certain packet sizes.

4.2 Jitter

There are tree places (t1-t3) in the core where latency jitter can be introduced. See Figure 4.1 on
page 32.

t1 In the SP the ports are visited in a fixed order, thus introducing a jitter the size of the port visitation
period. There is also an asyncronous FIFO between the port and the core clock regions, adding one
clock period (of the slowest clock) of jitter.

t2 The egress scheduler visits the ports in a fixed order, introducing a jitter the size of the port visitation
period.

t3 The asyncronous FIFO between the core and port clock regions adds one core clock period (of the
slowest clock) of jitter.

Note, though, that the core is dimensioned to handle even the worst case jitter without causing packet
drops or increased IFG.

31

CHAPTER 4. LATENCY AND JITTER

Register
&

Table
Controller

Ingress
Packet

Processing
(PAC)

Egress
Packet

Processing
(PAC)

S
erial to P

arallel

P
arallel to S

erial

Q
ueue

M
anager

S
cheduler

Ingress
Tables

Egress
Tables

Shared
Buffer

Memory

t1
t2

t3

Figure 4.1: Jitter Overview

32 Packet Architects AB

Chapter 5

VLAN Processing

5.1 Assignment of Ingress VID

All packets entering the switch will be assigned an ingress VID even if the incoming packet doesn’t have
a VLAN header. This is the VID used to lookup in the VLAN Table.

The ingress VID assignment is processed in several steps. The initial assignment is controlled per source
port by the vlanAssignment in the Source Port Table and then it can be updated in a number of ways
ranging from L2 to L4 protocols.

5.1.1 VID Assignment from Packet Fields

Ingress VID can be assigned from certain packet fields, other than the packets incoming VID.

There exists a number of these field tables listed below:

• On the L2 MAC layer in Ingress VID MAC Range Search Data and its result table Ingress VID
MAC Range Assignment Answer, the search data can be either on source MAC or destination
MAC ranges.

• On the Outer VID in Ingress VID Outer VID Range Search Data and its result table Ingress
VID Outer VID Range Assignment Answer. If the packet has no outer VID then this is skipped.
There exists options if the packets VID shall be matched depending on if this is a S-tag or C-tag.

• On the Inner VID in Ingress VID Inner VID Range Search Data and its result table Ingress VID
Inner VID Range Assignment Answer. If the packet has no inner VID then this is skipped. There
exists options if the packets VID shall be matched depending on if this is a S-tag or C-tag.

• On the Ethernet Type which is following the innermost VLAN tag. The setup is in Ingress VID
Ethernet Type Range Search Data and its result table Ingress VID Ethernet Type Range
Assignment Answer.

VID Assignment Search Order

If there are matches in multiple tables then the ”order” field determines which result to use. The result
with the highest order value will be used. The search order within a table is not affected by the order
field.

The search is carried out as follows:

1. The MAC ranges, defined in Ingress VID MAC Range Search Data

2. The Outer VID ranges, defined in Ingress VID Outer VID Range Search Data

3. The Inner VID ranges, defined in Ingress VID Inner VID Range Search Data

33

CHAPTER 5. VLAN PROCESSING

4. The Ethernet Type ranges, defined in Ingress VID Ethernet Type Range Search Data

5.1.2 Force Ingress VID from Ingress Configurable ACL

The ACL engine has an option to override the ingress VID assigned above. If the forceVidValid field in
the Ingress Configurable ACL N Small Table is set to 1, the corresponding forceVid field will be used
as the new ingress VID value. The same applies to the Ingress Configurable ACL N Large Table
and Ingress Configurable ACL N TCAM Answer tables. The detailed L2 ACL match and action are
described in the Configurable ACL Engine section.

5.2 VLAN membership

All packets entering the switch will be member of a VLAN, either assigned from the incoming VLAN
headers or through a default configuration described below.

The VLAN membership defines which ports that are part of a VLAN. Packets belonging to a VLAN can
only enter on the ports that are member of the VLAN.

The L2 switching can only send out packet on the ports that are members of the VLAN, including broadcast,
multicast and flooding.

The VLAN membership also assigns a global identifier (GID) to a packet which is used during L2 lookup
to allow multiple VLANs to share the same L2 tables.

The VLAN membership also determines which multiple spanning tree (MSTP) a packet is part.

The egress queue priority can also be assigned from the VLAN membership (see chapter 19.1).

5.3 VLAN operations

There are a number of operations that can be performed on the packet’s VLAN headers such as push/pop
etc. Multiple operations can be performed in sequence such that the resulting VLAN header stack from
one operation becomes the input to the following operation. However the content of the VLAN headers
do not come from previous VLAN operations, they are always created from the original incoming packet
or from tables.

For reference here is the 802.1Q VLAN header:

+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+
| | TCI |
| TPID +−−−−−+−−−−−+−−−−−−−−−−+
| | PCP | DEI | VID |
+−−−−−−−−−−−−−+−−−−−+−−−−−+−−−−−−−−−−+

When referring to outermost and innermost VLAN header, outermost means the first VLAN header that
the packet decoding has identified as a VLAN header. Innermost means the second VLAN header as
identified by the packet decoder.

The VLAN operations that can be performed are:

• Pop - The outermost VLAN header in the packet is removed.

• Push - A new VLAN header is added to the packet before any previous VLANs. It will become the
new outer VLAN. The selection of each of the VLAN fields such as TPID, VID, PCP and DEI/CFI
are configurable. These fields can either come from existing VLAN headers in the original incoming
packet or from tables.

• Swap/Replace - The outermost VLAN header in the packet is replaced. The selection of each of the
VLAN fields such as TPID, VID, PCP and DEI/CFI are configurable. These fields can either come
from existing VLAN headers in the original incoming packet or from tables.

34 Packet Architects AB

CHAPTER 5. VLAN PROCESSING

• Penultimate Pop - All VLAN headers (up to as many as supported by the packet decoder) are
removed from the packet.

Figure 5.1 shows the effect of one of these operations on a packet.

DA SA VLAN Data CRC

Pop operation

DA SA Data CRC

Original Packet:

After Operation Packet:

DA SA VLAN Data CRC

Push operation

DA SA Data CRC
Original Packet:

After Operation Packet:

DA SA VLAN Data CRC

Swap operation

Original Packet:

After Operation Packet:

DA SA VLAN Data CRC

DA SA

VLAN

Data CRC

Penultimate Pop operation

Original Packet:

After Operation Packet:

DA SA VLAN Data CRC

Figure 5.1: VLAN Packet Operations

5.3.1 Default VLAN Header

When a packet enters without a VLAN header an internal default VLAN header will be created. The
internal header will have VID, CFI and PCP from Source Port Table fields defaultVid, defaultCfiDei,
defaultPcp.

The default VLAN header is only used in VLAN operations that selects data from the VLAN packet
header.

5.3.2 Source Port VLAN Operation

A VLAN operation to be performed (e.g. push, pop, swap) can be selected by the vlanSingleOp field in
Source Port Table.

35 Packet Architects AB

CHAPTER 5. VLAN PROCESSING

5.3.3 Configurable ACL VLAN Swap Operation

The Ingress Configurable ACL N Small Table , Ingress Configurable ACL N Large Table and
Ingress Configurable ACL N TCAM Answer tables provides three fields updateVid, updatePcp and
updateCfiDei to perform a VLAN swap operation. The VLAN type can also be changed using the upda-
teEType. VLAN push and pop operations are not supported in this ACL.

5.3.4 VLAN Table Operation

The VLAN Table defines the VLAN port membership, which GID (Global Identifier) to use in L2 lookups,
the MSPT to use and a VLAN operation to be performed (e.g. push, pop or swap).

5.3.5 Egress Port VLAN Operation

A VLAN operation to be performed (e.g. push, pop, swap) can be selected by the vlanSingleOp field in
Egress Port Configuration.

A pop operation is done on packets that match a specific VID if enablePriorityTag is set in Source Port
Table.

5.3.6 Egress Vlan Translation

This operation which is located in the egress path allows a replacement of the outermost VLAN Identifier in
the packet. The egress port, the outermost VID of the packet after all VLAN operations and the outermost
VID type (C or S tag) creates a lookup key to be used in a Dleft lookup using the Egress VLAN
Translation Small Table, Egress VLAN Translation Large Table and Egress VLAN Translation
TCAM Tables. If multiple hits the Egress VLAN Translation Selection can be used to determine
which result to select. It is possible to mask the search data using Egress VLAN Translation Search
Mask..

5.3.7 Priority Tagged Packets

Priority tagged packets are packets that have a VLAN tag with VLAN ID equal to 0. The purpose of these
are to extract the PCP bits and use as priority.

The priority extraction can be done as described in 19.1 Determine Egress Queue section.

The priority tag can be ignored in all VLAN processing and finally removed on the egress if enablePriori-
tyTag is set in Source Port Table. Which VLAN ID that triggers this is configured in priorityVid

The priority extraction is not dependent on the enablePriorityTag setting.

5.3.8 VLAN Operation Order

All VLAN operations are performed in sequence on a packet. They follow the order as:

1. One of the four VLAN operations from:

• Source Port Table VLAN operation.

2. One VLAN swap operation from:

• updateVid, updatePcp, updateCfiDei or updateEType in the Configurable ACL Engine.

3. One of the four VLAN operations from:

• VLAN Table VLAN operation.

4. One of the four VLAN operations from:

• Egress Port Configuration VLAN operation.

36 Packet Architects AB

CHAPTER 5. VLAN PROCESSING

The input to the first VLAN operation is the incoming packet. The packet decoder identifies the position of
the VLAN headers in the packet and this information is used for the subsequent VLAN operations.

The output from one VLAN operation is input to the next VLAN operation. For example if the first VLAN
operation is a push and the second is a swap then the effect will be that the pushed header is replaced by
the swap.

If a VLAN operation needs a VLAN header in the packet, i.e. a swap or a pop, and there is no VLAN
header in the packet then the operation will not be performed.

5.3.9 VLAN Operation Examples

This process is first described informally with a few examples but to fully specify the behavior it is also
described as pseudo code.

Here are examples of sequences of VLAN operations performed on packets with mixed VLANs and custom
tags. The incoming packet headers, sequence of VLAN operations and outgoing packet header are briefly
described.

’V1’..’V2’ are VLAN tags in original packet

’new V1’..’new V2’ are VLAN tags that have been created by the VLAN operations

Example 1)
incoming packet:

[DA][SA][V1]

VLAN operations: 1. swap new V1

outgoing packet:

[DA/SA][new V1]

Example 2)
incoming packet:

[DA][SA][V1]

VLAN operations: 1. push new V1

outgoing packet:

[DA/SA][new V1][V1]

Example 3)
incoming packet:

[DA][SA][V1][V2]

VLAN operations: 1. push new V1

outgoing packet:

[DA/SA][new V1][V1][V2]

Example 4)
incoming packet:

[DA][SA][V1][V2]

VLAN operations: 1. pop

outgoing packet:

[DA/SA][V2]

37 Packet Architects AB

CHAPTER 5. VLAN PROCESSING

Example 5)
incoming packet:

[DA][SA][V1][V2]

VLAN operations: 1. pop

VLAN operations: 2. swap new V1

VLAN operations: 3. push new V2

outgoing packet:

[DA/SA][new V2][new V1]

5.3.10 VLAN Reassembly

The reassembly of the VLAN headers uses data from the packet decoding together with data from the
VLAN operations to create the new packet headers.

The following is Python code that exactly models the reassembly operation. The process starts when the
L3 and payload in the outgoing packet has been reassembled but before any VLAN or other L2 tags have
been added.

The code uses the same incoming packet and VLAN operations as Example 5) in the previous section to
illustrate the data structure.

The design supports this number of VLAN tags in the ingress packet.

nr_of_ingress_vlans = 2

Packet decoding results in a list of all VLAN tags from the ingress packet.

pkt_vlan_tags = [’V2’, ’V1’]

Number of VLAN tags that will be used from the original packet. Before any

VLAN operations this equals number of incoming VLANs, it could be decreased by

swap or pop but can’t be increased. When nr_of_new_vlans==0, pop or swap will

decrement it. At any time popAll will set it to 0.

nr_of_pkt_vlans = 2

Number of new VLAN tags to be used in the reassembly. Push and swap operations

will increment this and at the same time the new VLAN to the end of new_vlans.

popAll will set it to 0.

nr_of_new_vlans = 0

New VLAN tags to be used in the reassembly.

new_vlans = []

After all VLAN operation sequences: pop, swap new V1, push new V2, VLAN

reassembly collects needed information to get started.

nr_of_pkt_vlans = 0

nr_of_new_vlans = 2

pkt_vlan_tags = [’V2’, ’V1’]

new_vlan_tags = [’new V1’, ’new V2’]

At the starting point of re-assembling the VLAN tags the egress packet contains the

updated packet after the original tags, i.e. L3/L4/payload.

egress_pkt = [’payload’]

Reassemble the tags with updated VLANs.

while nr_of_pkt_vlans > 0: # Egress packet has VLAN tags from ingress

38 Packet Architects AB

CHAPTER 5. VLAN PROCESSING

Pop inner most tag from pkt_vlan_tags and insert it first in the egress_pkt

egress_pkt.insert(0,pkt_vlan_tags[0])

pkt_vlan_tags = pkt_vlan_tags[1:]

nr_of_pkt_vlans -= 1

while nr_of_new_vlans > 0: # Egress packet has new VLAN tags

Insert a new VLAN first in the egress_pkt from internal VLAN stack.

egress_pkt.insert(0,new_vlan_tags[0])

new_vlan_tags = new_vlan_tags[1:]

nr_of_new_vlans -= 1

Now egress_pkt contains all updated VLAN headers and tags. After this new DA/SA

and other new tags like to_cpu_tag is added to get the final egress packet.

39 Packet Architects AB

CHAPTER 5. VLAN PROCESSING

40 Packet Architects AB

Chapter 6

Switching

Most packets will be subjected to a L2 MAC destination address lookup to determine the destination egress
port (or ports). These are the exceptions:

• Packet decoder determines that this protocol should be send to the CPU. See Packet Decoder
chapter.

• A classification unit action dropped the packet, sent the packet to the CPU, or sent the packet to a
specific egress port. See Classification chapter.

• The packet has a From CPU tag which allows the normal packet forwarding process to be bypassed.
See Packet From CPU Port section.

• The packet is dropped earlier in the packet processing chain. See chapter Ingress Packet Processing
for details.

6.1 L2 Destination Lookup

If none of the above applies a L2 MAC address destination lookup will be performed in the following
manner:

• The GID is given by the gid field from the VLAN Table lookup. See the VLAN Processing chapter.

• The concatenation {GID,DA MAC} is AND:ed with the global masks. The global mask for the DA
MAC lookup is set up in the Mask MAC Table Lookup register.

• The hash is calculated with {GID,DA MAC} as key (see MAC Table Hashing).

• The hash is used as index into the L2 DA Hash Lookup Table. 8 entries are read out in parallel,
each corresponding to a hash bucket.

• The bucket entries are all compared with the {GID,DA MAC} key and if one entry is equal to the
key that entry is considered a match.

• The {GID, DA MAC} key is also compared with all the entries in the L2 Lookup Collision Table
CAM. The CAM is searched starting from entry 0 and the first matching entry is treated as a match.
Any following matching entries are ignored.

• Some entries in L2 Lookup Collision Table has per-bit masks. These are set up in the L2 Lookup
Collision Table Masks registers. Using the mask an entry can define with single-bit granularity
what shall be included in the comparison. A zero in the mask means that the corresponding bit shall
be ignored, while a one means that the bit shall be compared.

• An entry in the L2 DA Hash Lookup Table is only compared if the corresponding valid bits are set.
The valid bits are located in the L2 Aging Table and the L2 Aging Status Shadow Table. If all
the valid bits are not set then this will result in a non-match even if the {destination MAC , GID} in
the L2 DA Hash Lookup Table entry matches. For the collision CAM the valid bits are located in
the L2 Aging Collision Table and L2 Aging Collision Shadow Table.

41

CHAPTER 6. SWITCHING

• If both CAM and L2 hash tables return a match, the result from the CAM table will take precedence.

• Once the final entry has been determined, the result is read out from the L2 Destination Table. It
has enough entries to fit the destinations for both the L2 hash table and the L2 CAM table. The L2
CAM table entries are located after the L2 hash table entries.

• If the pktDrop field in the L2 Destination Table is set the packet will be dropped.

• If the destination shall be a single port (i.e. it is not to be multicasted) then the uc field shall be set
to one and the destPort or mcAddr field shall contain the egress port number.

• If a packet shall be sent to multiple output ports then the uc field shall be set to zero and the
destPort or mcAddr field shall contain a pointer to a entry in the L2 Multicast Table. The entry
in the L2 Multicast Table contains a portmask where bit 0 represents port 0, bit 1 port 1, and so
on. A bit set to one results in the corresponding port receiving a packet.

• The DA MAC address ff:ff:ff:ff:ff:ff is the broadcast address, meaning that all the member ports in
the VLAN (configured in the VLAN Table vlanPortMask field) will receive a packet.

• Normally the source port is excluded from the destination portmask. If that results in an empty
destination port mask then the packet is dropped and counted in the L2 Lookup Drop register.

This behaviour can be changed using the Hairpin Enable register, allowing a packet to be switched
to the same port it came in.

• Ports that are not members of the VLAN will be removed from the portmask. If there are no ports
left in the port mask then the packet is dropped and counted in the L2 Lookup Drop register.

• If there is no hit in either the L2 DA Hash Lookup Table or the L2 Lookup Collision Table, then
the packet will be flooded, i.e. sent out to all ports in the VLAN. This means that the port mask
for the outgoing packet will be taken from the vlanPortMask field in the VLAN Table.

• If the Flooding Action Send to Port is enabled on this source port (using enable set to one) and
the packet is flooded then the packet is sent to the destination port pointed to by the field destPort
instead of being flooded to all ports part of the packets VLAN. The destination port does not need
to be part of the packets VLAN group membership.

• If there is a hit then the hit bit in the L2 Aging Table is set to one.

• The final physical port is determined by the link aggregation. See chapter Link Aggregation for more
information.

• Learning new unknown SA MAC addresses is described in chapter Learning and Aging.

6.2 Software Interaction

Observe that L2 tables can not be directly written by software if learning engine is turned on. Doing so
can cause packets to be dropped and/or flooded and the learning engine may stop working. See chapter
Learning and Aging for information how to safely update the L2 tables.

6.3 L2 Action Table

There is two tables which allows detailed control for each packet depending on the source L2 MAC table
result, the destination L2 MAC table result and the ingress and egress port which each has a configurable
state. This the L2 Action Table used for each egress port which the packet shall be sent to is defined in
L2 Action Table and secondly the L2 Action Table Source Port. Both tables used a number of bits
from the source port table, egress port state, SA and DA MAC lookups to form a address into the tables
which is then read out and acted on. Each source port enables if the L2 Action tables shall be used or not
using the field enableL2ActionTable. The L2 Action Tables can be used to permit specific frames from
certain source ports to other destination ports using a filter defined in Allow Special Frame Check For L2
Action Table. There are 4 rules which are shared among all ports and pointed from the L2 Action Tables
as a result by setting useSpecialAllow to one and then pointing to the rule using field allowPtr.

42 Packet Architects AB

CHAPTER 6. SWITCHING

If a packet is going to no egress ports (portmask==0) then none of the actions in the L2 Action Table
will be carried out, while the L2 Action Table Source Port will always be carrie out since a packet
always comes in on a source port. Because of this the addressing is slightly different for these two table
lookups.

The use cases for the tables is described below. Both tables have the same result actions.

6.3.1 Learning Unicast and Learning Multicast

As stated before the L2 Action Table can be used to stop learning on certain frames. There is a additional
setting allowing the user to define if the learning is not to be allowed for unicast or multicast packets.
Since a learning lookup is based on the Source MAC address this is also what is compared against. If the
SA MAC is a multicast address then the noLearningMc field will be used to determine if the packet shall
be learned or if SA MAC address is a unicast then the noLearningUc will determine if the packet shall be
learned or not.

6.3.2 Drop and Learning

If a packet is dropped by the L2 Action Table the packet will be still be learned. If you want the packets
not to be learned then both dropAll and noLearningUc and noLearningMc should be turned on (set to
one).

6.3.3 Priorities Between Actions

There are multiple actions from the L2 action table this section explains the order between them.

1. The drop special packet is first carried out and drops all instances of the packet

2. The drop port move then takes priority and drops all instance of the packet

3. The drop-all drops all instances of a packet however special type packets can still be accepted if they
are setup to do so.

4. After the drops the send-to-CPU is carried out. Only a single copy will be sent to the CPU.

6.3.4 Using L2 Action Table for 802.1X

Simple Port Authentication

By using the source port bit l2ActionTablePortState and the egress port state bit in register L2 Action
Table Egress Port State to indicate if a port is authenticated or not packets can be limited to communicate
with other ports. This is done by setting up the different addresses in the L2 Action Table to do drop
operations when a packet comes in from a non-authenticated port going to a authenticated port.

Port Authentication with MAC addresses

In order to allow already existing computers (MAC address) allow to pass through the switch without
any problems the SA lookup result bit l2ActionTableSaStatus can be used indicate if this source MAC
address (i.e. computer/end-station) has been authenticated or not on this port. A non-authenticated
computer shall still be able to communicate with other ports which are not authenticated. Since the three
bits partly forms the address into the L2 Action Table it is possible to form rules which when a packet is
allowed to access other ports depending on what the state of these ports are and if the computer it wants
to communicate with is known to the switch or not. The field l2ActionTableDaStatus can be used to
further enhance the security wheather or not two computers shall be able to communicate.

Port Authentication Enhancements with Learning and Port-Move

As the network security needs to be enhanced further the L2 Action Table allows setting up rules if a
packet coming in and going to different ports shall be able be able to be learned or if a already existing
MAC address shall be able to be port moved.

43 Packet Architects AB

CHAPTER 6. SWITCHING

Port Authentication Enhancements only allow certain traffic types

As the last enhancement there can be special rules formed which allows only certain packet types to pass
on a port combination using the result options useSpecialAllow and allowPtr. This allowPtr points to
general rules of which packet types to drop or to allow. This rules are setup in Allow Special Frame
Check For L2 Action Table.

44 Packet Architects AB

Chapter 7

Mirroring

This core supports both input and output mirroring.

7.1 Input Mirroring

Input mirroring allows all packets received by an ingress port to be copied to an egress port without packet
modifications.

• For each port, one input mirroring port can be configured through the Source Port Table. The
inputMirrorEnabled field enables a input mirror copy and send it to the port configured in the
destInputMirror field.

• Packets hit in the Configurable ACL Engine can send an input mirror copy to the port configured
in ACL’s destInputMirror field if there is an enabled inputMirror action.

By default the input mirror copy will bypass any packet modification or drop decisions during the ingress
or egress packet processing. Extra options are given in the Source Port Table to limit the range of
the mirroring destination. imUnderVlanMembership only allows the input mirror copy to be sent to
the members of the VLAN. imUnderPortIsolation only allows the input mirror copy to be sent to the
destination that does not block the current source port from the Ingress Egress Port Packet Type Filter.
If a packet has an input mirror action from the ACL and its source port also enables input mirroring, the
destination port of that copy is determined by the ACL result.

7.2 Output Mirroring

Output mirroring allows the user to select an egress port to be mirrored so that packet that is transmitted
to that egress port can have a copy sent to an egress port. For each port, one output mirroring port can
be configured through the Output Mirroring Table:

1. The output mirroring functionality can be enabled per port using the outputMirrorEnabled field
from the Output Mirroring Table.

2. The port to which the mirror copy is sent is setup by the outputMirrorPort field in the Output
Mirroring Table. Multiple input ports can use the same output mirroring destination port.

With input mirroring, a port can be used to observe the traffic received by any port. With output mirroring,
a port can be used to observe the traffic transmitted from any port. When there are multiple mirror copies
requested or the CPU port is involved, the switch works as follows:

• An input mirrored packet can be output mirrored again.

• An output mirrored packet will not be mirrored again even if the destination port has output mirroring
turned on.

45

CHAPTER 7. MIRRORING

• When a packet is mirrored to the CPU port, it will not carry an extra to-CPU tag since it is the copy
of another packet.

It is possible that a packet is sent out in multiple copies on the same port when mirroring is turned on. In
this case at most four instances of the same received packet can appear on an egress port. The order of
the packet instances will be:

1. Normal switched/routed packet

2. Input mirror copy

3. Output mirror copy of the switched/routed packet

4. Output mirror copy of the input mirror copy

7.2.1 Requeueing FIFO

Output mirroring (and input mirroring to oneself) is accomplished by requeuing the packets in separate
requeueing FIFOs after External Packet Processing. There is one requeue FIFO per egress port.

The egress scheduling will only see the packet at the head of each FIFO, but this packet will be selected
before the packets belonging to the same queue in the normal egress queues.

This method of output mirroring means that:

1. The requeuing FIFOs are truly FIFOs per port, so there will be head-of-line blocking between packets
of different egress queues mirrored to the same port.

2. The (up to three) mirroring copies for a single input packet are created in series. The first one is not
created until the original packet has been scheduled and gone through Egress Packet Processing, the
second one not until the first copy has been scheduled and gone through Egress Packet Processing
and so on...

3. When several ports output mirror to the same port, or a higher speed port mirrors to a lower speed
port (physical or shaped port speed) the requeueing FIFO for the mirroring destination port may fill
up and cause packet drops.

The depth of the requeueing FIFOs is fourteen packets per egress port.

Drops due to the requeueing FIFOs overflowing are counted in the Re-queue Overflow Drop regis-
ter.

46 Packet Architects AB

Chapter 8

RSPAN - Remote Switch Port
Analyzer

RSPAN is a function that allows mirroring traffic to other switches by encapsulating the packets in a VLAN
tag.

An RSPAN network consists of switches with three roles.

1. Source Device
The source device is where the mirrored traffic originates. It uses the normal mirroring functions to
send the mirror copies. The mirrored packets are encapsulated in a RSPAN tag and output on a
port.

2. Intermediate Device
An intermediate device just forwards the RSPAN tagged packets.

3. Destination Device
The destination device removes the RSPAN tag and output the packet on a port.

8.1 Source Device

Input and output mirroring can be used to create the mirror copies. A dedicated RSPAN port, reflector
port, is used. On this port only mirror traffic should be sent. No other traffic should be switched to this
port, i.e. normal switching functions should not use this port as a destination.

The reflector port must be configured to push a RSPAN tag by setting pushRspanTag in Egress RSPAN
Configuration.

The RSPAN tag is a normal VLAN tag and the content of the tag is configured in Egress RSPAN
Configuration.

A switch can have multiple reflector ports.

8.2 Intermediate Device

An intermediate device must be configured to allow receiving RSPAN tagged packets and to forward them
to a dedicated port. This can be accomplished by setting up a source port VLAN with a GID only used
for this purpose. The VLAN will have two member ports, the RSPAN ingress port and the RSPAN egress
port. Learning should be disabled for the ingress port. The ingress packets will then be flooded to the
egress port.

47

CHAPTER 8. RSPAN - REMOTE SWITCH PORT ANALYZER

8.3 Destination Device

The destination device receives the RSPAN packet on a dedicated ingress port and forwards them to the
dedicated monitor port. This forwarding can be done in the same way as an intermediate device.

On the egress port the RSPAN tag is popped by setting popRspanTag in Egress RSPAN Configura-
tion.

48 Packet Architects AB

Chapter 9

Link Aggregation

Link aggregation is a solution to bundle multiple ports into a higher bandwidth link. Each link aggregate
is setup using the Link Aggregation Membership and Link Aggregation To Physical Ports Mem-
bers.

The Link Aggregation Membership register maps the incoming packets source port number to a link
aggregate number. The link aggregate number is then used during ingress packet processing instead of
source port/destination port numbers.

When a destination port (destination link aggregate number) has been determined by ingress packet
processing the Link Aggregation To Physical Ports Members table maps the link aggregate number
to which physical ports that are part of the link aggregate, i.e. the physical ports the packet shall be
transmitted to.

Note that once link aggregation is enabled all ports needs to be setup as link aggregates, even if a port only
has a single port part of its link aggregate. These ports are usually setup as having a one-to-one mapping,
i.e. source port number, link aggregate number and physical port number are all the same.

The Link Aggregation Membership register and the Link Aggregation To Physical Ports Members
register must be kept in sync by software.

To distribute the packets over the ports that are part of a link aggregate, a hash is calculated over some
of the packets fields which is configured by register Link Aggregation Ctrl. The hash value calculated
is used to index the Link Aggregate Weight table which results in a port mask of the ports that will be
used for this specific hash.

The ratio that each port in a link aggregate is used is determined by the number of times the port is set
in the Link Aggregate Weight table divided by the number of entries in the table.

It is important to setup all entries in the Link Aggregate Weight table with one port set for each
link aggregate, otherwise a certain hash value will have no port set thereby causing the packet to be
dropped.

9.0.1 One-to-one Port Mapping

To setup a one-to-one mapping, then the bit which corresponds to the port number shall be set in the
members. This maps each link aggregate number to a physical port with the same number.

The la should then be set so that each source port number maps to the link aggregate with the same
number, i.e. table entry 0 should hold a value of 0, table address 1 should hold a value 1, etc.

9.1 Example

Lets say that a link aggregate shall use physical ports 0,1,2 and each port shall have equal amount of traffic.
Another link aggregate will use ports 6,7 also with equal load between the ports. The remaining ports are
setup to be one-to-one. In this example these are ports 3,4 and 5, on a switch with 8 ports.

49

CHAPTER 9. LINK AGGREGATION

To setup the Link Aggregation Membership register we associate the source port with the link aggregate
number that it belongs to. Ports 0,1,2 are part of link aggregate 0 and port 6,7 are part or link aggregate
1. The remaining ports are setup to use the same link aggregate number as the port number.

for port in [0,1,2]:

rg_sp2la[port] = 0

for port in [6,7]:

rg_sp2la[port] = 1

for port in [3,4,5]:

rg_sp2la[port] = port

In Link Aggregation To Physical Ports Members we need to setup the relation from link aggregate
number to physical port members.

rg_la2Phy[0] = 0b00000111 # la #0 = ports 0,1,2

rg_la2Phy[1] = 0b11000000 # la #1 = ports 6,7

rg_la2Phy[3] = 0b00001000 # la #3 = port 3

rg_la2Phy[4] = 0b00010000 # la #4 = port 4

rg_la2Phy[5] = 0b00100000 # la #5 = port 5

To setup how the traffic is distributed between the link aggregate member ports we first select which
packet headers that will be used in the hash calculation. In this example we chose to select source MAC,
destination MAC, IP addres, L4, TOS value and vlan header as calculation base for the hash value.

rg_linkAggCtrl.useSaMacInHash = 1

rg_linkAggCtrl.useDaMacInHash = 1

rg_linkAggCtrl.useIpInHash = 1

rg_linkAggCtrl.useL4InHash = 1

rg_linkAggCtrl.useTosInHash = 1

rg_linkAggCtrl.useVlanInHash = 1

The table Link Aggregate Weight shall then be setup so that ports 0,1,2 have equal weight. This is
accomplished by configuring so that the number of bits set for port 0 in all hash entries are equal to number
of bits for port 1 and port 2. Which bits are set are not important as long as only one bit per entry are set
and the total number of bits per port are equal.

If the hash of the packets fields are distributed evenly then 1/3 of the packets will be distributed to each
of the three ports part of the link aggregate.

Similarly to setup a link aggregate on ports 6,7 with equal load between the ports then each entry in
the Link Aggregate Weight table must have bit 6 or 7 set and with equal number of bits for the two
ports.

The ratio for link aggregation 0, is 34% on port 0, 33% on port 1 and 33% on port 2. For link aggregation
1, it is 50% on each port.

for hash_index in range(0,85): # 34%

r_hash2LA[hash_index] = 0b00000001 # port 0

for hash_index in range(86,170): # 33%

r_hash2LA[hash_index] = 0b00000010 # port 1

for hash_index in range(171,256): # 33%

f_hash2LA[hash_index] = 0b00000100 # port 2

50 Packet Architects AB

CHAPTER 9. LINK AGGREGATION

for hash_index in range(128): # 50%

r_hash2LA[hash_index] |= 0b01000000 # port 6

for hash_index in range(128,256): # 50%

r_hash2LA[hash_index] |= 0b10000000 # port 7

for hash_index in range(256): # 100%

r_hash2LA[hash_index] |= 0b00001000 # port 3

r_hash2LA[hash_index] |= 0b00010000 # port 4

r_hash2LA[hash_index] |= 0b00100000 # port 5

Finally when all the registers have been configured the link aggregation function is enabled in the Link
Aggregation Ctrl register.

rg_linkAggCtrl.enable = 1

9.2 Hash Calculation

The hash key consists of the following fields in the order listed starting with the msb.

• MAC DA, 48 bits

• MAC SA, 48 bits

• VLAN ID, 12 bits

• IP TOS, 8 bits

• TCP/UDP Source Port, 16 bits

• TCP/UDP Destination Port, 16 bits

• IP Proto, 8 bits

• IPv4/IPv6 Source Address, 128 bits

• IPv4/IPv6 Destination Address, 128 bits

• Source Port, 6 bits

If a field is disabled in the Link Aggregation Ctrl register then the field in the hash key will be 0.

The hashing is done in two steps, first the key is build, and the fields used in the key depends on the Link
Aggregation Ctrl register, once the key is build then hash function is used to determine the address used
ot lookup the Link Aggregation To Physical Ports Members.

def b u i l d k e y (daMac , useDaMacInHash ,
saMac , useSaMacInHash ,
v l a n I d , useV lan Id InHash ,
tos , useTosInHash ,
sp , useL4InHash ,
dp ,
proto ,
sa Ip , use Ip InHash ,
daIp ,
s r cPo r t) :

This f u n c t i o n b u i l d s the key to be
used f o r c a l c u l a t i n g the hash .
f i n a l d a t a = 0
i f useDaMacInHash==0:

daMac = 0
f i n a l d a t a = f i n a l d a t a <<48

51 Packet Architects AB

CHAPTER 9. LINK AGGREGATION

f i n a l d a t a = f i n a l d a t a | daMac
f i n a l d a t a = f i n a l d a t a <<48
i f useSaMacInHash==1:

f i n a l d a t a = f i n a l d a t a | saMac
f i n a l d a t a = f i n a l d a t a <<12
i f useV lan Id InHash==1:

f i n a l d a t a = f i n a l d a t a | v l a n I d
f i n a l d a t a = f i n a l d a t a <<8
i f useTosInHash==1:

f i n a l d a t a = f i n a l d a t a | t o s
f i n a l d a t a = f i n a l d a t a <<16
i f useL4InHash==1:

f i n a l d a t a = f i n a l d a t a | sp
f i n a l d a t a = f i n a l d a t a <<16
i f useL4InHash==1:

f i n a l d a t a = f i n a l d a t a | dp
f i n a l d a t a = f i n a l d a t a <<8
i f useL4InHash==1:

f i n a l d a t a = f i n a l d a t a | p ro to
f i n a l d a t a = f i n a l d a t a <<128
i f use Ip I nHash==1:

f i n a l d a t a = f i n a l d a t a | s a I p
f i n a l d a t a = f i n a l d a t a <<128
i f use Ip I nHash==1:

f i n a l d a t a = f i n a l d a t a | da Ip
f i n a l d a t a = f i n a l d a t a <<6
f i n a l d a t a = f i n a l d a t a | s r cPo r t
return f i n a l d a t a

def ca lcLaHash (key) :
mask = (1 << 8) − 1
hash = 0
f o r j i n range (5 3) :

hash = hash ˆ (key & mask)
key = key >> 8

return hash & mask

52 Packet Architects AB

Chapter 10

IEEE 1588/PTP Support

The core has support for IEEE 1588 / PTP with a number of features.

• Transfer of timestamp from RX MAC to CPU in the To CPU Tag.

• Identify PTP packets and send to CPU.

• Control of TX MAC action from settings in the From CPU Tag.

• Transfer of timestamp in the From CPU Tag to the TX MAC.

• Provide position of packet fields to the TX MAC needed for timestamp operation.

10.1 Timestamp from RX MAC

Each ingress port can be configured in Ingress Ports With Timestamp to use a prepended timestamp
before the normal L2 header on all packets. The timestamp should be created by the MAC and added
before the MAC sends the packet to the switch. The transfer of the timestamp must be done during the
inter frame gap period in order to not affect performance.

The timestamp must be added on all packets on a port also on non-PTP packets.

The timestamp size is 8 bytes.

10.1.1 Timestamp to the CPU

The RX MAC timestamp will be transferred to the CPU in the Timestamp field of the To CPU Tag.
This will only be done when the packet is identified as a PTP packet by setting the ptp bit and the packet
is sent to the CPU port with a To CPU Tag. For all other packets the timestamp will be discarded.

If redirecting to the CPU with ptp bit set without having a timestamp header on the source port will result
in an invalid timestamp field in the To CPU Tag header.

10.2 PTP Frame Decoding

The switch supports PTP packets embedded in an 802.3 Ethernet frame, in an UDP/IPv4 frame or in an
UDP/IPv6 frame.

10.2.1 PTP over 802.3 Ethernet

The packet decoder identifies PTP packets embedded in 802.3 Ethernet frames by the Ethernet Type.
There is no comparison of the Ethernet destination address.

In order to be sent to the CPU any function (except input mirroring) that sends to the CPU port can be
used. For example the 1588 standard multicast group addresses (01-1B-19-00-00-00, 01-80-C2-00-00-0E)

53

CHAPTER 10. IEEE 1588/PTP SUPPORT

PTP Header Field byte position

transportSpecific messageType byte 0
reserved versionPTP byte 1

... ... byte 2-6
correctionField byte 8-15

... ... byte 16-33
originTimestamp byte 34-43

Table 10.1: PTP Header Format

MAC DA MAC SA EtherType=0x88F7 PTP

Table 10.2: PTP over 802.3 Ethernet

can be set in the L2 Destination Table and point to entries in the L2 Multicast Table. For the link local
multicast (01-80-C2-00-00-0E) that should be dropped by bridges, only the CPU port should be set in the
mcPortMask. For the general multicast group address (01-1B-19-00-00-00) that should be broadcasted,
then set all ports including the CPU port in the mask.

The ptp bit in the To CPU Tag will be set when the Ethernet Type matches the PTP type.

10.2.2 PTP over UDP

MAC DA MAC SA EtherType IPv4 UDP PTP

Table 10.3: PTP over UDP/IPv4

PTP embedded in IPv4/IPv6 UDP can be identified with an L3 ACL rule and sent to the CPU using the
sendToCpu action. The ptp action must also be set in order for the ptp bit in the To CPU Tag to be set
together with a valid Timestamp field.

10.3 Software Control of TX MAC PTP Actions

The TX MAC needs to perform the following PTP actions.

• TX MAC updates timestamp in outgoing packet.

• TX MAC produces timestamp to be read by software.

• TX MAC updates correction field in outgoing packet with current time minus software time from the
timestamp in the From CPU Tag.

These actions are controlled by software by sending PTP packets from the CPU port with a From CPU
Tag. In the From CPU Tag header there are fields that will be transferred directly to the transmit MAC
on dedicated signals (see Packet Interface).

• oupd ts ps N - this signals will be set when the From CPU Tag field upd ts is set. This is used to
tell the transmit MAC that it should update the packets originTimestamp field.

• oupd cf ps N - this signals will be set when the From CPU Tag field upd cf is set. This is used to
tell the transmit MAC that it should update the correctionField.

• ots ps N - this signal will have the value of the From CPU Tag ptp ts field and should be used by
the transmit MAC when updating the correctionField.

• ots to sw ps N - this signal will have the value of the From CPU Tag ts to sw field. This is used
to tell the transmit MAC that it should create a timestamp of the current packet and transfer the
timestamp to software. The switch is not involved in the transfer of the timestamp to software.

54 Packet Architects AB

CHAPTER 10. IEEE 1588/PTP SUPPORT

MAC DA MAC SA EtherType IPv6 UDP PTP Checksum Correction

Table 10.4: PTP over UDP/IPv6

10.3.1 Packet Updates by the Transmit MAC

When the transmit MAC updates a PTP packet it needs to know position of the fields in the packet. This
information is decoded by the switch and passed to the transmit MAC on dedicated ports.

• IPv4/UDP checksum field.

• IPv6/UDP checksum correction field (last 2 bytes in IPv6/UDP packet).

• PTP originTimestamp field.

• PTP correctionField.

When the transmit MAC updates a PTP packets and PTP is embedded in UDP/IP then the UDP checksum
needs to be updated.

• For IPv4/UDP packets the UDP checksum field is zeroed by the MAC and therefore needs the
position of the UDP checksum field.

• For IPv6/UDP it is forbidden to use zero checksum. Instead the last two bytes of the PTP packet
is used to correct the checksum. The MAC therefore needs position of the UDP checksum field
and the position of the second-to-last byte of the packet. (see IETF RFC 7821 - UDP Checksum
Complement)

The transmit MAC also needs the position of the originTimestamp and correctionField. The position of
the originTimestamp is provided to the MAC and from that position the MAC can calculate the position
of the correctionField since that is always in the same relative position.

All this information is transferred to the MAC on dedicated signals (see Packet Interface).

• oudp4 ps N - when this is set the packet is a UDP packet encapsulated in IPv4.

• oudp6 ps N - when this is set the packet is a UDP packet encapsulated in IPv6.

• oudp csum ps N - this is the first byte of the UDP Checksum field relative to the first byte of the
packet.

• ots pos ps N - this is the first byte of the originTimestamp field in a PTP packet relative to the first
byte of the packet. This position is correct for all three encapsulation types.

• oudp corr ps N - this is the first byte of the UDP checksum correction field. This field is always the
last two bytes of the packet.

10.4 Support for Ordinary Clock

In this section is described how to implement the PTP packet handling for Ordinary Clock mode.

10.4.1 Master sending Sync

Software sends a PTP Sync packet to the CPU port with a From CPU Tag. In the From CPU Tag the
destination port (or ports) are set and the control needed for the TX MAC connected to the egress port
are included.

In 1-step mode the outgoing frames timestamp field is updated by the MAC with the timestamp. The
timestamp is not used by software.

The TX MAC will get the position of the timestamp field from the switch.

If the packet is an IP/UDP packet then the checksum needs to be update by the MAC since the PTP
header is changed. The MAC will get the position of the checksum field from the switch.

55 Packet Architects AB

CHAPTER 10. IEEE 1588/PTP SUPPORT

If PTP is embedded in IPv4/UDP then the UDP checksum field is cleared by the MAC. If it’s IPv6/UDP
then UDP checksum is not allowed to be cleared and instead the last two bytes in the frame is padding
used for checksum adjustment. The MAC will get the position of the checksum adjustment field from the
switch.

In 2-step mode the timestamp from the TX MAC is read out by software and the outgoing frame is
not modified by the MAC. The From CPU Tag must control the MAC to produce a timestamp for
software.

10.4.2 Slave receiving Sync

The RX MAC timestamps all packets. The timestamp must be prepended to the frames before they enter
the switch. The switch port must be configured to receive the prepended timestamp.

Software needs to configure the switch to direct the Sync frame to the CPU port with a To CPU Tag.
The ptp bit must be set so that the timestamp that was prepended to the frame is sent to the CPU in the
To CPU Tag.

10.4.3 Slave sending DelayReq

Software sends a PTP DelayReq packet to the CPU port with a From CPU Tag. In the From CPU Tag
the destination port (or ports) are set and the control needed for the TX MAC connected to the egress
port.

The TX MAC must produce a timestamp of this packet. The timestamp from the TX MAC is read out by
software and the outgoing frame is not modified by the MAC.

10.4.4 Master receiving DelayReq

The hardware mechanisms used are exactly as in Slave receiving Sync.

10.4.5 Master sending DelayReply

Software sends a PTP DelayReply packet to the CPU port with a From CPU Tag. In the From CPU
Tag the destination port (or ports) are set.

There is no timestamp needed for this frame so the TX MAC is not directed to produce any times-
tamp.

10.4.6 Slave receiving DelayReply

Software needs to configure the switch to direct the DelayReply frame to the CPU port. The timestamp
produced by the RX MAC is not used and the To CPU Tag therefore does not need to include the
timestamp.

10.5 Support for 1-step Peer to Peer

10.5.1 Initiator sending PDelayReq

Software sends a PTP PDelayReq packet to the CPU port with a From CPU Tag. In the From CPU
Tag the destination port (or ports) are set and the control needed for the TX MAC connected to the egress
port.

The TX MAC must produce a timestamp of this packet. The timestamp from the MAC is read out by
software and the outgoing frame is not modified by the MAC.

10.5.2 Peer receiving PDelayReq

The hardware mechanisms used are exactly as in Slave receiving Sync.

56 Packet Architects AB

CHAPTER 10. IEEE 1588/PTP SUPPORT

10.5.3 Peer sending PDelayResp

Software sends a PTP PDelayReq packet to the CPU port with a From CPU Tag. In the From CPU
Tag the destination port (or ports) are set and the control needed for the TX MAC connected to the egress
port.

The TX MAC must produce a timestamp of this packet.

In 1-step mode the outgoing frames correction field is updated by the MAC with the difference between
the produced timestamp and software supplied timestamp (from a received PDelayReq). The produced
timestamp is not used by software. The TX MAC will get the position of the correction field from the
switch.

10.5.4 Initiator receiving PDelayResp

Software needs to configure the switch to direct the PDelayResp frame to the CPU port. The ptp bit
must be set so that the timestamp that was prepended to the frame is sent to the CPU in the To CPU
Tag.

57 Packet Architects AB

CHAPTER 10. IEEE 1588/PTP SUPPORT

58 Packet Architects AB

Chapter 11

Classification

11.1 L2 Classification

• L2 Destination MAC range classification is setup in table Reserved Destination MAC Address
Range.

– The table is searched starting from entry 0.

– When a range is matched the corresponding actions (drop, send to cpu, force egress queue)
will be activated.

– If multiple ranges are matched, any matching range that sets drop will cause a drop.

– Any match that sets sendToCpu will cause send to CPU (this has priority over drop).

– When multiple ranges that match has set the forceQueue then the highest numbered entry will
determine the value.

• L2 Source MAC range classification is setup in table Reserved Source MAC Address Range.

– The table is searched starting from entry 0.

– When a range is matched the corresponding actions (drop, send to cpu, force egress queue)
will be activated.

– If multiple ranges are matched, any matching range that sets drop will cause a drop.

– Any match that sets sendToCpu will cause send to CPU (this has priority over drop).

– When multiple ranges that match has set the forceQueue then the highest numbered entry will
determine the value.

• L2 Source MAC Drop is setup in table L2 Destination Table using field pktDropSa. This will drop
all packets which matches this SA MAC address.

• If the destination MAC address bits [47:8] matches the L2 Reserved Multicast Address Base then
bits [7:0] of the destination MAC address is used as a index in the table L2 Reserved Multicast
Address Action which determines what action to take on the packet. Actions are set per source
port and can either be to drop the packet or to send it to the CPU.

11.2 Configurable Ingress ACL Engine

The ingress ACL engine uses a configurable selection of fields from the incoming packet headers, from L2
fields to L4 fields. From the selected fields a hash table lookup is then done using D-left hashing. The
hashing is combined with a TCAM to resolve hash collisions and to enable per entry masking of data.
Each of the hash tables can also be masked, but only a single mask can be applied for all data in a hash
table.

59

CHAPTER 11. CLASSIFICATION

There are 4 parallell ACL engines that each can perform one lookup per packet. All lookups are done
in parallel and then there is a post processing of all the matching results to determine what actions to
perform. There can be multiple actions taken for a single packet. How the actions are determined when
there are multiple matches are described below.

11.2.1 Field Selection

For each source port the useAclN field in the Source Port Table configures if the incoming packets shall
be subjected to an ACL lookup. By default the ACL is turned off.

If the ACL is turned on then the field aclRuleN is used as a pointer into Ingress Configurable ACL N
Rules Setup . This determines which fields that are used in the ACL lookup for this source port.

Each ACL engine has its own unique fields which can be selected. These are listed below. A field is selected
by setting the corresponding bit in the fieldSelectBitMask.

60 Packet Architects AB

CHAPTER 11. CLASSIFICATION

ACL
Engine

Width
of
Search
Data

Fields
to se-
lect
from

Nr of
Rules
(Fields)
to maxi-
mum use

Number
of Parallel
Hash
Tables

Small
Table
Entries

Large
Table
Entries

TCAM
Entries

0 222 19 6 4 256 2048 32
1 322 31 6 4 128 1024 16
2 222 31 6 4 64 512 16
3 222 31 6 4 64 256 16

Table 11.1: Ingress ACL Engine Settings

61 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Pre Lookup for Configurable Ingress ACL Table 0

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields
to be selected. If this lookup does not result in a valid rule poitner then the rule pointer from the source
port table will be selected. The prelookup is setup in Ingress Configurable ACL 0 Pre Lookup

Packet Field Size in Bits Description
Source Port Bits 3 bits The source port bits from source port table preLooku-

pAclBits.
Number of VLANS 2 bits The packets number of incoming VLANs.
L2 Protocol 1 bits The packets L2 Type

0 = Other than this list.
1 = IEEE 1722 AVTP.

Type of L3 Packet 2 bits The packets L3 Type
0 = IPv4
1 = IPv6
2 = MPLS
3 = Others..

Type of L4 Packet 3 bits The packets L4 Type
0 = Not known.
1 = Is IPv4 or IPv6 but type is not any L4 type in this

list.
2 = UDP
3 = TCP
4 = IGMP
5 = ICMP
6 = ICMPv6
7 = MLD

Fields for Configurable Ingress ACL Table 0

The following fields can be selected for Configurable Ingress ACL Table 0, the column Bit in Select Bitmask
is the number which is set in the bitmask to select the field.

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

0 MAC DA 48 Always valid The packets destination MAC address.
1 MAC SA 48 Always valid The packets source MAC address
2 Outer VID 12 When packet has

a VLAN.
The packets outermost VLAN Identifier
(VID)

3 Has VLANs 1 Always valid Does the packet have any VLAN tags
0 = No VLAN in packet
1 = One or more VLANs in packet.

4 Outer VLAN Tag
Type

1 When packet has
an outer VLANs.

When the packet has an outer VLAN
what Ethernet Type is this VLAN?
0 = Customer VLAN Tag
1 = Service VLAN Tag.

5 Inner VLAN Tag
Type

1 When packet has
an inner VLAN.

When the packet has an inner VLAN what
Ethernet Type is this VLAN?
0 = Customer VLAN Tag
1 = Service VLAN Tag.

6 Outer PCP 3 When packet has
a VLAN.

The packets outermost VLAN PCP field.

7 Outer DEI 1 When packet has
a VLAN.

The packets outermost VLAN DEI field.

62 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

8 Inner VID 12 When packet has
a two VLANs.

The packes innermost VLAN Identifier
(VID).

9 Inner PCP 3 When packet has
a two VLANs.

The packets innermost VLAN PCP field.

10 Inner DEI 1 When packet has
a two VLANs.

The packets innermost VLAN DEI field.

11 L4 Source Port 16 When packet is
a IPv4 or IPv6
and UDP or TCP
L4 protocol is
present

L4 TCP or UDP packets source port.

12 L4 Destination
Port

16 When packet is
a IPv4 or IPv6
and UDP or TCP
L4 protocol is
present

L4 TCP or UDP packets destination port.

13 L4 Protocol 8 When packet is a
IPv4 or IPv6

IPv4, IPv6 L4 protocol type byte.

14 Ethernet Type 16 Always valid The packets Ethernet Type after VLANs.
15 L4 Type 3 Always valid The type of an L4 packet.

0 = Not any type in this list.
1 = IPv6 or IPv4 packet but L4 proto-

col is not UDP, TCP, IGMP, ICMP,
ICMPv6 or MLD

2 = UDP in IPv4/6
3 = TCP in IPv4/6
4 = IGMP in IPv4/6
5 = ICMP in IPv4/6
6 = ICMPv6 in IPv6, excluding MLD
7 = MLD - sub protocol of ICMPv6

16 L3 Type 2 Always valid The type of an L3 packet.
0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4,IPv6 or MPLS.

17 Source Port 6 Always valid The source port of the packet.
18 Rule Pointer 4 Always valid The rule pointer (index in the Ingress

Configurable ACL N Rules Setup).

11.2.2 Example Of Selecting Fields For Configurable Ingress ACL Table 0

Since this ACL engine can select up to 6 fields. This is done by setting bits in the rule pointers fieldSelect-
Bitmask. Lets look at a few examples of the layout of the 222 bits in search key looks like when different
fields are selected.

Example ACL with Ethernet Type

In this example we only want to create a rule with one field which is the Ethernet Type. This means that
the fieldSelectBitmask, which is 19 bits , will be set as follows 100000000000000 in binary format (Hex
value of 0x4000) and the lookup data will be located as follows:

63 Packet Architects AB

CHAPTER 11. CLASSIFICATION

0 Ethernet Type Valid
- Width : 16 1
17 16 1 0 0

Table 11.4: Hash Key Example for Ethernet Type

Example with Destiantion MAC Address and Outer VLAN VID

In this example we want to create a rule which with two fields which are destiantion MAC address and
outermost VLAN Identifier. This means that the fieldSelectBitmask, which is 19 bits , will be set as follows
101 in binary format (Hex value of 0x5) and the lookup data will be located as follows:

0 MAC DA Outer VID Valid
- Width : 48 Width : 12 2
62 61 14 13 2 1 0

Table 11.5: Hash Key Example for Destiantion MAC Address and Outer LAN VID

Example of Simple L2 ACL

In this example we want to create a rule which with three L2 fields which are Destiantion MAC address,
source MAC address and Ethernet Type. Typically this is a L2 ACL Engine. This means that the field-
SelectBitmask, which is 19 bits , will be set as follows 100000000000011 in binary format (Hex value of
0x4003) and the lookup data will be located as follows:

0 Ethernet Type MAC DA MAC SA Valid
- Width : 16 Width : 48 Width : 48 3

115 114 99 98 51 50 3 2 0

Table 11.6: Hash Key Example for Simple L2 ACL

Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port,
L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the
fieldSelectBitmask, which is 19 bits , will be set as follows 110011100000000000 in binary format (Hex
value of 0x33800) and the lookup data will be located as follows:

0 Source Port L3 Type L4 Protocol L4 Destination Port L4 Source Port Valid
- Width : 6 Width : 2 Width : 8 Width : 16 Width : 16 5
53 52 47 46 45 44 37 36 21 20 5 4 0

Table 11.7: Hash Key Example for L4 ACL

Pre Lookup for Configurable Ingress ACL Table 1

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields
to be selected. If this lookup does not result in a valid rule poitner then the rule pointer from the source
port table will be selected. The prelookup is setup in Ingress Configurable ACL 1 Pre Lookup

Packet Field Size in Bits Description
Source Port Bits 3 bits The source port bits from source port table preLooku-

pAclBits.
Number of VLANS 2 bits The packets number of incoming VLANs.

64 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Packet Field Size in Bits Description
L2 Protocol 1 bits The packets L2 Type

0 = Other than this list.
1 = IEEE 1722 AVTP.

Type of L3 Packet 2 bits The packets L3 Type
0 = IPv4
1 = IPv6
2 = MPLS
3 = Others..

Type of L4 Packet 3 bits The packets L4 Type
0 = Not known.
1 = Is IPv4 or IPv6 but type is not any L4 type in this

list.
2 = UDP
3 = TCP
4 = IGMP
5 = ICMP
6 = ICMPv6
7 = MLD

Fields for Configurable Ingress ACL Table 1

The following fields can be selected for Configurable Ingress ACL Table 1, the column Bit in Select Bitmask
is the number which is set in the bitmask to select the field.

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

0 MAC DA 48 Always valid The packets destination MAC address.
1 MAC SA 48 Always valid The packets source MAC address
2 Outer VID 12 When packet has

a VLAN.
The packets outermost VLAN Identifier
(VID)

3 Has VLANs 1 Always valid Does the packet have any VLAN tags
0 = No VLAN in packet
1 = One or more VLANs in packet.

4 Outer VLAN Tag
Type

1 When packet has
an outer VLANs.

When the packet has an outer VLAN
what Ethernet Type is this VLAN?
0 = Customer VLAN Tag
1 = Service VLAN Tag.

5 Inner VLAN Tag
Type

1 When packet has
an inner VLAN.

When the packet has an inner VLAN what
Ethernet Type is this VLAN?
0 = Customer VLAN Tag
1 = Service VLAN Tag.

6 Outer PCP 3 When packet has
a VLAN.

The packets outermost VLAN PCP field.

7 Outer DEI 1 When packet has
a VLAN.

The packets outermost VLAN DEI field.

8 Inner VID 12 When packet has
a two VLANs.

The packes innermost VLAN Identifier
(VID).

9 Inner PCP 3 When packet has
a two VLANs.

The packets innermost VLAN PCP field.

10 Inner DEI 1 When packet has
a two VLANs.

The packets innermost VLAN DEI field.

11 IPv4 SA 32 When L2 frame
holds a IPv4
packet.

IPv4 Source Address.

65 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

12 IPv4 DA 32 When L2 frame
holds a IPv4
packet.

IPv4 Destination Address.

13 IPv6 SA 128 When L2 frame
holds a IPv6
packet.

IPv6 Source Address.

14 IPv6 DA 128 When L2 frame
holds a IPv6
packet.

IPv6 Destination Address.

15 Outer MPLS 20 When L2 frame
holds a MPLS
packet.

Outermost MPLS label.

16 TOS 8 When packet is a
IPv4 or IPv6

IPv4 or IPv6 Type-Of-Service (TOS)
byte.

17 TTL 8 When packet is
a IPv4,IPv6 or
MPLS

IPv4, IPv6 or MPLS Time-To-Live (TTL)
byte.

18 L4 Source Port 16 When packet is
a IPv4 or IPv6
and UDP or TCP
L4 protocol is
present

L4 TCP or UDP packets source port.

19 L4 Destination
Port

16 When packet is
a IPv4 or IPv6
and UDP or TCP
L4 protocol is
present

L4 TCP or UDP packets destination port.

20 MLD Address 128 When packet
is a IPv6 and
the ICMPv6
type is equal to
130,131,132

The MLD headers Multicast Address
field.

21 ICMP Type 8 When L4 packet
is a ICMP packet

ICMP Type.

22 ICMP Code 8 When L4 packet
is a ICMP packet

ICMP Code.

23 IGMP Type 8 When L4 packet
is a IGMP

IGMP Type.

24 IGMP Group Ad-
dress

32 When L4 packet
is a IGMP

IGMP Group Address.

25 L4 Protocol 8 When packet is a
IPv4 or IPv6

IPv4, IPv6 L4 protocol type byte.

26 Ethernet Type 16 Always valid The packets Ethernet Type after VLANs.

66 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

27 L4 Type 3 Always valid The type of an L4 packet.
0 = Not any type in this list.
1 = IPv6 or IPv4 packet but L4 proto-

col is not UDP, TCP, IGMP, ICMP,
ICMPv6 or MLD

2 = UDP in IPv4/6
3 = TCP in IPv4/6
4 = IGMP in IPv4/6
5 = ICMP in IPv4/6
6 = ICMPv6 in IPv6, excluding MLD
7 = MLD - sub protocol of ICMPv6

28 L3 Type 2 Always valid The type of an L3 packet.
0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4,IPv6 or MPLS.

29 Source Port 6 Always valid The source port of the packet.
30 Rule Pointer 4 Always valid The rule pointer (index in the Ingress

Configurable ACL N Rules Setup).

11.2.3 Example Of Selecting Fields For Configurable Ingress ACL Table 1

Since this ACL engine can select up to 6 fields. This is done by setting bits in the rule pointers fieldSelect-
Bitmask. Lets look at a few examples of the layout of the 322 bits in search key looks like when different
fields are selected.

Example ACL with Outer VLAN ID

In this example we only want to create a rule with one field which is the Outer VLAN ID. This means that
the fieldSelectBitmask, which is 31 bits , will be set as follows 100 in binary format (Hex value of 0x4) and
the lookup data will be located as follows:

0 Outer VID Valid
- Width : 12 1
13 12 1 0 0

Table 11.10: Hash Key Example for Outer VLAN ID

Example with Destiantion MAC Address and Outer VLAN VID

In this example we want to create a rule which with two fields which are destiantion MAC address and
outermost VLAN Identifier. This means that the fieldSelectBitmask, which is 31 bits , will be set as follows
101 in binary format (Hex value of 0x5) and the lookup data will be located as follows:

0 MAC DA Outer VID Valid
- Width : 48 Width : 12 2
62 61 14 13 2 1 0

Table 11.11: Hash Key Example for Destiantion MAC Address and Outer LAN VID

Example of Simple L2 ACL

In this example we want to create a rule which with three L2 fields which are Destiantion MAC address,
source MAC address and Ethernet Type. Typically this is a L2 ACL Engine. This means that the field-

67 Packet Architects AB

CHAPTER 11. CLASSIFICATION

SelectBitmask, which is 31 bits , will be set as follows 100000000000000000000000011 in binary format
(Hex value of 0x4000003) and the lookup data will be located as follows:

0 Ethernet Type MAC DA MAC SA Valid
- Width : 16 Width : 48 Width : 48 3

115 114 99 98 51 50 3 2 0

Table 11.12: Hash Key Example for Simple L2 ACL

Example of L3 IPv4 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address,
source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means
that the fieldSelectBitmask, which is 31 bits , will be set as follows 10010000000000001100000000000 in
binary format (Hex value of 0x12001800) and the lookup data will be located as follows:

0 L3 Type IPv4 DA IPv4 SA L4 Protocol Valid
- Width : 2 Width : 32 Width : 32 Width : 8 4
78 77 76 75 44 43 12 11 4 3 0

Table 11.13: Hash Key Example for L3 IPv4 ACL

Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port,
L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the
fieldSelectBitmask, which is 31 bits , will be set as follows 110010000011000000000000000000 in binary
format (Hex value of 0x320c0000) and the lookup data will be located as follows:

0 Source Port L3 Type L4 Protocol L4 Destination Port L4 Source Port Valid
- Width : 6 Width : 2 Width : 8 Width : 16 Width : 16 5
53 52 47 46 45 44 37 36 21 20 5 4 0

Table 11.14: Hash Key Example for L4 ACL

Example of Openflow Entry

In this example we want to create a rule which looks like an Openflow entry. This can be done by selecing
source port, destiantion MAC, source MAC, Ethernet Type, inner VLAN, outer VLAN, L3 Type, IPv4 SA,
IPv4 DA, L4 protocol, L4 Source port and L4 Destiantion port and finally the rule pointer. All in all
13 fields are selected. This means that the fieldSelectBitmask, which is 31 bits , will be set as follows
1110110000011000001100100000111 in binary format (Hex value of 0x760c1907) and the lookup data will
be located as follows:

0 Source Port MAC DA MAC SA Outer VID Inner VID Ethernet Type L3 Type
- Width : 6 Width : 48 Width : 48 Width : 12 Width : 12 Width : 16 Width : 2

265 264 259 258 211 210 163 162 151 150 139 138 123 122 121

IPv4 SA IPv4 DA L4 Protocol L4 Destination Port L4 Source Port Rule Pointer Valid
Width : 32 Width : 32 Width : 8 Width : 16 Width : 16 Width : 4 13
120 89 88 57 56 49 48 33 32 17 16 13 12 0

Table 11.15: Hash Key Example for Openflow Entry

Pre Lookup for Configurable Ingress ACL Table 2

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields
to be selected. If this lookup does not result in a valid rule poitner then the rule pointer from the source

68 Packet Architects AB

CHAPTER 11. CLASSIFICATION

port table will be selected. The prelookup is setup in Ingress Configurable ACL 2 Pre Lookup

Packet Field Size in Bits Description
Source Port Bits 3 bits The source port bits from source port table preLooku-

pAclBits.
Number of VLANS 2 bits The packets number of incoming VLANs.
L2 Protocol 1 bits The packets L2 Type

0 = Other than this list.
1 = IEEE 1722 AVTP.

Type of L3 Packet 2 bits The packets L3 Type
0 = IPv4
1 = IPv6
2 = MPLS
3 = Others..

Type of L4 Packet 3 bits The packets L4 Type
0 = Not known.
1 = Is IPv4 or IPv6 but type is not any L4 type in this

list.
2 = UDP
3 = TCP
4 = IGMP
5 = ICMP
6 = ICMPv6
7 = MLD

Fields for Configurable Ingress ACL Table 2

The following fields can be selected for Configurable Ingress ACL Table 2, the column Bit in Select Bitmask
is the number which is set in the bitmask to select the field.

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

0 MAC DA 48 Always valid The packets destination MAC address.
1 MAC SA 48 Always valid The packets source MAC address
2 Outer VID 12 When packet has

a VLAN.
The packets outermost VLAN Identifier
(VID)

3 Has VLANs 1 Always valid Does the packet have any VLAN tags
0 = No VLAN in packet
1 = One or more VLANs in packet.

4 Outer VLAN Tag
Type

1 When packet has
an outer VLANs.

When the packet has an outer VLAN
what Ethernet Type is this VLAN?
0 = Customer VLAN Tag
1 = Service VLAN Tag.

5 Inner VLAN Tag
Type

1 When packet has
an inner VLAN.

When the packet has an inner VLAN what
Ethernet Type is this VLAN?
0 = Customer VLAN Tag
1 = Service VLAN Tag.

6 Outer PCP 3 When packet has
a VLAN.

The packets outermost VLAN PCP field.

7 Outer DEI 1 When packet has
a VLAN.

The packets outermost VLAN DEI field.

8 Inner VID 12 When packet has
a two VLANs.

The packes innermost VLAN Identifier
(VID).

9 Inner PCP 3 When packet has
a two VLANs.

The packets innermost VLAN PCP field.

69 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

10 Inner DEI 1 When packet has
a two VLANs.

The packets innermost VLAN DEI field.

11 IPv4 SA 32 When L2 frame
holds a IPv4
packet.

IPv4 Source Address.

12 IPv4 DA 32 When L2 frame
holds a IPv4
packet.

IPv4 Destination Address.

13 IPv6 SA 128 When L2 frame
holds a IPv6
packet.

IPv6 Source Address.

14 IPv6 DA 128 When L2 frame
holds a IPv6
packet.

IPv6 Destination Address.

15 Outer MPLS 20 When L2 frame
holds a MPLS
packet.

Outermost MPLS label.

16 TOS 8 When packet is a
IPv4 or IPv6

IPv4 or IPv6 Type-Of-Service (TOS)
byte.

17 TTL 8 When packet is
a IPv4,IPv6 or
MPLS

IPv4, IPv6 or MPLS Time-To-Live (TTL)
byte.

18 L4 Source Port 16 When packet is
a IPv4 or IPv6
and UDP or TCP
L4 protocol is
present

L4 TCP or UDP packets source port.

19 L4 Destination
Port

16 When packet is
a IPv4 or IPv6
and UDP or TCP
L4 protocol is
present

L4 TCP or UDP packets destination port.

20 MLD Address 128 When packet
is a IPv6 and
the ICMPv6
type is equal to
130,131,132

The MLD headers Multicast Address
field.

21 ICMP Type 8 When L4 packet
is a ICMP packet

ICMP Type.

22 ICMP Code 8 When L4 packet
is a ICMP packet

ICMP Code.

23 IGMP Type 8 When L4 packet
is a IGMP

IGMP Type.

24 IGMP Group Ad-
dress

32 When L4 packet
is a IGMP

IGMP Group Address.

25 L4 Protocol 8 When packet is a
IPv4 or IPv6

IPv4, IPv6 L4 protocol type byte.

26 Ethernet Type 16 Always valid The packets Ethernet Type after VLANs.

70 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

27 L4 Type 3 Always valid The type of an L4 packet.
0 = Not any type in this list.
1 = IPv6 or IPv4 packet but L4 proto-

col is not UDP, TCP, IGMP, ICMP,
ICMPv6 or MLD

2 = UDP in IPv4/6
3 = TCP in IPv4/6
4 = IGMP in IPv4/6
5 = ICMP in IPv4/6
6 = ICMPv6 in IPv6, excluding MLD
7 = MLD - sub protocol of ICMPv6

28 L3 Type 2 Always valid The type of an L3 packet.
0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4,IPv6 or MPLS.

29 Source Port 6 Always valid The source port of the packet.
30 Rule Pointer 4 Always valid The rule pointer (index in the Ingress

Configurable ACL N Rules Setup).

11.2.4 Example Of Selecting Fields For Configurable Ingress ACL Table 2

Since this ACL engine can select up to 6 fields. This is done by setting bits in the rule pointers fieldSelect-
Bitmask. Lets look at a few examples of the layout of the 222 bits in search key looks like when different
fields are selected.

Example ACL with IPv4 DA

In this example we only want to create a rule with one field which is the IP DA. This means that the
fieldSelectBitmask, which is 31 bits , will be set as follows 1000000000000 in binary format (Hex value of
0x1000) and the lookup data will be located as follows:

0 IPv4 DA Valid
- Width : 32 1
33 32 1 0 0

Table 11.18: Hash Key Example for IPv4 DA

Example with Destiantion MAC Address and Outer VLAN VID

In this example we want to create a rule which with two fields which are destiantion MAC address and
outermost VLAN Identifier. This means that the fieldSelectBitmask, which is 31 bits , will be set as follows
101 in binary format (Hex value of 0x5) and the lookup data will be located as follows:

0 MAC DA Outer VID Valid
- Width : 48 Width : 12 2
62 61 14 13 2 1 0

Table 11.19: Hash Key Example for Destiantion MAC Address and Outer LAN VID

Example of Complex L2 ACL

In this example we want to create a rule which with six L2 fields which are Destiantion MAC address,
source MAC address and Ethernet Type, inner and outer VLANs. The rule pointer would be used to enable

71 Packet Architects AB

CHAPTER 11. CLASSIFICATION

different number of VLANs. Typically this is a L2 ACL Engine. This means that the fieldSelectBitmask,
which is 31 bits , will be set as follows 1000100000000000000000100000111 in binary format (Hex value
of 0x44000107) and the lookup data will be located as follows:

0 MAC DA MAC SA Ethernet Type Outer VID Inner VID Rule Pointer Valid
- Width : 48 Width : 48 Width : 16 Width : 12 Width : 12 Width : 4 6

146 145 98 97 50 49 34 33 22 21 10 9 6 5 0

Table 11.20: Hash Key Example for Complex L2 ACL

Example of L3 IPv6 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address,
source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means
that the fieldSelectBitmask, which is 31 bits , will be set as follows 10010000000000110000000000000 in
binary format (Hex value of 0x12006000) and the lookup data will be located as follows:

0 L3 Type IPv6 DA IPv6 SA L4 Protocol Valid
- Width : 2 Width : 128 Width : 128 Width : 8 4

270 269 268 267 140 139 12 11 4 3 0

Table 11.21: Hash Key Example for L3 IPv6 ACL

Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port,
L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the
fieldSelectBitmask, which is 31 bits , will be set as follows 110010000011000000000000000000 in binary
format (Hex value of 0x320c0000) and the lookup data will be located as follows:

0 Source Port L3 Type L4 Protocol L4 Destination Port L4 Source Port Valid
- Width : 6 Width : 2 Width : 8 Width : 16 Width : 16 5
53 52 47 46 45 44 37 36 21 20 5 4 0

Table 11.22: Hash Key Example for L4 ACL

Example of Openflow Entry

In this example we want to create a rule which looks like an Openflow entry. This can be done by selecing
source port, destiantion MAC, source MAC, Ethernet Type, inner VLAN, outer VLAN, L3 Type, IPv4 SA,
IPv4 DA, L4 protocol, L4 Source port and L4 Destiantion port and finally the rule pointer. All in all
13 fields are selected. This means that the fieldSelectBitmask, which is 31 bits , will be set as follows
1110110000011000001100100000111 in binary format (Hex value of 0x760c1907) and the lookup data will
be located as follows:

0 Source Port MAC DA MAC SA Outer VID Inner VID Ethernet Type L3 Type
- Width : 6 Width : 48 Width : 48 Width : 12 Width : 12 Width : 16 Width : 2

265 264 259 258 211 210 163 162 151 150 139 138 123 122 121

IPv4 SA IPv4 DA L4 Protocol L4 Destination Port L4 Source Port Rule Pointer Valid
Width : 32 Width : 32 Width : 8 Width : 16 Width : 16 Width : 4 13
120 89 88 57 56 49 48 33 32 17 16 13 12 0

Table 11.23: Hash Key Example for Openflow Entry

72 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Pre Lookup for Configurable Ingress ACL Table 3

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields
to be selected. If this lookup does not result in a valid rule poitner then the rule pointer from the source
port table will be selected. The prelookup is setup in Ingress Configurable ACL 3 Pre Lookup

Packet Field Size in Bits Description
Source Port Bits 3 bits The source port bits from source port table preLooku-

pAclBits.
Number of VLANS 2 bits The packets number of incoming VLANs.
L2 Protocol 1 bits The packets L2 Type

0 = Other than this list.
1 = IEEE 1722 AVTP.

Type of L3 Packet 2 bits The packets L3 Type
0 = IPv4
1 = IPv6
2 = MPLS
3 = Others..

Type of L4 Packet 3 bits The packets L4 Type
0 = Not known.
1 = Is IPv4 or IPv6 but type is not any L4 type in this

list.
2 = UDP
3 = TCP
4 = IGMP
5 = ICMP
6 = ICMPv6
7 = MLD

Fields for Configurable Ingress ACL Table 3

The following fields can be selected for Configurable Ingress ACL Table 3, the column Bit in Select Bitmask
is the number which is set in the bitmask to select the field.

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

0 MAC DA 48 Always valid The packets destination MAC address.
1 MAC SA 48 Always valid The packets source MAC address
2 Outer VID 12 When packet has

a VLAN.
The packets outermost VLAN Identifier
(VID)

3 Has VLANs 1 Always valid Does the packet have any VLAN tags
0 = No VLAN in packet
1 = One or more VLANs in packet.

4 Outer VLAN Tag
Type

1 When packet has
an outer VLANs.

When the packet has an outer VLAN
what Ethernet Type is this VLAN?
0 = Customer VLAN Tag
1 = Service VLAN Tag.

5 Inner VLAN Tag
Type

1 When packet has
an inner VLAN.

When the packet has an inner VLAN what
Ethernet Type is this VLAN?
0 = Customer VLAN Tag
1 = Service VLAN Tag.

6 Outer PCP 3 When packet has
a VLAN.

The packets outermost VLAN PCP field.

7 Outer DEI 1 When packet has
a VLAN.

The packets outermost VLAN DEI field.

73 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

8 Inner VID 12 When packet has
a two VLANs.

The packes innermost VLAN Identifier
(VID).

9 Inner PCP 3 When packet has
a two VLANs.

The packets innermost VLAN PCP field.

10 Inner DEI 1 When packet has
a two VLANs.

The packets innermost VLAN DEI field.

11 IPv4 SA 32 When L2 frame
holds a IPv4
packet.

IPv4 Source Address.

12 IPv4 DA 32 When L2 frame
holds a IPv4
packet.

IPv4 Destination Address.

13 IPv6 SA 128 When L2 frame
holds a IPv6
packet.

IPv6 Source Address.

14 IPv6 DA 128 When L2 frame
holds a IPv6
packet.

IPv6 Destination Address.

15 Outer MPLS 20 When L2 frame
holds a MPLS
packet.

Outermost MPLS label.

16 TOS 8 When packet is a
IPv4 or IPv6

IPv4 or IPv6 Type-Of-Service (TOS)
byte.

17 TTL 8 When packet is
a IPv4,IPv6 or
MPLS

IPv4, IPv6 or MPLS Time-To-Live (TTL)
byte.

18 L4 Source Port 16 When packet is
a IPv4 or IPv6
and UDP or TCP
L4 protocol is
present

L4 TCP or UDP packets source port.

19 L4 Destination
Port

16 When packet is
a IPv4 or IPv6
and UDP or TCP
L4 protocol is
present

L4 TCP or UDP packets destination port.

20 MLD Address 128 When packet
is a IPv6 and
the ICMPv6
type is equal to
130,131,132

The MLD headers Multicast Address
field.

21 ICMP Type 8 When L4 packet
is a ICMP packet

ICMP Type.

22 ICMP Code 8 When L4 packet
is a ICMP packet

ICMP Code.

23 IGMP Type 8 When L4 packet
is a IGMP

IGMP Type.

24 IGMP Group Ad-
dress

32 When L4 packet
is a IGMP

IGMP Group Address.

25 L4 Protocol 8 When packet is a
IPv4 or IPv6

IPv4, IPv6 L4 protocol type byte.

26 Ethernet Type 16 Always valid The packets Ethernet Type after VLANs.

74 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Bit in
Select
Bit-
mask

Field Name Size
in
Bits

When is field
valid?

Description

27 L4 Type 3 Always valid The type of an L4 packet.
0 = Not any type in this list.
1 = IPv6 or IPv4 packet but L4 proto-

col is not UDP, TCP, IGMP, ICMP,
ICMPv6 or MLD

2 = UDP in IPv4/6
3 = TCP in IPv4/6
4 = IGMP in IPv4/6
5 = ICMP in IPv4/6
6 = ICMPv6 in IPv6, excluding MLD
7 = MLD - sub protocol of ICMPv6

28 L3 Type 2 Always valid The type of an L3 packet.
0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4,IPv6 or MPLS.

29 Source Port 6 Always valid The source port of the packet.
30 Rule Pointer 4 Always valid The rule pointer (index in the Ingress

Configurable ACL N Rules Setup).

11.2.5 Example Of Selecting Fields For Configurable Ingress ACL Table 3

Since this ACL engine can select up to 6 fields. This is done by setting bits in the rule pointers fieldSelect-
Bitmask. Lets look at a few examples of the layout of the 222 bits in search key looks like when different
fields are selected.

Example ACL with TOS Byte

In this example we only want to create a rule with one field which is the TOS. This means that the
fieldSelectBitmask, which is 31 bits , will be set as follows 10000000000000000 in binary format (Hex
value of 0x10000) and the lookup data will be located as follows:

0 TOS Valid
- Width : 8 1
9 8 1 0 0

Table 11.26: Hash Key Example for TOS Byte

Example with Destiantion MAC Address and Outer VLAN VID

In this example we want to create a rule which with two fields which are destiantion MAC address and
outermost VLAN Identifier. This means that the fieldSelectBitmask, which is 31 bits , will be set as follows
101 in binary format (Hex value of 0x5) and the lookup data will be located as follows:

0 MAC DA Outer VID Valid
- Width : 48 Width : 12 2
62 61 14 13 2 1 0

Table 11.27: Hash Key Example for Destiantion MAC Address and Outer LAN VID

Example of Simple L2 ACL

In this example we want to create a rule which with three L2 fields which are Destiantion MAC address,
source MAC address and Ethernet Type. Typically this is a L2 ACL Engine. This means that the field-

75 Packet Architects AB

CHAPTER 11. CLASSIFICATION

SelectBitmask, which is 31 bits , will be set as follows 100000000000000000000000011 in binary format
(Hex value of 0x4000003) and the lookup data will be located as follows:

0 Ethernet Type MAC DA MAC SA Valid
- Width : 16 Width : 48 Width : 48 3

115 114 99 98 51 50 3 2 0

Table 11.28: Hash Key Example for Simple L2 ACL

Example of L3 IPv4 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address,
source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means
that the fieldSelectBitmask, which is 31 bits , will be set as follows 10010000000000001100000000000 in
binary format (Hex value of 0x12001800) and the lookup data will be located as follows:

0 L3 Type IPv4 DA IPv4 SA L4 Protocol Valid
- Width : 2 Width : 32 Width : 32 Width : 8 4
78 77 76 75 44 43 12 11 4 3 0

Table 11.29: Hash Key Example for L3 IPv4 ACL

Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port,
L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the
fieldSelectBitmask, which is 31 bits , will be set as follows 110010000011000000000000000000 in binary
format (Hex value of 0x320c0000) and the lookup data will be located as follows:

0 Source Port L3 Type L4 Protocol L4 Destination Port L4 Source Port Valid
- Width : 6 Width : 2 Width : 8 Width : 16 Width : 16 5
53 52 47 46 45 44 37 36 21 20 5 4 0

Table 11.30: Hash Key Example for L4 ACL

Example of Openflow Entry

In this example we want to create a rule which looks like an Openflow entry. This can be done by selecing
source port, destiantion MAC, source MAC, Ethernet Type, inner VLAN, outer VLAN, L3 Type, IPv4 SA,
IPv4 DA, L4 protocol, L4 Source port and L4 Destiantion port and finally the rule pointer. All in all
13 fields are selected. This means that the fieldSelectBitmask, which is 31 bits , will be set as follows
1110110000011000001100100000111 in binary format (Hex value of 0x760c1907) and the lookup data will
be located as follows:

0 Source Port MAC DA MAC SA Outer VID Inner VID Ethernet Type L3 Type
- Width : 6 Width : 48 Width : 48 Width : 12 Width : 12 Width : 16 Width : 2

265 264 259 258 211 210 163 162 151 150 139 138 123 122 121

IPv4 SA IPv4 DA L4 Protocol L4 Destination Port L4 Source Port Rule Pointer Valid
Width : 32 Width : 32 Width : 8 Width : 16 Width : 16 Width : 4 13
120 89 88 57 56 49 48 33 32 17 16 13 12 0

Table 11.31: Hash Key Example for Openflow Entry

11.2.6 ACL Search

The hash key is used to perform a lookup using the D-left hashing function described in detail in chapter
D-left Lookup.

76 Packet Architects AB

CHAPTER 11. CLASSIFICATION

Before the hash key is used the mask in Ingress Configurable ACL N Search Mask is applied.

D-left calculates two hash values from the hash key. These hash values are then used to index the Ingress
Configurable ACL N Small Table and Ingress Configurable ACL N Large Table . The hash
calculations are described in section Hash function for Configurable ACL.

In addition to the D-left search the hash key is also used to search in the Ingress Configurable ACL N
TCAM .

11.2.7 ACL Actions

Once a hit has been determined by any of the searches above, the answer is read out from the corresponding
answer entry. If it was a D-left hash hit then the answer actions is part of the hash memories (Ingress
Configurable ACL N Small Table , Ingress Configurable ACL N Large Table). If it was a hit in the
TCAM then the Ingress Configurable ACL N TCAM Answer is used.

The behavior for multiple hits is configured in Ingress Configurable ACL N Selection .

The statistics counter which can be updated are located in the Ingress Configurable ACL Match
Counter

The MAC operation to be done on the packet is located in the table Egress MAC Operations which
enables changing both Source and Destination MAC address. A example use case for this operation is to
do routing from the ACL table.

11.3 Multiple ACL Lookups

The section above describes a single ACL Lookup. There are however 4parallel ACL lookups. The func-
tionality in the different lookup engines is the same with the exception that ACL engine 0 has seperate
keys for IGMP, ICMP or MLD packets which are not available in the other engines.

Each of the ACL engines has its own rule configuration as well as its own hash and TCAM tables. The
hash and TCAM table sizes and search data width for the different engines are as follows.

By using the same rules for multiple engines the table space for a rule can be extended.

11.3.1 Multiple Actions

If the parallel ACL engines have multiple matches the result actions from each search engine can take
effect. How multiple actions are handled depends on the type of action.

Any Match

If one or more ACL engines matches and has this action set then the action will take effect.

Action Field Ingress
Acl 0
Has
Ac-
tion

Ingress
Acl 1
Has
Ac-
tion

Ingress
Acl 2
Has
Ac-
tion

Ingress
Acl 3
Has
Ac-
tion

noLearning Yes Yes Yes Yes
decTtl Yes Yes Yes Yes
dropEnable Yes Yes Yes Yes
sendToCpu Yes Yes Yes Yes

Table 11.32: Actions that will take effect if one or more is set.

77 Packet Architects AB

CHAPTER 11. CLASSIFICATION

First Match or Priority

If multiple ACL engines matches and has this action set then the value from the lowest numbered engine
will be used.If an entry has the priority field set this value will be used and the values which do not
have priority set will be ignored.If multiple matches have the priority field set then value from the highest
numbered engine will be used.

Enable Field Priority Field Value Field Ingress
Acl 0
Has
Ac-
tion

Ingress
Acl 1
Has
Ac-
tion

Ingress
Acl 2
Has
Ac-
tion

Ingress
Acl 3
Has
Ac-
tion

forceVidValid forceVidPrio forceVid Yes Yes Yes Yes
forceQueue forceQueuePrio eQueue Yes Yes Yes Yes
forceColor forceColorPrio color Yes Yes Yes Yes
mmpValid mmpOrder mmpPtr Yes Yes Yes Yes
macOp macPrio macOpPtr Yes Yes Yes Yes
updateCfiDei cfiDeiPrio newCfiDeiValue Yes Yes Yes Yes
updatePcp pcpPrio newPcpValue Yes Yes Yes Yes
updateVid vidPrio newVidValue Yes Yes Yes Yes
updateEType ethPrio newEthType Yes Yes Yes Yes
imPrio inputMirror destInputMirror Yes Yes Yes Yes
sendToPort N/A destPort Yes Yes Yes Yes
updateCounter N/A counter Yes Yes Yes Yes

Table 11.33: The lowest numbered takes effect if no priority else the highest numbered with priority set.

Counter Update

All matches that have counter update action, updateCounter set will take effect. Each counter pointed
to will be updated. If multiple actions point to the same counter then the counter value will only be
incremented by one.

Send To Port

All matches that have an action sendToPort will take effect by setting the port number in the packet
destination port mask, possibly resulting in a multicast.

Send To CPU

If any match has the sendToCpu action set it will take effect. When the To CPU Tag is used the reason
code will indicate table index in the lowest numbered engine.

Ingress Admission Control Pointer

If there are multiple matches with actions to set the MMP pointer, mmpPointer then the selection will be
done based on the mmpOrder field. This selection is described in Ingress Admission Control.

11.3.2 ACL Routing

This ACL engine can be used to achieve routing functionality. This is done by:

• Setup the ACLs lookup table search data to use the routers MAC DA and destination IP address in a
single entry. If needed the TCAM entries of the ACLs can be used to achieve Longest Prefix Match
(LPM) lookups.

• If LPM lookups are needed then place the entries with the longest prefix at the lowest entries (starting
at entry 0) in the TCAM. The TCAM tables are searched from the lowest entry (0) to the highest
entry and hence will hit the entry with the longest prefix first.

78 Packet Architects AB

CHAPTER 11. CLASSIFICATION

• If both IPv4 and IPv6 are needed then two seperate ACL tables need to be setup. Include the L3
Type in the searches to avoid false positives.

• Optionally the VID from the incoming packet can be added to the match if the router is only available
on a certain VID.

• If a default route shall be used then setup a TCAM entry as the last in TCAM table where none of
the IP bits are compared (But the MAC DA bits shall be compared).

• Turn on the IP checksum checker in register Check IPv4 Header Checksum.

• Use four actions listed below to achieve routing, both IPv6 and IPv4 routing are supported.

– Use the action sendToPort to send the packet to the correct destination port.

– Use the action macOp and point into the Egress MAC Operations where the egress packet
modification operation should be set as follows:

∗ The new MAC SA shall be copied from the original MAC DA.

∗ The new MAC DA shall be taken from the table. This is the Next Hop MAC DA address.

– Use the action decTtl to decrement the incoming packets TTL. If the new TTL ends up being
zero then the packet can either be sent to the CPU (using register Expired TTL to CPU) or
dropped. The drop counter is recorded in Expired TTL Drop.

– For statistics use the action updateCounter

11.3.3 Default Port ACL action

When a port has the field enableDefaultPortAcl set then once a packet misses the ingress ACL lookup,
on this source port, this action will be carried out. The action to be carried out is specified in the register
Source Port Default ACL Action. The actions are the same which can be done for the ACL Lookup.
If the bit is set in field forcePortAclAction then all packets coming in on this source port are subjected
to the actions specified in Source Port Default ACL Action. This force ACL default action overrides all
other ingress ACL actions/decisions.

79 Packet Architects AB

CHAPTER 11. CLASSIFICATION

80 Packet Architects AB

Chapter 12

VLAN and Packet Type Filtering

This chapter gives an overview of the filtering options available on ingress and egress. Filtering allows
different types of packets to be accepted or dropped.

A filter is applied at the source port as packets enter the switch core. This is set up in the Ingress Port
Packet Type Filter register.

When the packet is ready to be queued, the Ingress Egress Port Packet Type Filter is applied for each
egress port the packet is to be queued onto. If the packet is dropped then a drop counter is updated for
each packet which is dropped.

Before a packet is to be sent out, the egress port it is checked in the Egress Port Configuration to see
if the packet is allowed to be sent out.

The settings are unique for each port.

A packet of a certain type may be allowed to enter on a certain ingress port. But this does not mean
the frame is ultimately allowed to be transmit, since ingress and egress port filters are setup indepen-
dently.

In addition to the egress port packet type filter, there is also a source port filter on the egress port. This is
found in srcPortFilter. The source port filter on the egress port allows a user to decide whether packets
from a certain source port are allowed to be sent out on an egress port. The outcome of the filtering
options are either to drop a packet, or to allow it.

Since the source port table, vlan table and egress port configuration can all have VLAN operations which
changes the packet, it is important to understand on which packet the filtering is actually done.

• The source port filtering is done on the packet as it enters the switch without any packet modifica-
tions.

• The ingress egress port filtering is done on the packet after the source port and VLAN table VLAN
operations. The L2 Multicast is calculated in the same way as MBSC register L2 Multicast Han-
dling.

• The egress port filtering is done after all the VLAN operations has been carried out including the
egress ports own VLAN operations.

Note that if a user defined VLAN tag is pushed, it will always be regarded as a C-VLAN tag by the
filtering.

81

CHAPTER 12. VLAN AND PACKET TYPE FILTERING

82 Packet Architects AB

Chapter 13

Attack Prevention

The switch has the possibility to decode TCP/UDP packets and detect and drop packets that matches
patterns in order to prevent security or DOS attacks.

If a packet is a TCP/UDP packet (IPv4 or IPv6) the TCP/UDP flags will be compared to all the TCP/UDP
Flag Rules. The flag comparison can also be combined with a check if the IP Source address equals the IP
Destination address. There is also a check if the TCP/UDP source port number matches the TCP/UDP
destination port number.

The switch also provides a length check for ICMP packets. ICMP Length Check allows the packet to be
dropped if the ICMP protocol data size is more than a certain bytes.

If a packet matches any of these rules the packet will be dropped and the Attack Prevention Drop will
be incremented. When a packet fails either the ICMP length check or the TCP/UDP flag check, the ACL
rules can still be hit. However, the ACL action to send the packet to the CPU or any egress port will only
override drop decisions based on TCP/UDP rules. In other words, if a packet fails the ICMP length check,
it cannot be redirected to an egress port using ACL actions.

83

CHAPTER 13. ATTACK PREVENTION

84 Packet Architects AB

Chapter 14

Hashing

Hashing is used to enable the use of SRAM memories instead of using CAMs for lookups.

14.1 Hashing Functions

This section describes the hash functions used in this core.

Before each hash is calculated the values are masked by doing a AND function with the masks setup in
Mask MAC Table Lookup.

14.1.1 MAC Table Hashing

The hash function receives the destination MAC address and GID as an input and it returns a hash with
the same bit width as the address for the L2 DA Hash Lookup Table divided by number of buckets (8).
The table is divided into equal sized parts/buckets which are readout in parallel.

Hash Function for MAC Table

The XOR hash function splits the key into 5 parts, each with the width of the hash value. To obtain the
hash value a bitwise XOR is performed on all the parts.

When learning random MAC addresses the hash function results in an average utilization of the L2 table
of 44% (including/excluding multicast addresses does not change this). When learning sequential MAC
addresses (such as in the RFC2889) the utilization is 100%.

Python code for the hashing function is shown below as well as a test case to clarify how the key is
calculated.

def c a l c l 2 h a s h (key) :
””” key : 60 b i t s hash key

key [5 9 : 4 8] = GID
key [4 7 : 0] = MAC

f o l d count = 5
r e t u r n s : 12 b i t s hash v a l u e

”””
ha shva l = key & 0b111111111111
ha shva l = ha shva l ˆ (key>>12)
ha shva l = ha shva l & 0b111111111111
ha shva l = ha shva l ˆ (key>>24)
ha shva l = ha shva l & 0b111111111111
ha shva l = ha shva l ˆ (key>>36)
ha shva l = ha shva l & 0b111111111111
ha shva l = ha shva l ˆ (key>>48)
ha shva l = ha shva l & 0b111111111111

85

CHAPTER 14. HASHING

return ha shva l

def mac s t r 2 i n t (mac adr) :
””” Conver t E the rne t MAC add r e s s from s t r i n g format , e . g . ’ 4 6 : 6 1 : 6 2 : bc : 8 4 : dd ’
to i n t e g e r . ”””
hx = ’ ’ . j o i n (mac adr . s p l i t (’ : ’))
return i n t (hx , 1 6)

def l 2 h a s h (g id , mac) :
””” Ca l c u l a t e i ndex i n t o L2 hash t a b l e from GID and MAC add r e s s .

Both pa ramete r s must be i n t e g e r s ”””
key = (g i d & 0 x f f f) << 48
key |= mac & 0 x f f f f f f f f f f f f
return c a l c l 2 h a s h (key)

def l 2 h a s h t e s t () :
Simple t e s t o f the hash f u n c t i o n to c l a r i f y how the key i s c a l c u l a t e d .
MAC: 4 6 : 6 1 : 6 2 : bc : 8 4 : dd (l e f tmo s t byte i s f i r s t by te r e c e i v e d)
GID :1125
key = (1125)<< 48 | 0 x466162bc84dd
ha shva l = c a l c l 2 h a s h (key) # the hash v a l u e i s used as i ndex i n t o the L2 DA Hash Table
a s s e r t h a s h va l == 3700

14.1.2 Hash function for Ingress Configurable ACL 0

The hash function recevies the lookup key created by selecting the fields from the packet determined by
the Ingress Configurable ACL 0 Rules Setup The lookup key is up to 222 bits wide. The XOR hash
function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise
XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is
calculated.

de f c a l c c o n f A c l sm a l l 0 h a s h (key) :
””” key : 222 b i t s hash key

f o l d count = 37
r e t u r n s : 6 b i t s hash v a l u e

”””
ha shva l = key & 0b111111
ha shva l = ha shva l ˆ (key>>6)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>12)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>18)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>24)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>30)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>36)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>42)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>48)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>54)

86 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>60)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>66)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>72)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>78)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>84)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>90)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>96)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>102)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>108)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>114)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>120)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>126)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>132)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>138)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>144)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>150)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>156)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>162)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>168)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>174)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>180)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>186)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>192)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>198)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>204)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>210)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>216)
ha shva l = ha shva l & 0b111111
r e t u r n ha shva l

87 Packet Architects AB

CHAPTER 14. HASHING

de f c o n fA c l sma l l 0 h a s h (d e s t i n a t i o n a d d r e s s) :
””” Ca l c u l a t e i ndex i n t o c o n fA c l sma l l 0 hash t a b l e from

the De s t i n a t i o n Address . The paramete r must be an i n t e g e r . ”””
key = d e s t i n a t i o n a d d r e s s & 0 x 3 f
r e t u r n c a l c c o n f A c l sm a l l 0 h a s h (key)

de f c a l c c o n f A c l l a r g e 0 h a s h (key) :
””” key : 222 b i t s hash key

f o l d count = 25
r e t u r n s : 9 b i t s hash v a l u e

”””
ha shva l = key & 0b111111111
ha shva l = ha shva l ˆ (key>>9)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>18)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>27)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>36)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>45)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>54)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>63)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>72)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>81)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>90)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>99)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>108)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>117)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>126)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>135)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>144)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>153)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>162)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>171)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>180)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>189)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>198)
ha shva l = ha shva l & 0b111111111

88 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l ˆ (key>>207)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>216)
ha shva l = ha shva l & 0b111111111
r e t u r n ha shva l

d e f c o n fA c l l a r g e 0 h a s h (d e s t i n a t i o n a d d r e s s) :
””” Ca l c u l a t e i ndex i n t o c o n f A c l l a r g e 0 hash t a b l e from

the De s t i n a t i o n Address . The paramete r must be an i n t e g e r . ”””
key = d e s t i n a t i o n a d d r e s s & 0 x 3 f
r e t u r n c a l c c o n f A c l l a r g e 0 h a s h (key)

de f c o n fA c l 0 h a s h t e s t () :
key = 1077741769851287329901319011142359533502979116624325718010924180272
ha shva l = c on fA c l sma l l 0 h a s h (key)
a s s e r t h a s h va l == 58

ha shva l = c o n fA c l l a r g e 0 h a s h (key)
a s s e r t h a s h va l == 58

14.1.3 Hash function for Ingress Configurable ACL 1

The hash function recevies the lookup key created by selecting the fields from the packet determined by
the Ingress Configurable ACL 1 Rules Setup The lookup key is up to 322 bits wide. The XOR hash
function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise
XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is
calculated.

de f c a l c c o n f A c l sm a l l 1 h a s h (key) :
””” key : 322 b i t s hash key

f o l d count = 65
r e t u r n s : 5 b i t s hash v a l u e

”””
ha shva l = key & 0b11111
ha shva l = ha shva l ˆ (key>>5)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>10)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>15)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>20)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>25)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>30)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>35)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>40)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>45)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>50)
ha shva l = ha shva l & 0b11111

89 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l ˆ (key>>55)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>60)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>65)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>70)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>75)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>80)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>85)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>90)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>95)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>100)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>105)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>110)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>115)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>120)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>125)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>130)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>135)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>140)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>145)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>150)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>155)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>160)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>165)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>170)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>175)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>180)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>185)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>190)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>195)

90 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>200)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>205)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>210)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>215)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>220)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>225)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>230)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>235)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>240)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>245)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>250)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>255)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>260)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>265)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>270)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>275)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>280)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>285)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>290)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>295)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>300)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>305)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>310)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>315)
ha shva l = ha shva l & 0b11111
ha shva l = ha shva l ˆ (key>>320)
ha shva l = ha shva l & 0b11111
r e t u r n ha shva l

d e f c o n fA c l sma l l 1 h a s h (d e s t i n a t i o n a d d r e s s) :
””” Ca l c u l a t e i ndex i n t o c o n fA c l sma l l 1 hash t a b l e from

the De s t i n a t i o n Address . The paramete r must be an i n t e g e r . ”””
key = d e s t i n a t i o n a d d r e s s & 0 x 3 f

91 Packet Architects AB

CHAPTER 14. HASHING

r e t u r n c a l c c o n f A c l sm a l l 1 h a s h (key)

de f c a l c c o n f A c l l a r g e 1 h a s h (key) :
””” key : 322 b i t s hash key

f o l d count = 41
r e t u r n s : 8 b i t s hash v a l u e

”””
ha shva l = key & 0b11111111
ha shva l = ha shva l ˆ (key>>8)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>16)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>24)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>32)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>40)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>48)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>56)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>64)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>72)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>80)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>88)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>96)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>104)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>112)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>120)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>128)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>136)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>144)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>152)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>160)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>168)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>176)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>184)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>192)
ha shva l = ha shva l & 0b11111111

92 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l ˆ (key>>200)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>208)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>216)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>224)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>232)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>240)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>248)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>256)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>264)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>272)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>280)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>288)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>296)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>304)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>312)
ha shva l = ha shva l & 0b11111111
ha shva l = ha shva l ˆ (key>>320)
ha shva l = ha shva l & 0b11111111
r e t u r n ha shva l

d e f c o n fA c l l a r g e 1 h a s h (d e s t i n a t i o n a d d r e s s) :
””” Ca l c u l a t e i ndex i n t o c o n f A c l l a r g e 1 hash t a b l e from

the De s t i n a t i o n Address . The paramete r must be an i n t e g e r . ”””
key = d e s t i n a t i o n a d d r e s s & 0 x 3 f
r e t u r n c a l c c o n f A c l l a r g e 1 h a s h (key)

de f c o n fA c l 1 h a s h t e s t () :
key = 7948632481105005514649167053237105788243652429523452875178766199589483925838866757085957491812313
ha shva l = c on fA c l sma l l 1 h a s h (key)
a s s e r t h a s h va l == 31

ha shva l = c o n fA c l l a r g e 1 h a s h (key)
a s s e r t h a s h va l == 62

14.1.4 Hash function for Ingress Configurable ACL 2

The hash function recevies the lookup key created by selecting the fields from the packet determined by
the Ingress Configurable ACL 2 Rules Setup The lookup key is up to 222 bits wide. The XOR hash
function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise
XOR is performed on all the parts.

93 Packet Architects AB

CHAPTER 14. HASHING

Python code for the hashing function is shown below as well as a test case to clarify how the key is
calculated.

de f c a l c c o n f A c l sm a l l 2 h a s h (key) :
””” key : 222 b i t s hash key

f o l d count = 56
r e t u r n s : 4 b i t s hash v a l u e

”””
ha shva l = key & 0b1111
ha shva l = ha shva l ˆ (key>>4)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>8)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>12)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>16)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>20)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>24)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>28)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>32)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>36)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>40)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>44)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>48)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>52)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>56)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>60)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>64)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>68)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>72)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>76)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>80)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>84)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>88)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>92)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>96)
ha shva l = ha shva l & 0b1111

94 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l ˆ (key>>100)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>104)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>108)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>112)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>116)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>120)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>124)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>128)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>132)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>136)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>140)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>144)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>148)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>152)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>156)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>160)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>164)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>168)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>172)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>176)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>180)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>184)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>188)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>192)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>196)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>200)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>204)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>208)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>212)

95 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>216)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>220)
ha shva l = ha shva l & 0b1111
r e t u r n ha shva l

d e f c o n fA c l sma l l 2 h a s h (d e s t i n a t i o n a d d r e s s) :
””” Ca l c u l a t e i ndex i n t o c o n fA c l sma l l 2 hash t a b l e from

the De s t i n a t i o n Address . The paramete r must be an i n t e g e r . ”””
key = d e s t i n a t i o n a d d r e s s & 0 x 3 f
r e t u r n c a l c c o n f A c l sm a l l 2 h a s h (key)

de f c a l c c o n f A c l l a r g e 2 h a s h (key) :
””” key : 222 b i t s hash key

f o l d count = 32
r e t u r n s : 7 b i t s hash v a l u e

”””
ha shva l = key & 0b1111111
ha shva l = ha shva l ˆ (key>>7)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>14)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>21)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>28)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>35)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>42)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>49)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>56)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>63)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>70)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>77)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>84)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>91)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>98)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>105)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>112)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>119)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>126)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>133)

96 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>140)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>147)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>154)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>161)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>168)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>175)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>182)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>189)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>196)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>203)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>210)
ha shva l = ha shva l & 0b1111111
ha shva l = ha shva l ˆ (key>>217)
ha shva l = ha shva l & 0b1111111
r e t u r n ha shva l

d e f c o n fA c l l a r g e 2 h a s h (d e s t i n a t i o n a d d r e s s) :
””” Ca l c u l a t e i ndex i n t o c o n f A c l l a r g e 2 hash t a b l e from

the De s t i n a t i o n Address . The paramete r must be an i n t e g e r . ”””
key = d e s t i n a t i o n a d d r e s s & 0 x 3 f
r e t u r n c a l c c o n f A c l l a r g e 2 h a s h (key)

de f c o n fA c l 2 h a s h t e s t () :
key = 1296711740631024608958088559475109863983766685652464565620895604170
ha shva l = c on fA c l sma l l 2 h a s h (key)
a s s e r t h a s h va l == 10

ha shva l = c o n fA c l l a r g e 2 h a s h (key)
a s s e r t h a s h va l == 119

14.1.5 Hash function for Ingress Configurable ACL 3

The hash function recevies the lookup key created by selecting the fields from the packet determined by
the Ingress Configurable ACL 3 Rules Setup The lookup key is up to 222 bits wide. The XOR hash
function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise
XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is
calculated.

de f c a l c c o n f A c l sm a l l 3 h a s h (key) :
””” key : 222 b i t s hash key

f o l d count = 56
r e t u r n s : 4 b i t s hash v a l u e

”””

97 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = key & 0b1111
ha shva l = ha shva l ˆ (key>>4)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>8)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>12)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>16)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>20)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>24)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>28)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>32)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>36)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>40)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>44)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>48)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>52)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>56)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>60)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>64)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>68)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>72)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>76)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>80)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>84)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>88)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>92)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>96)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>100)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>104)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>108)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>112)
ha shva l = ha shva l & 0b1111

98 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l ˆ (key>>116)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>120)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>124)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>128)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>132)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>136)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>140)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>144)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>148)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>152)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>156)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>160)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>164)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>168)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>172)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>176)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>180)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>184)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>188)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>192)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>196)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>200)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>204)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>208)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>212)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>216)
ha shva l = ha shva l & 0b1111
ha shva l = ha shva l ˆ (key>>220)
ha shva l = ha shva l & 0b1111
r e t u r n ha shva l

d e f c o n fA c l sma l l 3 h a s h (d e s t i n a t i o n a d d r e s s) :

99 Packet Architects AB

CHAPTER 14. HASHING

””” Ca l c u l a t e i ndex i n t o c o n fA c l sma l l 3 hash t a b l e from
the De s t i n a t i o n Address . The paramete r must be an i n t e g e r . ”””

key = d e s t i n a t i o n a d d r e s s & 0 x 3 f
r e t u r n c a l c c o n f A c l sm a l l 3 h a s h (key)

de f c a l c c o n f A c l l a r g e 3 h a s h (key) :
””” key : 222 b i t s hash key

f o l d count = 37
r e t u r n s : 6 b i t s hash v a l u e

”””
ha shva l = key & 0b111111
ha shva l = ha shva l ˆ (key>>6)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>12)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>18)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>24)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>30)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>36)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>42)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>48)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>54)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>60)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>66)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>72)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>78)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>84)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>90)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>96)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>102)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>108)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>114)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>120)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>126)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>132)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>138)

100 Packet Architects AB

CHAPTER 14. HASHING

ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>144)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>150)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>156)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>162)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>168)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>174)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>180)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>186)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>192)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>198)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>204)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>210)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>216)
ha shva l = ha shva l & 0b111111
r e t u r n ha shva l

d e f c o n fA c l l a r g e 3 h a s h (d e s t i n a t i o n a d d r e s s) :
””” Ca l c u l a t e i ndex i n t o c o n f A c l l a r g e 3 hash t a b l e from

the De s t i n a t i o n Address . The paramete r must be an i n t e g e r . ”””
key = d e s t i n a t i o n a d d r e s s & 0 x 3 f
r e t u r n c a l c c o n f A c l l a r g e 3 h a s h (key)

de f c o n fA c l 3 h a s h t e s t () :
key = 67062193431601968380129857150847957937108720823777759090559833676
ha shva l = c on fA c l sma l l 3 h a s h (key)
a s s e r t h a s h va l == 11

ha shva l = c o n fA c l l a r g e 3 h a s h (key)
a s s e r t h a s h va l == 21

14.1.6 Hash function for Egress Vlan Translation

The hash function receives the outermost VID of the modified packet at egress, the egress port number,
along with the VLAN Ethernet type (C or S tag). The XOR hash function splits the key into parts each with
the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is
calculated.

def c a l c e g r e s s V l a nT r a n s l a t i o n sm a l l h a s h (outermostVidType ,
outermostVid ,
d s tPo r t) :

101 Packet Architects AB

CHAPTER 14. HASHING

””” key : 19 b i t s hash key
f o l d count = 4
r e t u r n s : 6 b i t s hash v a l u e

”””
key = 0
key = key << 1 | (outermostVidType & 0x1)
key = key << 12 | (oute rmostV id & 0 x f f f)
key = key << 6 | (d s tPo r t & 0 x3 f)
ha sh va l = key & 0b111111
ha shva l = ha shva l ˆ (key>>6)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>12)
ha shva l = ha shva l & 0b111111
ha shva l = ha shva l ˆ (key>>18)
ha shva l = ha shva l & 0b111111
return ha shva l

def e g r e s s V l a nT r a n s l a t i o n sma l l h a s h (outermostVidType ,
outermostVid ,
d s tPo r t) :

””” Ca l c u l a t e i ndex i n t o e g r e s s V l a nT r a n s l a t i o n sma l l hash t a b l e from
the d i f f e r e n t f i e l d s . The paramete r must be an i n t e g e r . ”””

return c a l c e g r e s s V l a nT r a n s l a t i o n sm a l l h a s h (outermostVidType=outermostVidType ,
oute rmostV id=outermostVid ,
d s tPo r t=ds tPo r t)

def c a l c e g r e s s V l a nT r a n s l a t i o n l a r g e h a s h (outermostVidType ,
outermostVid ,
d s tPo r t) :

””” key : 19 b i t s hash key
f o l d count = 3
r e t u r n s : 9 b i t s hash v a l u e

”””
key = 0
key = key << 1 | (outermostVidType & 0x1)
key = key << 12 | (oute rmostV id & 0 x f f f)
key = key << 6 | (d s tPo r t & 0 x3 f)
ha sh va l = key & 0b111111111
ha shva l = ha shva l ˆ (key>>9)
ha shva l = ha shva l & 0b111111111
ha shva l = ha shva l ˆ (key>>18)
ha shva l = ha shva l & 0b111111111
return ha shva l

def e g r e s s V l a nT r a n s l a t i o n l a r g e h a s h (outermostVidType ,
outermostVid ,
d s tPo r t) :

””” Ca l c u l a t e i ndex i n t o e g r e s s V l a nT r a n s l a t i o n l a r g e hash t a b l e from
the d i f f e r e n t f i e l d s . The paramete r must be an i n t e g e r . ”””

return c a l c e g r e s s V l a nT r a n s l a t i o n l a r g e h a s h (outermostVidType=outermostVidType ,
oute rmostV id=outermostVid ,
d s tPo r t=ds tPo r t)

102 Packet Architects AB

CHAPTER 14. HASHING

def e g r e s s V l a nT r a n s l a t i o n h a s h t e s t () :
d s tPo r t = 19
oute rmostV id = 639
outermostVidType = 1

ha shva l = e g r e s s V l a nT r a n s l a t i o n sma l l h a s h (outermostVidType=outermostVidType ,
oute rmostV id=outermostVid ,
d s tPo r t=ds tPo r t)

a s s e r t h a s h va l == 36

ha shva l = e g r e s s V l a nT r a n s l a t i o n l a r g e h a s h (outermostVidType=outermostVidType ,
oute rmostV id=outermostVid ,
d s tPo r t=ds tPo r t)

a s s e r t h a s h va l == 413

103 Packet Architects AB

CHAPTER 14. HASHING

104 Packet Architects AB

Chapter 15

D-left Lookup

D-left is a hash table search algorithm that reduces the risk of hash collisions by using two hash tables
each indexed by a separate hash key.

This implementation uses two hash tables, one smaller and one larger, combined with a synthesized TCAM
to resolve hash collisions. This is shown in figure 15.1.

The hash search is done by taking a hash key and calculating two hashes from that. The two hash values
are used as index into the small and large hash tables.

Each table has a number of buckets for each hash index. All buckets for the selected index are read out in
parallel. The hash key is then compared with the compareData from each bucket. There is a hit if one of
the buckets compareData matches the hash key. If multiple buckets matches then the highest numbered
bucket is used.

This is done in parallel for both the small and the large table.

In addition the hash key is also searched in the TCAM. In the TCAM search all entries are compared with
the hash and if there are multiple matches then the lowest numbered entry is used.

Since a single search can result in multiple hits in all three tables there is configuration that selects which
table shall be used in this case.

The two hash tables have separate masks which allows some bits to be masked away. For the TCAM there
is a mask per entry.

15.1 Functions using D-left

The following functions use D-left Lookup.

15.1.1 Egress VLAN Translation

The Egress VLAN Translation table:

• The hash tables are Egress VLAN Translation Small Table and Egress VLAN Translation Large
Table. Each of the the hash tables has 2 buckets for each hash index.

• The search data/hash key is the egress port, the outermost VID and the outermost VID Type, a
C-tag (0) or S-tag (1).

• The TCAM is Egress VLAN Translation TCAM.

• The hash functions used to index the Egress VLAN Translation Small Table and Egress VLAN
Translation Large Table are described in section Hash function for Egress VLAN Translation.

• The masks for the hash tables are Egress VLAN Translation Search Mask.

• The configuration for resolving multiple hits is in Egress VLAN Translation Selection.

105

CHAPTER 15. D-LEFT LOOKUP

TCAM

Small
Hash
Table

Large
Hash
Table

Incoming Key

XOR
Hash

XOR
Hash

==
Compare
Entry with

Key

==
Compare
Entry with

Key

Determine Final Hit

Hit Result

Figure 15.1: D-left Function

• While the hash tables stores the answer in the same memories as the lookup key, the TCAM has a
seperate table holding the answer: Egress VLAN Translation TCAM Answer.

15.1.2 Ingress Configurable ACL

The ingress configurable ACL is setup by using the following registers and tables.

• The search data/hash key is the selected packet header fields (see Selectable Packet Fields).

• Hash tables

106 Packet Architects AB

CHAPTER 15. D-LEFT LOOKUP

– The hash functions used to index the hash tables are described in section Hash function for
Configurable ACL.

– Ingress Configurable ACL 0 Small Table

– Ingress Configurable ACL 0 Large Table

– Ingress Configurable ACL 1 Small Table

– Ingress Configurable ACL 1 Large Table

– Ingress Configurable ACL 2 Small Table

– Ingress Configurable ACL 2 Large Table

– Ingress Configurable ACL 3 Small Table

– Ingress Configurable ACL 3 Large Table

• TCAM

– Ingress Configurable ACL 0 TCAM

– Ingress Configurable ACL 1 TCAM

– Ingress Configurable ACL 2 TCAM

– Ingress Configurable ACL 3 TCAM

• Masks for the hash tables

– Ingress Configurable ACL 0 Search Mask

– Ingress Configurable ACL 1 Search Mask

– Ingress Configurable ACL 2 Search Mask

– Ingress Configurable ACL 3 Search Mask

• Configuration for resolving multiple hits

– Ingress Configurable ACL 0 Selection

– Ingress Configurable ACL 1 Selection

– Ingress Configurable ACL 2 Selection

– Ingress Configurable ACL 3 Selection

• The ACL actions are stored in the hash tables but the actions for TCAM hits are stored in a separate
tables

– Ingress Configurable ACL 0 TCAM Answer

– Ingress Configurable ACL 1 TCAM Answer

– Ingress Configurable ACL 2 TCAM Answer

– Ingress Configurable ACL 3 TCAM Answer

107 Packet Architects AB

CHAPTER 15. D-LEFT LOOKUP

108 Packet Architects AB

Chapter 16

Learning and Aging

The switch supports automatic hardware learning and aging as well as software controlled learning and
aging.

• With hardware learning the switch can be functional after reset without any software setup. The
hardware learning engine saves the source port number, the source MAC address with a Global
Identifier (GID) from the VLAN Table in the forwarding information base.

• If the destination MAC address and the GID of a packet is in the L2 forwarding information base,
the L2 forwarding process will know the destination port of this packet.

• If a learned {GID, MAC} has not been hit by a source or destination MAC address for a while, the
hardware aging engine will remove this entry from the table.

• When a learned MAC address is received as MAC SA on a different port than it was setup in the L2
Destination Table, it is considered a port move.

• When the hardware aging is enabled, all non-static entries will be aged out after a certain silent
period. Hardware Learning Configuration configures the initial status of the newly learned entries.

• The software learning and aging feature allows users to fully control the L2 forwarding information
base.

• The hardware learning and aging functions are by default turned on and can be turned off through
the Learning And Aging Enable register.

• When the hardware learning is enabled, all source ports are allowed to get their unknown source MAC
address learned. By setting learningEn field in the Source Port Table to 0 the learning process can
be disabled on the corresponding source port.

• For an unknown MAC DA, dropUnknownDa field in the Source Port Table determines either to
drop the packet or allow it to be flooded.

16.1 L2 Forwarding Information Base (FIB)

Multiple tables in groups are involved in the learning and aging functions when making L2 forwarding
decisions:

16.1.1 Tables for MAC DA lookup

1. L2 Hash tables.

(a) L2 DA Hash Lookup Table

(b) L2 Aging Status Shadow Table

2. L2 Collision tables.

109

CHAPTER 16. LEARNING AND AGING

Configuration Interface

Forwarding
Information

Base

Status
Tables

Ingress
Processing
Pipeline

Learning/Port
move/

SA hit Check

Learning Unit

DA Hit
Update Unit

Aging Unit

W
riteb

ack
C
on

troller

DA based

SA based

Figure 16.1: Learning and Aging Engine

(a) L2 Lookup Collision Table

(b) L2 Aging Collision Shadow Table

3. L2 Destination Table.

4. L2 Multicast Table.

MAC DA lookups are used to find L2 forwarding destinations and the related tables are written as results
from learning or aging functions. The forwarding function relies on a hash algorithm described in Section
MAC Table Hashing and a search algorithm described in Section L2 Destination Lookup. In this core,
destination MAC addresses and GIDs are combined together to create a 60-bit hash key and the hash
function returns a 12-bit hash value.

16.1.2 Status Tables

1. L2 Aging Table

2. L2 Aging Collision Table

The status tables are located inside the learning and aging engine to monitor and maintain the status of
all entries in the FIB. An FIB entry has three status bits:

1. valid: Indicate if a hit in the FIB is valid.

2. stat: Indicate if an entry is static. Static entries cannot be modified by hardware.

3. hit: Indicate either MAC SA or DA has successfully hit this entry since the last aging scan.

When the hardware learning or aging updates the status table, the valid bit will be copied to the shadow
tables in the ingress processing pipeline.

As in Figure 16.1 the FIB can be accessed from three units:

1. From software through the configuration interface: read and write.

110 Packet Architects AB

CHAPTER 16. LEARNING AND AGING

2. Learning and aging unit: read and write.

3. Ingress processing pipeline: read only.

Notice that shadow tables in the FIB have to be updated simultaneously with status tables. Unexpected
behavior will occur if the tables do not have the same content.

16.1.3 Hash Collision Accommodation

In order to solve hash collisions, the L2 DA Hash Lookup Table has 8 buckets each with 4,096 entries.
A given key-hash pair can search in the 8 buckets in parallel by reading from the address that equals the
hash value. The 8 buckets entries are all compared with the {GID,MAC DA} key and if one entry is equal
to the key that entry is considered a match.

Besides the L2 DA Hash Lookup Table, there is an extra L2 Lookup Collision Table in case the number
of hash collisions is more than the L2 DA Hash Lookup Table can handle. For instance, if the hash
function calculated the same hash value for more than 8 keys, the first 8 keys can be accommondated in
the 8 buckets of L2 DA Hash Lookup Table while the rest are stored in the L2 Lookup Collision Table.
Searching in the L2 Lookup Collision Table will return the first entry index that holds the corresponding
key.

Addressing into the L2 Destination Table is based on the hit index from either the L2 DA Hash Lookup
Table or the L2 Lookup Collision Table.

• Hit in the L2 DA Hash Lookup Table: get a 15-bit hit index with the hash value in the lower 12
bits and the bucket number in the higher 3 bits. The corresponding L2 Destination Table address
equals the hit index.

• Hit in the L2 Lookup Collision Table: get a 6-bit hit index from the hit entry address. The
corresponding L2 Destination Table address is (hit index + 32,768).

16.2 Hardware Learning and Aging

16.2.1 Learning Unit

The core has a dedicated learning unit in hardware, which is tasked with learning L2 MAC addresses
combined with GIDs as entries to do L2 destination port lookups. A new learning request is created and
processed in several steps:

1. For every packet a learning check is performed based on its MAC SA and GID and issues learning
requests to the learning unit.

2. If it is a known entry but the hit bit in the status table is 0, the hit bit will be refreshed to 1.

3. If the learning request is to learn a new entry, Hardware Learning Counter will be checked against
the learnLimit in Hardware Learning Configuration. learnLimit limits the maximum number of
entries can be learned on a port.

4. If the maximum learning limit is not reached on a port, the status table lookup will try to provide
an available entry in a certain order:

(a) Find a free entry.

i. Select a free bucket for this hash value.

ii. If all hash buckets are used, select a free collision table entry.

(b) If there is no free entry and lru in the Learning And Aging Enable register is 0, the learning
unit will search in the collision table and overwrite the non-static entries in a round robin order.

(c) If there is no free entry and lru in the Learning And Aging Enable register is 1, the learning
unit will overwrite a least recently used non-static entry as follows:

i. Search in hash buckets for a bucket with hit=0 and stat=0. Return the last match.

111 Packet Architects AB

CHAPTER 16. LEARNING AND AGING

ii. If all buckets have hit=1 or stat=1, search in the collision table for an entry with hit=0
and stat=0. Return the first match.

(d) If all entries are static or have been hit since the last aging scan, overwrite a non-static entry.

i. Search in hash buckets for a bucket with stat=0. Return the last match.

ii. If all buckets are static, search in the collision table for an entry with stat=0 in a round
robin order.

5. If the learning unit failed to accomondate the unknown MAC SA and GID combination, or the learning
limit on a port is reached, the learning request will be ignored and the corresponding MAC SA, GID
and port number will be updated to the Learning Overflow register.

6. If a valid entry is found, the learning unit will link it to the port number from the learning request
as a L2 unicast entry.

7. If the learning request is for a port move, the process will operate on existing non-static entries
directly. For static entries, the Port Move Options register gives optional operations for each
previously learned port.

8. If the learning unit failed to execute port move due to immutable static entry or the learning limit is
reached, the learning request will be ignored and the corresponding MAC SA, GID and port number
will be updated to the Learning Conflict register.

9. A valid learning decision is sent to a writeback bus which manages all decisions from different learning
and aging units. The learning decisions have the highest priority to use the writeback bus.

10. The writeback bus sends decisions to the FIB.

16.2.2 Hardware Learning Exceptions

The switch support fine granular control to allow certain packets with unknown MAC SA address to not
be learned. These settings described below enables a varity of different ways to turn it off on a per packet
basis.

• Source port exceptions.

– If uniqueCpuMac is set to 1, the CPU port cannot be learned.

– If the packet from the CPU port has a from CPU tag, it will bypass L2 lookup hence bypass
the learning process.

– For any source port if its learningEn is set to 0 the learning process is disabled.

• To CPU packet. If the packet is sent to the CPU port with a non-zero reason code. 1

• Classification.

– If the packet hit in a classification rule that override L2 lookup (i.e. force the destination port),
it will not be learned.

– If the packet hit in the Configurable ACL Engine with noLearning enabled.

• Dropped. If the ingress processing drops the packet (post-ingress processing is not counted), the
packet will not be learned unless it is due to the ingress spanning tree drop and the state says
Learning. 2

• Multicast MAC SA. In the switch core a MAC address with the least-significant bit of the first octet
equals 1 (e.g. 01:80:c2:00:00:00) but not equals to ff:ff:ff:ff:ff:ff is marked as Ethernet multicast
address. By default a MAC SA that matches an Ethernet multicast address will not be learned. This
can be configured per port through the learnMulticastSaMac field in the Source Port Table.

1Check all reason codes in Table 28.2
2See more in Chapter Spanning Tree.

112 Packet Architects AB

CHAPTER 16. LEARNING AND AGING

16.2.3 Aging Unit

When a new L2 entry is learned by the hardware learning unit, the initial entry status is from the Hardware
Learning Configuration register. A valid non-static entry will be aged out if no L2 MAC SA/DA lookup
hit it within a certain time and static entries must have software interactions to get aged/changed. By
default a non-static entry will be learned with both hit and valid set to 1 to prevent it from being aged
out immediately. Static entries can be established on a per source port basis by setting the stat field in
Hardware Learning Configuration to 1.

The hardware aging function does a periodic check of the L2 entry status in the L2 Aging Table and the
L2 Aging Collision Table. The waiting period between two checks is tick based 3 and configurable via
the Time to Age register. During an aging check period, the aging unit loops through all entries in the
L2 Aging Table and L2 Aging Collision Table to get the current status. The possible updates are listed
in Table 16.1. If the valid bit (bit 0) is turned to 0 the entry is aged out. An aged out entry can be
learned again.

If the Time to Age register is reconfigured during runtime, the updated tickCnt will not be available
to aging unit until the current aging period is complete. In order to load new values immediately, the
aging unit needs to be restarted via the agingEnable field in the Learning And Aging Enable register.
However, changes to the tick selection are always applied immediately.

Current Status Update Status
0b101 0b001
0b001 0b000(entry cleared)
Other values No update

Table 16.1: Hardware Aging Operations

16.2.4 MAC DA Hit Update Unit

The learning unit has a built-in MAC SA hit update unit to refresh the hit bit while another MAC DA
hit update unit can operate in parallel. The MAC DA hit update unit can be turned on or off by the
daHitEnable field in the Learning And Aging Enable register and works as such:

1. A packet with L2 MAC DA lookup returns a valid and non-static entry issues a hit update request
for the corresponding MAC DA.

2. A hit update FIFO is prepared to buffer the update requests.

3. A hit update request is popped from the FIFO when the writeback bus is free.

4. If the writeback bus keeps busy with learning decisions and causes a buildup in the hit update FIFO,
new hit update requests will be ignored when the FIFO is full.

5. The writeback bus forwards the hit update request to the FIB.

According to Table 16.1, the automatic hit bit update for an non-static L2 entry will keep the hardware
aging unit away from setting the valid bit to 0, hence avoid aging out the entry.

16.3 Software Learning and Aging

Instead of automatic learning and aging, the switch provides an option for software to manipulate learning
and aging behaviors.

16.3.1 Direct Access to FIB

All tables in the FIB allow direct software writes through a configuration interface. However, the learning
and aging engine may constantly update the FIB. Before updating the FIB from the configuration interface
the learning and aging engine needs to be turned off through the Learning And Aging Enable register

3The system ticks are described in Chapter Tick.

113 Packet Architects AB

CHAPTER 16. LEARNING AND AGING

to avoid hazards. An alternative approach is to use reserved static entries as described in Section Software
Reserved Entry.

If the hardware learning unit needs to be turned on again after software setups, it is important to write
to both L2 aging tables and the corresponding shadow tables while setting valid entries. Partial validation
will cause inconsistencies between the L2 forwarding process and the learning and aging engine. Since the
FIB consists of multiple tables it is recommended that the shadow tables are updated in the last step, to
ensure the data consistency.

16.3.2 Software Reserved Entry

If the stat field in the L2 Aging Table is set to 1 and the valid field is set to 0, the corresponding entry
in the FIB is considered as a reserved static entry and can be used for future software configuration. A
reserved static entry is not used for L2 forwarding and is not available as a hardware learning entry.

A typical use case is to pre-allocate entries for L2 multicast. The hardware learning unit can automatically
learn L2 unicast but not L2 multicast. One way to reserve entries for L2 multicast is to create a reserved
static bucket, i.e. choose one bucket from the L2 hash table and make all entries reserved static. This
approach allows the software to update entries in the reserved bucket during traffic without checking hash
collisions, and without turning off the hardware learning and aging engine.

114 Packet Architects AB

Chapter 17

Spanning Tree

Spanning-Tree Protocol (STP) and Multiple Spanning-Tree Protocol (MSTP) support is provided in order
to create loop-free logical topology when several ethernet switches are connected. Through registers the
STP state of the ports can be controlled by the host SW. The default behavior at power up is that spanning
tree is not enabled and spanning tree functionality must therefore be configured by SW before it can be
used. A switch running the spanning-tree protocols utilizes BPDU (Bridge Protocol Data Unit) frames to
exchange information with other switches in order to decide how to configure it’s ports to get a loop-free
(tree) logical network topology.

BPDUs are forwarded to the CPU based on the used destination address. By default the MAC multicast
addresses 01:80:C2:00:00:00 and 01:00:0C:CC:CC:CD are forwarded to the CPU. Modifications of this is
possible through the register Send to CPU.

In order to be able to forward BPDU frames from the CPU to other switches on egress ports where general
forwarding is currently not allowed, the bit enable in register Forward From CPU shall be set.

More information on the forwarding features to and from the CPU port is available in Chapter 28

17.1 Spanning Tree

The Spanning-Tree Protocol (STP) state for a port can be independently configured for source and egress
behaviors to allow precise management. For ingress in the spt field of Source Port Table. Similarly for
egress, the STP state can be configured in the sptState in the Egress Spanning Tree State. When STP
is used on a port, all the port’s associated MSTP instance states (ingress and egress) shall be Forwarding,
i.e. MSTP is not enabled for this port.The behavior of the different STP states. The difference between
Ingress and Egress STP state is only that learning is not affected by the Egress state.

• Blocking and Listening
Learning is disabled and no frames are forwarded except BPDU which will be forwarded to the CPU.
Frames that are not forwarded is counted in a drop counter.

• Learning
Learning is enabled but no frames are forwarded except BPDU which will be forwarded to the CPU.
Frames that are not forwarded is counted in a drop counter.

• Forwarding and Disabled
Normal operation, learning is enabled and normal switching. BPDU frames will be forwarded to the
CPU.

17.2 Multiple Spanning Tree

When VLANs are used in a network there is a need for the Multiple Spanning Tree Protocol (MSTP)
to manage the individual spanning-tree instances for the different VLANs. If an incoming frame doesn’t
have an assigned VLAN membership it will get a default VLAN membership automatically as described

115

CHAPTER 17. SPANNING TREE

in Chapter 5. VLAN membership decides which MSTP instance (MSTI) the frame belongs to. Hence,
all frames will belong to an MSTI. The msptPtr in the register VLAN Table is an index to the MSTI
tables which the packet shall be assigned to. The port’s states of this MSTI are available in the tables
Ingress Multiple Spanning Tree State and Egress Multiple Spanning Tree State for ingress and
egress respectively. When a port uses MSTP it’s STP states (source and egress) shall be set to Disabled,
i.e. STP is not enabled for this port.

17.3 Spanning Tree Drop Counters

When a port’s ingress or egress spanning tree states causes a frame to be dropped, the frames direction
and spanning-tree state are used to select which drop counter to increase with one. The available drop
counter registers are:

• Ingress Spanning Tree Drop: Listen

• Ingress Spanning Tree Drop: Learning

• Ingress Spanning Tree Drop: Blocking

• Egress Spanning Tree Drop

The ingress registers are common for all ports. There is one egress register per port.

The registers above are also used to count MSTI-state caused frame drops. A port’s ingress-MSTI drop-
causing state is mapped as follows: The state Learning is mapped to the register Ingress Spanning Tree
Drop: Learning and Discarding to Ingress Spanning Tree Drop: Blocking. For a port’s egress MSTI,
both the states Learning and Discarding are mapped to the port’s generic egress drop counter Egress
Spanning Tree Drop.

116 Packet Architects AB

Chapter 18

Token Bucket

This core provides a rich set of QoS functions, and when a function needs to compare the internal packet
or byte rate to a configurable rate, we use token bucket as the basic measurement component. A token
bucket is usually combined with packet classifications, packet colorings or the shared buffer memory to
achieve metering, marking, policing or shaping with different granularities.

A token bucket has four key parameters:

• bucket capacity

• bucket threshold

• initial tokens in the bucket

• token fill in rate

token input rate

If current tokens < threshold:
failed to pass,
no leaked tokens

If current tokens >= threshold:
pass, leak tokens accordingly

incoming traffic

bucket
capacity

initial tokens

threshold

tokens to be
 consumed

current tokens

AFTER RESET

DURING TRAFFIC

Figure 18.1: General Token Bucket Illustration

Figure 18.1 shows a token bucket with adjustable bucket threshold, the remaining tokens below the thresh-
old can be used to handle the burst. This type of token bucket is used by:

• multicast broadcast storm control

• queue shaper

• prio shaper

• egress port shaper

117

CHAPTER 18. TOKEN BUCKET

In different QoS functions, tokens are represented as packets or bytes. The token fill in rate is achieved
by periodically adding a certain number of tokens to the bucket and the fill in frequency is determined by
one of the six core ticks.

118 Packet Architects AB

Chapter 19

Egress Queues and Scheduling

The order of packet output on each egress port is decided by a complex interaction of back-pressure and
different QoS functions, but at the heart of the matter is the the egress queue. The egress queues are
the lists of packet pointers created by the queue manager when packets have been written to the packet
buffer. Each egress port has eight such queues.

When a packet has been written in full to the packet buffer, the queue manager will add pointers to the
packet to the end of at least one egress queue1.

More than one egress port may get the packet linked (due to multicast), but on any single port the same
packet may only be linked once. You cannot have the same packet in more than one egress queue on any
single egress port.

The order in each egress queue is fixed. Once the packets are linked, the order cannot be changed.
What QoS functions and back-pressure can affect is the order in which the packets in different queues are
output.

Each egress queue has a priority (or prio) attribute, ranging from zero to seven. There are no limitations to
how the priorities are assiged. All egress queues may have the same priority, or they may all have different
priorities (if there are enough priorities to go around). If at all possible, an egress queue with a higher2

priority will always get to output a packet before a queue with a lower priority. Egress queues with the
same priority will be selected in a round robin manner by the DWRR scheduler.

The egress queue is determined by the ingress packet processing. If a packet is forwarded to multiple egress
ports, each packet instance will have the same egress queue assigned.

19.1 Determine Egress Queue

Figure 19.1 describes how the egress queue is determined. If a configuration in the diagram includes a
reference number in the end, the related field or register to setup can be found in the list below:

1. Configurable ACL Engine has a forceQueue action enabled.

2. forceQueue in Reserved Source MAC Address Range

3. forceQueue in Reserved Destination MAC Address Range

4. prioFromL3 in Source Port Table

5. IPv4 TOS Field To Egress Queue Mapping Table

6. IPv6 Class of Service Field To Egress Queue Mapping Table

7. MPLS EXP Field To Egress Queue Mapping Table

8. eQueue in Force Unknown L3 Packet To Specific Egress Queue

1That is unless the packet is to be dropped, because then the pointer is instead added to the end of the throw queue.
2Priorities are numbered backward, so zero is the highest priority

119

CHAPTER 19. EGRESS QUEUES AND SCHEDULING

Start ingress packet process

Is packet from
CPU and contains

a CPU Tag?

Extract egress queue
from the CPU tag

Hit in
Configurable ACL

Engine?

Hit result forces an
egress queue? (1)

Assign egress queue
from the hit result

Hit in Reserved
Source MAC

Address Range?

Hit result forces an
egress queue? (2)

Assign egress queue
from the hit result

Hit in Reserved
Destination MAC
Address Range?

Hit result forces an
egress queue? (3)

Assign egress queue
from the hit result

Determine egress
queue from L3

fields (4)?

Is there a IPv4
packet?

Map IPv4 TOS field
to an egress queue (5)

Is there a IPv6
packet?

Map IPv6 TOS field
to an egress queue (6)

Is there any MPLS
label in the packet

header?

Map MPLS EXP field
to an egress queue (7)?

Is Force Unknown
L3 Packet To
Specific Egress
Queue enabled?

Assign the forced
egress queue (8)

VLAN Tagged? Extract PCP from
the outermost VLAN

Assign the forced
egress queue (9)

Is Force Non
VLAN Packet To
Specific Queue

enabled?

Get default PCP from
Source Port Table

Assign egress queue
from VLAN PCP To
Queue Mapping Table

End of egress queue assignment

T

F

T

F

T

F

T

F

T

F

T

F

T

F

F

T

T

F

T

F

T

F

T

F

T

F

T F

Figure 19.1: Egress Queue Selection Diagram

120 Packet Architects AB

CHAPTER 19. EGRESS QUEUES AND SCHEDULING

9. forceQueue in Force Non VLAN Packet To Specific Queue

This process is completed only once per packet, and the result is applied to all destination ports for the
packet. The input to the process can come from:

• Packet L2 headers

• Packet L3 headers

• Classification results

The available classification engines are described in the Classification chapter.

Egress queue from packet headers is operated under either trust L2 mode, to map egress queues from L2
headers, or trust L3 mode, to map egress queues from both L2 and L3 headers. In trust L2 mode, the
egress queue can be mapped from:

• Priority code point(PCP) field from the outermost VLAN tag

• Source port default PCP when packet is non-VLAN tagged

• Optionally force non-VLAN tagged packets to the same egress queue, ignores source port based
default mapping.

In trust L3 mode, a packet first tries to get its egress queue by mapping from:

• Type of Service (TOS)/DiffServ field from IPv4

• Traffic Class(TC) field from IPv6

• Traffic Class(TC)/EXP field from MPLS

• When none of the above are executed, the egress queue mapping under trust L3 mode will fall back
on the trust L2 mode and get the egress queue from L2 headers of the packet.

19.2 Determine a packets outgoing QoS headers PCP, DEI and
TOS fields

19.2.1 Remap Egress Queue to Packet Headers

This core supports remapping determined egress queues to outgoing packets’ headers.

• Egress queue to outgoing outermost VLAN PCP remapping:
Egress port VLAN push or swap operation provides an option to map egress queue to the outgoing
outermost VLAN PCP field. The mapping table is Egress Queue To PCP And CFI/DEI Mapping
Table and the required configurations are:

1. vlanSingleOp in Egress Port Configuration is push or swap.

2. pcpSel in Egress Port Configuration selects mapping from egress queue.

• Egress queue to outgoing outermost VLAN CFI/DEI remapping:
Similar with outgoing outermost VLAN PCP mapping, egress port VLAN push or swap operation
provides an option to map egress queue to the outgoing outermost VLAN CEI/DEI field. The mapping
table is Egress Queue To PCP And CFI/DEI Mapping Table and the required configurations
are:

1. vlanSingleOp in Egress Port Configuration is push or swap.

2. cfiDeiSel in Egress Port Configuration selects mapping from egress queue.

121 Packet Architects AB

CHAPTER 19. EGRESS QUEUES AND SCHEDULING

19.3 Priority Mapping

Each queue is mapped to one of eight egress priorities in the Map Queue to Priority register. Thus each
priority will have between none and all queues as members. The priority mapping affects the scheduling of
the packets. See Section 19.6, below for the details.

The priorities are ranked in descending order, from the highest priority (zero), to the lowest (seven).

Note that the priority mapping must not be changed for any queue that has packets queued. Doing so
would make the ERM counters irrevocably corrupted, necessitating a reset for the core to continue normal
operation.

19.4 Shapers

For a queue to be eligable for sending a packet there has to be a packet available in the queue and the
average bandwidth for the queue, as measured by the token buckets in the queue shaper, has to be below
the threshold set up in the Queue Shaper Rate Configuration registers.

Additionaly the average bandwidth of the priority to which the queue is mapped has to be below the
threshold set up in the Prio Shaper Rate Configuration registers.

19.4.1 Queue Shaper

The egress queue rates are shaped by token buckets configured in the Queue Shaper Rate Configuration
registers. While the token bucket level is below the threshold configured in the Queue Shaper Bucket
Threshold Configuration register, no new packets are scheduled for the corresponding egress queue.
Ongoing packets are not affected by the shaping bucket status.

The queue shapers are enabled using the Queue Shaper Enable register, and the saturation level of the
queue shaper buckets is controlled by the Queue Shaper Bucket Capacity Configuration register.

19.4.2 Prio Shaper

The egress prio rates are shaped by token buckets configured in the Prio Shaper Rate Configuration
registers. While the token bucket level is below the threshold configured in the Prio Shaper Bucket
Threshold Configuration register, no new packets are scheduled for the corresponding egress prio. On-
going packets are not affected by the shaping bucket status.

The prio shapers are enabled using the Prio Shaper Enable register, and the saturation level of the prio
shaper buckets is controlled by the Prio Shaper Bucket Capacity Configuration register.

122 Packet Architects AB

CHAPTER 19. EGRESS QUEUES AND SCHEDULING

Egress Queue

Disable Queue

Queue Shapers

Round Robin

Prio Shapers

Strict Prio

Port Shaper

Flow Control

PS back-pressure

0 1 2 3 4 5 6 7

DWRR DWRR DWRR DWRR

SP

out

Figure 19.2: Egress Queue Scheduling example. Here using half the priorities, with two queues mapped to
each.

123 Packet Architects AB

CHAPTER 19. EGRESS QUEUES AND SCHEDULING

19.5 Scheduling

The egress queue scheduling is accomplished by a combination of strict priority schedulers for the priorities
and round robin queue schedulers for the queues mapped to the same priority. A visual representation of
this is can be found in Figure 19.2. This figure is an example where half the priorities are used and two
queues map to each priority3.

For a priority to be allowed to output a packet it must have mapped queues with available packets. It
must also:

• be allowed to send by the prio shaper

• not be paused

• not be halted

From the priorities getting through the above needle’s eye the highest priority is selected, and then the
available queues mapped to that priority are selected by a byte-based deficit weighted round robin scheduler
(described below).

19.6 DWRR Scheduler

The DWRR scheduler only acts on queues mapped to the same priority. Within each group of such queues
it selects the most appropriate queue to output by comparing the number of bytes output for each queue
with the weights set up for the queues.

This is accomplished using one byte counting bucket per queue and port. The non-empty queue with the
highest bucket count in the group is selected. Bytes are subtracted from the corresponding bucket when a
packet is sent out. Whenever the value in a bucket goes below the value configured in the threshold field
of the DWRR Bucket Misc Configuration register, the buckets for all the queues belonging to the same
priority will be replenished. The number of bytes added to each bucket is weight << X, where weight
is taken from the DWRR Weight Configuration register, and X is a multiplier (for all queues) that is
calculated to make sure that at least one cell worth of bytes is added to the queue that went below the
threshold.

X = max(0, highestSetBit(cellBytes)− highestSetBit(weigth))

If a queue has no data to send, its bucket will eventually saturate at the cap set in the DWRR Bucket
Capacity Configuration register.

The value in the ifg field of the DWRR Bucket Misc Configuration is additionally subtracted from the
buckets for each packet.

19.7 Queue Management

This core features a set of queue management operations which can be used by the CPU to monitor,
redirect and disable queues and ports. The current size of the queues can be readout by using the Egress
Port Depth and Egress Queue Depth registers, while the current total number of cells left available can
be seen in the Buffer Free register. The minimum level reached since core was initialized is available in
Minimum Buffer Free. From this status the CPU can take active actions to determine what the core
shall do with the packets on the ports. The optional operations are listed below.

• Disable scheduling to port: Disable the core from scheduling a new packet for transmission on a
specific port and queue. This is setup in the Output Disable register. This allows per-queue
granularity of what packets gets scheduled on a specific port. The packets are still kept in the queues
until the port or queue is enabled again.

• Disable queueing to port: Disable the enqueueing of packets to a specific port and queue. Once the
corresponding bit in the Enable Enqueue To Ports And Queues register is cleared, no new packets

3So other similar diagrams would result with different settings in the Map Queue to Priority register.

124 Packet Architects AB

CHAPTER 19. EGRESS QUEUES AND SCHEDULING

will be queued to that egress queue. New packets destined to that specific queue will be dropped
and the Queue Off Drop counter for the egress port will be incremented.

• Drain port: Drop all packets in all queues on one specific port. This allows the user to clear all packets
which have been queued on a port. The register Drain Port is used to control this functionality.
Statistics for this operation is collected in the Drain Port Drop counter.

19.8 How To Make Sure A Port Is Empty

First, so that no new packets are queued to the port, use the Enable Enqueue To Ports And Queues
to disable all the queues on the port. If the already queued packets should not be sent out, then use the
Drain Port functionality. Once this is done start to read out the Packet Buffer Status and check the bit
which corresponds to the port. When the port bit is high, this means that all the queues on this port are
empty.

Now, there may still be a few cells of data being processed in the egress packet processing pipeline, or
stored in the parallel-to-serial memories. This data will be drained at the speed of the port, so the time
from the port-bit going high in the Packet Buffer Status register to the port being truly empty will
depend on the port speed.

125 Packet Architects AB

CHAPTER 19. EGRESS QUEUES AND SCHEDULING

126 Packet Architects AB

Chapter 20

Packet Coloring

20.1 Ingress Packet Initial Coloring

This core marks packets with 3 colors internally to represent packet drop precedences. The three colors
are coded as in Table 20.1.

Color Code
Green 0
Yellow 1
Red 2

Table 20.1: Code for Colors

A packet’s initial color is assigned according to L2/L3 protocols or classification results. It follows similar
process steps as the egress queue assignment described in Section 19.1.

1. Configurable ACL Engine has a forceColor action enabled.

2. forceColor in Reserved Source MAC Address Range

3. forceColor in Reserved Destination MAC Address Range

4. colorFromL3 in Source Port Table

5. IPv4 TOS Field To Packet Color Mapping Table

6. IPv6 Class of Service Field To Packet Color Mapping Table

7. MPLS EXP Field To Packet Color Mapping Table

8. forceColor in Force Unknown L3 Packet To Specific Color

9. forceColor in Force Non VLAN Packet To Specific Color

A diagram in Figure 20.1 describes how initial colors are determined. All classification engines which can
force egress queues also have an option to force packet initial colors. If none of the engines force the color
and the initial color marking is operating under trust L2 mode, the color is mapped from:

• Priority Code Point(PCP) field with Drop Eligible Indicator(DEI) field from the ingress outermost
VLAN tag.

• Source port default PCP with default DEI when packet is non-VLAN tagged.

• Optionally force non-VLAN tagged packets to the same specific initial color, ignores source port
based default marking.

127

CHAPTER 20. PACKET COLORING

Start ingress packet process

Hit in
Configurable ACL

Engine?

Hit result forces a
packet color? (1)

Assign inital color
from the hit result

Hit in Reserved
Source MAC

Address Range?

Hit result forces a
packet color? (2)

Assign inital color
from the hit result

Hit in Reserved
Destination MAC
Address Range?

Hit result forces a
packet color? (3)

Assign inital color
from the hit result

Determine initial
color from L3
fields (4)?

Is there a IPv4
packet?

Map IPv4 TOS
field to a color (5)

Is there a IPv6
packet?

Map IPv6 TC field
to a color (6)

Is there any MPLS
label in the packet

header?

Map MPLS EXP
field to a color (7)?

Is Force Unknown
L3 Packet To
Specific Color

enabled?

Assign the forced
packet color (8)

VLAN Tagged?
Extract PCP and
DEI from the out-
ermost VLAN

Assign the forced
packet color (9)

Is Force Non
VLAN Packet To
Specific Color

enabled?

Get default PCP and DEI
from Source Port Table

Assign packet color from
VLAN PCP And DEI To
Color Mapping Table

End of initial color assignment

T

F

T

F

T

F

T

F

T

F

T

F

F

T

T

F

T

F

T

F

T

F

T

F

T F

Figure 20.1: Packet Initial Color Selection Diagram

By default, green marked packets have low drop probability, yellow marked packets have medium drop
probability and red marked packets have high drop probability. But the remarking process has its own
configurable settings to decide if packets with a certain remarked color shall be dropped.

128 Packet Architects AB

CHAPTER 20. PACKET COLORING

20.2 Remap Packet Color to Packet Headers

During egress packet processing, each egress port can be set as color aware or color blind through the
colorRemap field in the Egress Port Configuration table. If an egress port is color blind, packets to that
port will not have its color represented in packet headers. If an egress port is color aware, a color remap
process is executed to optionally remap the egress packet color to outgoing packet headers.

When an egress port is color aware, the default remap options for that port are configured in the Color
Remap From Egress Port table. If a packet to a color aware egress port has ingress admission control
applied, its meter-marker-policer pointer can also provide color remap options from the Color Remap
From Ingress Admission Control table. The enable field in the table determines whether to perform a
color remap operation for each pointer.

The color remap has four modes:

• Skip/Disable:
Color is not remapped to packet headers. This includes overriding previous color remap decisions.

• Remap to L3 only:
Color is remapped to IPv4 TOS field or IPv6 TC field with an AND mask (tosMask). For each bit
in the TOS/TC field, the update requires the corresponding bit in the mask set to one. i.e.

t o s [i] = (co l o r2Tos [i] & tosMask [i]) | (t o s [i] & (˜ tosMask [i]))

• Remap to L2 only:
A valid color remap updates the DEI bit in the VLAN tag of the outgoing packet. The updated DEI
bit will not be changed during further egress packet processes. If there are more than one VLAN tag
in the transmitted packet, the color to DEI mapping will be operated on the outermost VLAN.

• Remap to L2 and L3:
Color is remapped to both L2 and L3 fields as listed above.

129 Packet Architects AB

CHAPTER 20. PACKET COLORING

130 Packet Architects AB

Chapter 21

Admission Control

21.1 Ingress Admission Control

This core features an ingress admission control unit to control the bandwidth of certain traffic types. If
the traffic flow in a group exceeds the configured bandwidth it may get the packet color changed or get
denied to be enqueued in the buffer memory.

Ingress admission control includes two main functions. The first function creates admission control groups
to classify packets based on source information in packet headers or ACL matches. The second function
measures the classified traffic rate against a certain policy to make permit/deny decisions. The decision
may take the given packet color into account.

21.1.1 Traffic Groups

The traffic group is classified based on source port number and L2 or L3 packet headers. Initially packets
are grouped by their source port numbers and L2 priorities, but during the subsequent admission control
processes they may fall into other traffic groups. For each potential traffic group, three configurations are
given to validate a policy:

1. mmpValid: Determine if there is a valid Meter-Marker-Policer(MMP) pointer. If there is no valid
pointer through the entire process, the packet will not be classified to any traffic group.

2. mmpOrder: Order of the pointer. If a valid pointer exists, its order needs to be higher than the order
of previously assigned pointers to override them.

3. mmpPtr: MMP pointer for this traffic group.

The process to set the MMP pointer is illustrated in Figure 21.1. A packet can only belong to one traffic
group so hierarchical traffic groups are not possible.

The order of the classification sequence is:

1. Source port number and L2 priority:
First assignment for traffic groups and MMP pointers. For VLAN tagged packet, L2 priority is from
its outermost VLAN PCP field. For non-VLAN tagged packet, L2 priority is the default PCP based on
the source port number (defaultPcp in the Source Port Table). Lookup in the Ingress Admission
Control Initial Pointer table gives a base pointer and its order, also indicates if it is a valid pointer.

2. Source MAC:
Source MAC hit an entry in the Reserved Source MAC Address Range.

3. Destination MAC:
Destination MAC hit an entry in the Reserved Destination MAC Address Range.

4. ACL rules:
Hit in the Configurable ACL Engine.

131

CHAPTER 21. ADMISSION CONTROL

Identify packet to a traffic group

Packet has a valid
MMP pointer in
this traffic group?

A valid MMP
pointer is already
assigned to the

packet?

This pointer has a
higher order than

the previous
pointer?

Assign a new
MMP pointer

End of process

True

False

False

True

True

False

Figure 21.1: MMP pointer Selection Diagram

5. Ingress VID:
Lookup in VLAN Table based on the ingress VID.

When a packet arrives to ingress packet processing, it walks through ingress admission control classifications
in the order above. A hit in one of the above groups will result in a pointer and a matching order. The
pointer is linked to a policy/entry in a meter-marker-policer engine, which will measure the byte rate
belonging to this entry. Although a packet can have multiple hits in traffic groups, it will finally fall into
one pointer according to the order of the pointers. Later matches only win when they have a higher order
than the previous ones.

21.2 Meter-Marker-Policer

An admission control unit contains a meter-marker-policer (MMP) bank where each MMP refers to one
admission control policy. An MMP is based on token buckets, and each entry includes two configurable
buckets.

The MMP bank used by ingress admission control consists of 128 policies/entries with three related
tables.

1. Ingress Admission Control Token Bucket Configuration

2. Ingress Admission Control Reset

3. Ingress Admission Control Current Status

132 Packet Architects AB

CHAPTER 21. ADMISSION CONTROL

While only one ingress admission control policy is applied to any single packet, the same policy/entry can
be pointed to from several different traffic types.

In the Ingress Admission Control , an MMP entry is configured through the Ingress Admission Control
Token Bucket Configuration register to perform either a single rate three color marker (RFC2697:
srTCM) or a two rate three color marker (RFC2698: trTCM). The selected marker is operated in either
color-aware or color-blind mode, and the packet is marked with a new color when the rate exceeds a
certain bandwidth. Based on the updated packet color, dropMask from register Ingress Admission
Control Token Bucket Configuration decides whether the packet is allowed to be enqueued in the buffer
memory.

An MMP entry has a Ingress Admission Control Mark All Red Enable option to permanently block the
metering process and drop all packets with the corresponding MMP pointer. When Ingress Admission
Control Mark All Red Enable is set to one, a packet drop on this entry will raise the Ingress Admission
Control Mark All Red to one, then further packets to that entry will be dropped before metering. The
blocking status can be cleared by writing zero to one of the two registers.

When an MMP is selected to be either srTCM or trTCM, it still requires configurations of the two token
buckets to make it work properly.

• srTCM: Only the length, not the peak rate of the burst determines service eligibility.

– Committed Information Rate (CIR): Combining tokens 0 and tick 0 to achieve the target rate.
Details for tick is described in the Tick chapter. Configuration examples are shown in Table
21.1. Under srTCM mode, rate settings for the second token bucket (tokens 1 and tick 1)
will not take effect.

– Committed Burst Size (CBS): bucketCapacity 0.

– Excess Burst Size (EBS): bucketCapacity 1.

• trTCM: Enforce peak rate separately from the committed rate.

– Committed Information Rate (CIR): tokens 0 and tick 0.

– Committed Burst Size (CBS): bucketCapacity 0.

– Peak Information Rate (PIR): tokens 1 and tick 1.

– Peak Burst Size (PBS): bucketCapacity 1.

• Runtime configuration update:
Any update to register Ingress Admission Control Token Bucket Configuration requires writing
1 to register Ingress Admission Control Reset. This will reset the buckets to the initial state.

• Status update from hardware:
Besides Ingress Admission Control Reset, MMP has a another status register: Ingress Admission
Control Current Status. It shows the number of tokens in each bucket. Hardware updates these two
registers only when a metering process is done, hence Ingress Admission Control Current Status
shows the number of tokens left in the bucket since the last token consumption in this bucket.
Ingress Admission Control Reset is always changed back to 0 again after token consumptions.

133 Packet Architects AB

CHAPTER 21. ADMISSION CONTROL

Bandwidth
Token Bucket
Update Frequency

Tick
Index

Added Tokens
Per Tick
(bytes)

8000 bit/s 1KHz 3 1
16000 bit/s 1KHz 3 2
N*64000 bit/s 1KHz 3 N*8
N*1544000 bit/s 1KHz 3 N*193
N*56000 bit/s 1KHz 3 N*7
10M bit/s 10KHz 2 125
250M bit/s 10KHz 2 3125
N*1G bit/s 1Mhz 0 N*125

Table 21.1: Rate Configuration Example (Assume tickFreqList = [1MHz, 100KHz, 10KHz, 1KHz, 100Hz])

134 Packet Architects AB

Chapter 22

Tick

All token buckets - and all other functions dependent on measuring time - in the core are basing their time
measurements on the system ticks.

Tick number zero is the master tick. It is created by dividing the core clock by the number configured
in the clkDivider field of the Core Tick Configuration register. The following tick signals (six in total)
are created by dividing the previuous tick by a factor set up in the stepDivider field of the Core Tick
Configuration register, so tick1 is clkDivider slower than tick0, tick2 is clkDivider slower than tick1,
and so on.

If the Core Tick Configuration is updated during runtime, all features relying on the core tick need to be
updated accordingly. Meanwhile, inaccurate time measurement will be performed until the first tick after
the reconfiguration is generated.

By default the input to the Core Tick divider is the core clock, but using the Core Tick Select register
the input to the tick divider can be disabled, or chosen to be driven from debug write data pin 0.

135

CHAPTER 22. TICK

136 Packet Architects AB

Chapter 23

Multicast Broadcast Storm Control

The multicast/broadcast storm control (MBSC) unit is used to make sure that a switch does not flood
the network with too much multicast/broadcast traffic. The MBSC unit prevents several traffic types from
transmitting to an egress port if the corresponding traffic rate on that egress port has exceeded a certain
limit.

The basic component of the MBSC unit is a token bucket (illustrated in Figure 18.1). For each egress port
there is one token bucket per inspected traffic type. In principle a token bucket controls the traffic rate
(packet rate or byte rate) on an egress port. A token bucket operates as follows:

1. A configurable number of tokens are periodically added to the token bucket. The bucket level will
saturate at the configured capacity.

2. When a packet of the traffic type is received a configurable number of tokens are consumed, i.e. the
bucket level is decreased. The number of tokens consumed per packet is either packet length plus
IFG adjustment or one per packet.

3. As long as the bucket level is at or above the threshold the bucket will accept all given traffic.

4. When the bucket level drops below the threshold all packets of the inspected traffic type, destined
for the corresponding egress port, are dropped. Note that instances of the same packet destined for
other egress ports are not affected and have their own token buckets to check the traffic rate.

5. The MBSC Drop counter will be incremented once for each egress port where the packet is dropped.

In this core four kinds of traffic are checked by the MBSC unit:

• L2 Broadcast

• L2 Unknown Multicast Flooding

• L2 Unknown Unicast Flooding

• L2 Multicast

For each type of traffic there is an individual control unit, consisting of one token bucket per egress
port. Every token bucket can be turned on or off separately through a control register (listed in the next
section).

23.1 Inspected Traffic

• L2 Broadcast: A Packet with DA = ff:ff:ff:ff:ff:ff.

– Token bucket configurations:

∗ L2 Broadcast Storm Control Enable

∗ L2 Broadcast Storm Control Bucket Capacity Configuration

137

CHAPTER 23. MULTICAST BROADCAST STORM CONTROL

∗ L2 Broadcast Storm Control Bucket Threshold Configuration

∗ L2 Broadcast Storm Control Rate Configuration

• L2 Unknown Multicast: A Packet that will be L2 switchecd but the DA is unknown. The unknown
DA MAC has Ethernet multicast bit set to 1. In this case the packet is flooded to all VLAN member
ports.

– Token bucket configurations:

∗ L2 Unknown Multicast Storm Control Enable

∗ L2 Unknown Multicast Storm Control Bucket Capacity Configuration

∗ L2 Unknown Multicast Storm Control Bucket Threshold Configuration

∗ L2 Unknown Multicast Storm Control Rate Configuration

• L2 Unknown Unicast: A Packet that will be L2 switchecd but the DA is unknown. The unknown
DA MAC has Ethernet multicast bit set to 0. In this case the packet is flooded to all VLAN member
ports.

– Token bucket configurations:

∗ L2 Unknown Unicast Storm Control Enable

∗ L2 Unknown Unicast Storm Control Bucket Capacity Configuration

∗ L2 Unknown Unicast Storm Control Bucket Threshold Configuration

∗ L2 Unknown Unicast Storm Control Rate Configuration

• L2 Multicast: A packet that will be L2 switched and has a known multicast DA MAC in the L2 tables.
(The DA MAC has Ethernet multicast bit set to 1). The core can optionally include or exclude certain
packets as L2 multicast traffic. The configuration is through the L2 Multicast Handling register.

– Token bucket configurations:

∗ L2 Multicast Storm Control Enable

∗ L2 Multicast Storm Control Bucket Capacity Configuration

∗ L2 Multicast Storm Control Bucket Threshold Configuration

∗ L2 Multicast Storm Control Rate Configuration

23.2 Rate Configuration

From the configuration registers a token bucket can be shaped with its capacity, threshold and token
settings. The L2 broadcast storm control is here used as an example to demonstrate the operations.

From the L2 Broadcast Storm Control Rate Configuration register a user can configure how tokens
are consumed by a packet, and how new tokens are supplemented to the bucket.

• Token consumption

1. The token bucket can be set to count either packets or bytes by the packetsNotBytes field.
This setting puts a token bucket in either packet or byte mode to control the maximum packet
rate or byte rate on an egress port respectively.

2. – In packet mode, every L2 broadcast packet instance to an egress port will consume one
token and the bucket value will be decreased by one.

– In byte mode, every L2 broadcast packet instance to an egress port will consume as many
tokens as there are bytes in the packet plus the specified IFG correction in the ifgCorrection
field.

• Token Injection

138 Packet Architects AB

CHAPTER 23. MULTICAST BROADCAST STORM CONTROL

1. The token injection frequency is tick 1 based. The tick timer determines the time period between
token injections. The tick field from the L2 Broadcast Storm Control Rate Configuration
register selects which tick timer to use.

2. When it is time to inject new tokens, the number of tokens that will be added is configured in
the tokens field.

• Token bucket capacity and threshold. The two configuration registers L2 Broadcast Storm Control
Bucket Capacity Configuration and L2 Broadcast Storm Control Bucket Threshold Config-
uration are used to setup how the token bucket handles traffic bursts.

By default the MBSC unit is operating in packet mode, and all token buckets are set to allow the inspected
traffic to have at most 5% of the full packet rate for 64-byte packets. Python example code to configure
the maximum packet rate to 5% follows:

#!/ u s r / b i n / python

r a t e = 0 .05

minLen = 64 # by t e s
s l i c e = 1 # sw i t ch s l i c e s
i f g = 20 # by t e s
pnb = 1 # = packet mode
portBW = 1000 # Mbits / s
t i c k F r e q L i s t = [1 . 0 ,

0 . 1 ,
0 . 01 ,
0 . 001 ,
0 .0001 ,
1e−05] # Mhz

f u l l B y t eR a t e = portBW/8.0
f u l l P k tR a t e = f u l l B y t eR a t e /(minLen+i f g)

pktRate = f u l l P k tR a t e ∗ r a t e
pktTokenIn = 10∗ s l i c e

t i c k = l e n (t i c k F r e q L i s t)−1
f o r i i n range (l e n (t i c k F r e q L i s t)) :

i f t i c k F r e q L i s t [i] ∗ pktTokenIn <= pktRate :
t i c k = i
break

pktTokenIn = i n t (1 . 0∗ pktRate / t i c k F r e q L i s t [t i c k])

pktCap = pktTokenIn ∗ 20
pktThr = pktTokenIn ∗ 10

F i e l d s e t t i n g s f o r the r a t e c o n f i g u r a t i o n r e g i s t e r
s e t t i n g s = {

’ packetsNotBytes ’ : pnb ,
’ tokens ’ : pktTokenIn ,
’ t i c k ’ : t i c k ,
’ i f g C o r r e c t i o n ’ : i f g ,
’ c apac i t y ’ : pktCap ,
’ t h r e s ho l d ’ : pktThr}

1The system ticks are described in Chapter 22.

139 Packet Architects AB

CHAPTER 23. MULTICAST BROADCAST STORM CONTROL

140 Packet Architects AB

Chapter 24

Egress Resource Manager

The core includes an Egress Resource Manager (ERM) unit for controlling the shared buffer memory
occupancy of egress ports and queues. The primary objective of the egress resource manager is to avoid
persistent buildup of queue length in the buffer memory and prevent the blockage of enqueuing at other
ports and queues. Additionally, during buffer memory congestion, ERM facilitates prioritized enqueuing of
egress queues with higher priorities.

The resource management granularity is cells and there are 13466 cells, each 160 byte wide, available in
the buffer memory. A packet is written to the buffer memory with the original packet data plus a 24 byte
ingress to egress header, thus a 1600 byte packet will have 1624 bytes and occupy ten cells. A packet plus
the ingress to egress header longer than n cells but shorter than (n+1) cells will require (n+1) cells for
storage. For example, a 137 byte packet will use two cells. ERM traces the buffer memory occupancy and
decides if a cell is allowed to be written to the buffer memory.

The ERM determines the congestion of the buffer memory based on the amount of free space (number of
free cells) available. The ERM classifies the congestion levels into Green (no congestion), Yellow (slightly
congested) or Red (heavily congested). When the buffer memory is in the yellow or red zone, Resource
Limiter Set gives 27 sets of limits to check the queue length for different egress ports and queues. An egress
port chooses limit sets for each of its queues from the Egress Resource Manager Pointer lookup.

Shared Buffer Memory

No congestion

Slightly congested

Heavily congested
0

max

0 t

yellowXon

yellowXoff

redXon

redXoff

free
cells

free
cells

max

Figure 24.1: Buffer memory congestion zones

24.1 Yellow Zone

ERM Yellow Configuration defines how to enter and exit the yellow zone. The yellow zone is entered
when the number of free cells goes below yellowXoff. To leave the yellow zone, the number of free cells

141

CHAPTER 24. EGRESS RESOURCE MANAGER

need to go above yellowXon.

ERM checks

The buffer memory is considered partially congested when it is in the yellow zone. The ERM allows
moderate buildups in all queues to a certain limit. An incoming cell of a packet is not allowed to be
enqueued under two conditions:

1. The number of enqueued cells in the assigned egress queue is more than yellowLimit, while the total
number of enqueued cells in the same queue and higher priority queues is more than yellowAccu-
mulated.

2. ERM Yellow Configuration offers an optional check on a per egress port basis. A port can be
considered as a red port in the yellow zone if the enqueued cells on that port are above redPortXoff.
An incoming cell to a red port is not allowed if the length of the assigned queue is larger than
redLimit.

24.2 Red Zone

ERM Red Configuration defines how to enter and exit the red zone. The red zone is entered when the
number of free cells goes below redXoff. To leave the red zone, the number of free cells need to go above
redXon.

ERM checks

The buffer memory is considered severely congested when it is in the red zone and the ERM shall only
accept enqueuing to nearly empty queues. An incoming cell of a packet is not allowed to be enqueued in
two cases:

1. The number of enqueued cells in the assigned egress queue is more than redLimit.

2. The ongoing packet length in cells has exceeded redMaxCells.

24.3 Green Zone

When the buffer memory is neither in the yellow zone nor in the red zone, the ERM considers the buffer
memory to be uncongested and all incoming cells are accepted and stored in their assigned queues.

24.4 Configuration Example

A commonly used non-default ERM configuration involves allowing a queue to grow up to length G without
packet drops (guarantees), and preventing new packets from being enqueued when the queue length is
beyond L (limits). Between queue length G and L the enqueuing decision is made based on the overall
free space in the buffer memory. This configuration imposes the following requirements:

1. redXon ≥ redXoff ≥ sum(redLimit)
The red zone is used as guarantees, its configuration needs to ensure that redXon is large enough
so that the buffer memory does not get full before all queues reach their redLimit. Set redLimit
a few cells more than the desired guarantee size to have a margin for the latency.

2. Set yellowAccumulated to 0, ensuring that yellowLimit is always checked in the yellow zone.

3. yellowXon ≥ yellowXoff ≥ maxBufferFree
Put the ERM in the yellow zone even when the buffer memory is empty hence keep yellowLimit
check under an always on state.

142 Packet Architects AB

CHAPTER 24. EGRESS RESOURCE MANAGER

24.5 Restrictions

Be aware that the Map Queue to Priority settings need to be done when there is no traffic on any port.
Update with ongoing traffic may provide a wrong enqueuing snapshot to the ERM and cause inconsistencies
that can not be recovered without a reset.

143 Packet Architects AB

CHAPTER 24. EGRESS RESOURCE MANAGER

144 Packet Architects AB

Chapter 25

Flow Control

The purpose of flow control is to give access to storage in the packet buffer in an fair manner between
the ports sending packets to this switch. No single source port shall be able to behave in a way that
punishes other source ports. For this purpose flow control has two tools at its disposition: Pausing and
tail-drop.

25.1 Pausing

Pausing, or Ethernet flow control, is a method of remote controlling the far-end interface’s transmissions
to this switch using dedicated pause frames. Hence, for successful pause operation the far-end interface
also needs to be set up properly. The remote control is done by regularly sending pause frames (by this
switch’s MACs) to the far-end interfaces.

The switch core will only provide the MACs with a vector of the current pause state. It is up to the MAC
to detect state changes and send the appropriate pause frames. The interface for the pause state vector is
described in Section 29.4.

The pause frames are entirely handled by the MAC. It both creates frames and consumes incoming frames.
The switch does not expect any pause frames on the packet interface from MAC, and the switch will not
create any pause frames.

The beauty of pausing is that it can be used to set up flow control without packet drops. If the size of
the packet buffer is large enough to cope with the data in flight from all the far end interfaces, and they
all support pausing, it is possible to configure a completely drop-less system.

If, however, some far end interfaces do not support pausing, or the amount of data in flight is too large,
it is necessary to make use of tail dropping.

25.2 Tail-Drop

Tail-drop is an implicit flow-control scheme. By deliberately dropping incoming packets (tail refers to the
tail of the queue) there is an induced limitation of flows by Layer 3 transport protocols with flow control
(e.g. TCP). So in contrast to Pausing, Tail-drop is not reliant on features of neighboring interfaces, but
on features of higher level protocols. Transport protocols without flow control (e.g. UDP) will not limit
their flows due to drops, but tail-drop will still prevent those flows, when misbehaving, from interfering
with traffic from other source ports (or traffic classes).

Note that for flow control to function correctly all source ports have to be set up for either pausing or
tail-drop (or both). If a single source port is not configured properly, it can starve all the others of buffering
resources.

145

CHAPTER 25. FLOW CONTROL

25.2.1 Tail-drop as police for Pausing

Even on Pause-enabled ports it may be useful to set up tail dropping as back-up for Pausing. By setting the
tail-drop threshold at a level where we would have stopped receiving data from a Pausing-enabled source
port, had it observed our pause frame, we can protect our packet buffering resources even in the case that
a remote interface fails to act on the pause frame.

25.3 Buffer partitioning

The packet buffer space is partitioned into reserved and free-for-all (FFA) areas. Properly configured
tail-drop will never drop a packet so long as only the reserved areas are used.

The number of FFA cells that are are allowed to be consumed by each source port before it will be hit by
flow control is configured individually per source port. When the number of used free-for-all cells reaches
the configured Xoff threshold, the pause state will be set to Xoff. And when the tail-drop threshold is
exceeded a packet may be dropped (depending on whether there are reserves left).

The flow control decision will only be made once the last cell of a packet is about to be written to the
packet buffer. Thus the thresholds need to be set so that there is space for one maximum packet per
source port set aside.

25.3.1 Reserves

The tail-drop and the pausing share the reserved settings and the counters but the meaning of reserve is
different between them. For tail-drop a reserve is really a reserve. Meaning that if a source port still has
reserves left it will not drop even if the global threshold is exceeded. For pausing, when an Xoff threshold
is reached it will cause pausing whether or not there are reserves left. So when the global Xoff threshold
is reached all ports with pausing enabled will be paused. Even those that have reserves left.

The reason that tail drop and pausing work differently is that pausing needs hysteresis between Xoff and
Xon, and tail drop does not. It would be difficult to maintain the hysteresis if the reserves were observed
for pausing.

The Port Reserved registers define the number of cells reserved per source port.

25.3.2 Pausing Thresholds

For tail-drop there is a single set of thresholds above which packets are dropped. For pausing there are
two sets of thresholds, Xon thresholds and Xoff thresholds, thus forming a hysteresis area to avoid bursts
of pause frames at the threshold. Going above the Xoff threshold will produce a pause frame turning off
the packet flow at the remote interface, but to produce a pause frame turning it back on requires going
all the way down below the Xon threshold.

These are the pausing thresholds:

• Xoff FFA Threshold: When the total number of used FFA cells is at or above this threshold the
global pause state is set to paused.

• Xon FFA Threshold: When the total number of used FFA cells goes below this threshold the global
pause state is set to un-paused.

• Port Xoff FFA Threshold: When the total number of used FFA cells for a source port is at or
above this threshold the source port state will be set to paused.

• Port Xon FFA Threshold: When the total number of used FFA cells for a source port goes below
this threshold the source port state is set to un-paused.

Each source port is affected by two thresholds: The source port threshold and the global threshold. Both
need to be in the un-paused state for the source port to the set to un-paused.

146 Packet Architects AB

CHAPTER 25. FLOW CONTROL

25.3.3 Tail-drop Thresholds

For tail-drop there is no hysteresis so there is only a single set of thresholds:

• Tail-Drop FFA Threshold: When the total number of used FFA cells is above this threshold all
packets will be dropped from the tail-drop-enabled ports that have no reserved cells left to spend

• Port Tail-Drop FFA Threshold: When the total number of used FFA cells for a source port is
above this threshold incoming packets from this source port will be dropped

The Tail-Drop FFA Threshold is not obeyed strictly. The first packet exceeding the threshold may be
accepted, causing a one-packet over-shoot.

25.3.4 Counters

These are the counters that the thresholds are compared to:

• FFA Used: The total number of cells used from the FFA area.

• Port Used: The total number of cells used for each port (FFA+reserved).

25.4 Enabling Tail-Drop

Tail-drop is enabled per source port using the Port Tail-Drop Settings:enable fields. The individual
thresholds are enabled using the enable fields in each threshold register. See Section 25.3.2 above.

25.5 Enabling Pausing

Pausing is enabled per source port using Port Pause Settings:enable fields. The individual thresholds
are enabled using the enable fields in each threshold register. See Section 25.3.2 above.

25.6 Dropped packets

Packets that are dropped will still consume resources while they are waiting for deallocation. This applies
even to broken packets, for instance packets with CRC errors.

The packets dropped due to exceeding the Tail-Drop thresholds are counted in the Ingress Resource
Manager Drop register.

25.7 Reconfiguration

The Xon, Xoff and tail-drop thresholds can be reconfigured at any time. The reserved settings, however,
cannot be changed on any source port on which there is traffic. The reserved settings also cannot be
changed for any source port that has packets queued. If the reserved settings are changed in these cases
the flow control counters will be irrevocably corrupted, necessitating a reset for the core to continue normal
operation.

25.8 Debug Features

Each threshold can be forced to trigger using the trip fields of the threshold registers. For tail-drop only
drop can be forced this way, but accept can of course be assured by disabling the threshold using the enable
field.

For pausing a specific pause state can be forced using the force and pattern fields of the Port Pause
Settings register.

147 Packet Architects AB

CHAPTER 25. FLOW CONTROL

148 Packet Architects AB

Chapter 26

Egress Port Shaper

The egress port rates are shaped by token buckets configured in the Port Shaper Rate Configuration
registers. While the token bucket level is below the threshold configured in the Port Shaper Bucket
Threshold Configuration register, no new packets are scheduled for the corresponding egress port. On-
going packets are not affected by the shaping bucket status.

The port shapers are enabled using the Port Shaper Enable register, and the saturation level of the port
shaper buckets is controlled by the Port Shaper Bucket Capacity Configuration register.

An illustration of a token bucket can be seen in Figure 18.1 (despite what the illustration says the shaper
will of course never drop any packets).

149

CHAPTER 26. EGRESS PORT SHAPER

150 Packet Architects AB

Chapter 27

Statistics

Short Name Register Name
3. macBrokenPkt MAC RX Broken Packets
4. macRxMin MAC RX Short Packet Drop
4. macRxMax MAC RX Long Packet Drop
5. spOverflow SP Overflow Drop
11. ipppDrop Unknown Ingress Drop

Empty Mask Drop
Ingress Spanning Tree Drop: Listen
Ingress Spanning Tree Drop: Learning
Ingress Spanning Tree Drop: Blocking
L2 Lookup Drop
Ingress Packet Filtering Drop
Reserved MAC DA Drop
Reserved MAC SA Drop
VLAN Member Drop
Minimum Allowed VLAN Drop
Maximum Allowed VLAN Drop
Expired TTL Drop
IP Checksum Drop
L2 Reserved Multicast Address Drop
Ingress Configurable ACL Drop
Attack Prevention Drop
ARP Decoder Drop
RARP Decoder Drop
L2 IEEE 1588 Decoder Drop
L4 IEEE 1588 Decoder Drop
IEEE 802.1X and EAPOL Decoder Drop
SCTP Decoder Drop
LACP Decoder Drop
AH Decoder Drop
ESP Decoder Drop
DNS Decoder Drop
BOOTP and DHCP Decoder Drop
CAPWAP Decoder Drop
GRE Decoder Drop
L2 Action Table Special Packet Type Drop
L2 Action Table Drop
L2 Action Table Port Move Drop
L2 Destination Table SA Lookup Drop
Source Port Default ACL Action Drop

11. smon SMON Set 0 Packet Counter

151

CHAPTER 27. STATISTICS

Short Name Register Name
SMON Set 1 Packet Counter
SMON Set 2 Packet Counter
SMON Set 3 Packet Counter
SMON Set 4 Packet Counter
SMON Set 5 Packet Counter
SMON Set 6 Packet Counter
SMON Set 7 Packet Counter
SMON Set 8 Packet Counter
SMON Set 9 Packet Counter
SMON Set 10 Packet Counter
SMON Set 11 Packet Counter
SMON Set 12 Packet Counter
SMON Set 13 Packet Counter
SMON Set 14 Packet Counter
SMON Set 15 Packet Counter
SMON Set 0 Byte Counter
SMON Set 1 Byte Counter
SMON Set 2 Byte Counter
SMON Set 3 Byte Counter
SMON Set 4 Byte Counter
SMON Set 5 Byte Counter
SMON Set 6 Byte Counter
SMON Set 7 Byte Counter
SMON Set 8 Byte Counter
SMON Set 9 Byte Counter
SMON Set 10 Byte Counter
SMON Set 11 Byte Counter
SMON Set 12 Byte Counter
SMON Set 13 Byte Counter
SMON Set 14 Byte Counter
SMON Set 15 Byte Counter

11. ippAcl Ingress Configurable ACL Match Counter
11. preEppDrop Queue Off Drop

Egress Spanning Tree Drop
MBSC Drop
Ingress-Egress Packet Filtering Drop
L2 Action Table Per Port Drop

12. ipmOverflow IPP PM Drop
13. ippTxPkt IPP Packet Head Counter

IPP Packet Tail Counter
14. eopDrop IPP Empty Destination Drop
14. mmp Flow Classification And Metering Drop
15. erm Egress Resource Manager Drop
16. bmOverflow Buffer Overflow Drop
16. irm Ingress Resource Manager Drop
18. pbTxPkt PB Packet Head Counter

PB Packet Tail Counter
19. epppDrop Unknown Egress Drop

Egress Port Disabled Drop
Egress Port Filtering Drop

21. drain Drain Port Drop
22. epmOverflow EPP PM Drop
24. rqOverflow Re-queue Overflow Drop
24. eppTxPkt EPP Packet Head Counter

EPP Packet Tail Counter

152 Packet Architects AB

CHAPTER 27. STATISTICS

Short Name Register Name
25. psTxPkt PS Packet Head Counter

PS Packet Tail Counter
25. psError PS Error Counter

Table 27.1: Sequence of Statistics Counters

This core supports full statistics with 32-bit wrap around counters. The statistics is divided into groups
depending on the type of statistics and location in the switch. Figure 27.1 gives the location of the counters
from ingress to egress, with a sequence number to show their process orders. The counters which are green
are for packet drops based on forwarding decisions while the red counters are related to system errors. The
details of the counters in Figure 27.1 can be found through Table 27.1.

27.1 Packet Processing Pipeline Drops

During the ingress/egress packet processing, the forwarding algorithm can drop a packet for various reasons.
For each type of drop reason at least one drop counter is attached. The counter update is either based on
received packets or to-be-transmitted packets.

• Statistics: IPP Ingress Port Drop.

Each drop reason has a unique drop identifier (drop ID). The IPP ingress port drop statistics has a
counter for each drop ID. In two cases a corresponding drop ID counter can be updated:

1. When a received packet is dropped before any destination port is assigned.

2. When all targeting destination ports are filtered out the Empty Mask Drop counter is updated.

• Statistics: IPP Egress Port Drop.

This is a per drop ID and per egress port counter located in the ingress processing pipeline. When
a packet has obtained one or more destination ports but the following ingress packet process filters
out one of the obtained destination ports, a counter is updated for the corresponding egress port
with the related drop ID. The Empty Mask Drop counter might be updated at the same time if no
more destination port is set after the filtering.

• Statistics: EPP Egress Port Drop.

This is similar to IPP egress port drop statistics but located in the egress packet processing pipeline.
Drops that occur in EPP will cause bubbles on the transmit interface.

3. macBrokenPkt
4. macRxMin
4. macRxMax
5. spOverflow

11. ipppDrop
11. smon
11. ippAcl
11. preEppDrop
12. ipmOverflow
13. ippTxPkt
14. eopDrop
14. mmp

15. erm
16. bmOverflow
16. irm
18. pbTxPkt

19. epppDrop
21. drain
22. epmOverflow
24. rqOverflow
24. eppTxPkt

25. psTxPkt
25. psError

Ingress

Ingress Packet Processing

Shared Buffer Memory
Egress Packet Processing

Egress

Figure 27.1: Location of Statistics Counters

153 Packet Architects AB

CHAPTER 27. STATISTICS

27.2 ACL Statistics

When a packet matches an ACL rule as described in Chapter Classification, the result operation can be
configured to update a counter. In this case the result operation has a pointer to which counter to update.
All the related counters are in Section Statistics: ACL.

27.3 SMON Statistics

There are 16 sets of SMON counters located in the ingress packet processing pipeline, each equipped with
one counter per PCP value. The combination of the ingress port number and packet VLAN ID will provide
the target SMON set to update through the SMON Set Search register. Each SMON set counts both
the number of packets and number of bytes as shown in Section Statistics: SMON.

27.4 Packet Datapath Statistics

Section Statistics: Packet Datapath gives a list of start of packet and end of packet counters in the main
blocks of the core. They act as datapath checkpoints and can be helpful in tracing unexpected packet
drops or corruptions.

A packet will cross three clock domains on its way through the core:

• RX MAC clock domain.

There are no packet statistics in the RX MAC clock domain.

• TX MAC clock domain.

Packet datapath statistics in the TX MAC clock domain are on the transmit edge of the switch,
counting transmitted packets as well as protocol errors on the TX interface of the switch. Clock
crossing synchronizations are applied to these counters in order to share the same configuration bus
in the core clock domain.

• Core clock domain.

Packet datapath statistics in the core clock domain are counting in different internal blocks. Each
block has a pair of counters for packet heads and tails to identify the pass through of a complete
packet. The datapath counting follows the order in Figure 1.1:

1. IPP Packet Head Counter and IPP Packet Tail Counter.

2. PB Packet Head Counter and PB Packet Tail Counter.

3. EPP Packet Head Counter and EPP Packet Tail Counter.

4. PS Packet Head Counter and PS Packet Tail Counter.

If a stage has unequal packet head and tail counters while the counters in the previous stages are
identical, packets are corrupted in this stage.

27.5 Miscellaneous Statistics

The core is designed to have no silent packet drops and all missing packets on the transmit interface
can be found in a dedicated drop counter. Besides the drop counters mentioned above, there are more
counters located in all other places where a packet drop might occur. Detailed drop counter list is in
Section Statistics: Misc.

27.6 Debug Statistics

Section Statistics: Debug lists a group of statistics prepared for debug purposes. These counters indicate
possible locations when fatal errors occurred inside the core. Typical error events include inaccurate clock

154 Packet Architects AB

CHAPTER 27. STATISTICS

frequencies, unacceptable configurations, etc. The switch will try to remain functional after an error state,
but a correct behaviour cannot be guaranteed.

27.6.1 Debug Statistics Accuracy

Some of the statistics counters are located in a different clock domain than the configuration bus. The
values are therefore transferred through synchronization registers. In order to reduce the hardware cost of
these debug counters the synchronization can result in reading incorrect values if readout is done while
the counters are incrementing. The counter itself will always have the correct value. It’s only the readout
that, with a very low probability, can have incorrect value on bits that are toggling.

155 Packet Architects AB

CHAPTER 27. STATISTICS

156 Packet Architects AB

Chapter 28

Packets To And From The CPU

The CPU port (number 52 by default) has support for two special CPU tags in the packet header. In
packets received by the switch on the CPU port, the tag can determine which port the packet shall be
sent to. A tag can also be added to packets transmitted by the switch on the CPU port. This allows
the software stack to determine where the packet came from and the reason why it was sent to the CPU
port.

28.1 Packets From the CPU

Packets sent from the CPU are normally processed as any other packet that enters the switch, so the
destination port is determined by the L2 lookup. When the CPU needs to direct a packet to a specific
port, bypassing the normal L2 lookup, it is accomplished by adding a protocol header.

Byte
Number

Contents of Byte

0-6 [52:0] port bit mask. Bit 0 is port number 0, bit 1 is port number
1 etc. Port 0 is located in bit 0 of byte number 6. The port
numbers are physical ports, not link aggregation port numbers.
The link aggregation will always be bypassed when sending pack-
ets with a From CPU Tag.

7 Bits [2:0] specifies which egress queue the packet shall use.
8 Bit [0] will set the upd ts signal on the transmit MAC interface

when the packet is transmitted.
Bit [1] will set the upd cf signal on the transmit MAC interface
when the packet is transmitted.
Bit [2] will set the ts to sw signal on the transmit MAC interface
when the packet is transmitted.

9-16 PTP Timestamp that will be set on the transmit MAC interface
when the packet is transmitted. The lowest numbered byte con-
tains the msb of the timestamp value.

Table 28.1: From CPU tag format

The header consists of a specific Ethernet Type (39065) followed by a CPU Tag. The CPU tag has a 7
byte(s) destination port mask field1 and 1 byte egress queue field (encoded as specified in table 28.1). The
switch core will remove the extra protocol header and send out the packet on the ports requested by the
destination port mask in the protocol header. This is shown in the figure 28.1.

1The ordering described in 28.1 is the receive/transmit order.

157

CHAPTER 28. PACKETS TO AND FROM THE CPU

DA SA Ethernet Type
0x9998

TAG

From CPU tag

Rest of Ethernet Frame
Original
Ethernet
Frame

DA SA Rest of Ethernet Frame
Outgoing
Ethernet
Frame

From CPU Tag is removed

Figure 28.1: Packet from CPU with CPU tag

The port mask in the CPU Tag field determines which ports the packet shall be sent to. If multiple bits
are set in the port mask, the packet is treated as a multicast packet in the resource limiters. The packet
will be sent out on all ports with the corresponding bit set.

28.1.1 From CPU Header and Packet Modification and Operations

There are a number of operations which are not carried out when a packet is sent in with the From CPU
header. The following lists details this in greater detail what is done and what is not done.

• Link Aggregation is done.

• None of the VLAN operations are carried out.

• Mirroring is done. However with regards to ACL mirroring see below.

• Drops are ignored, example VLAN table , spanning tree / multiple spanning tree drops.

• L2 Lookup result is ignored.

• If the packet hits decoding rules for BPDU, Rapid Stanning Tree, Multiple Spanning tree, or other
protocols such as 802.1X-EAPOL AH ARP AVTP DHCP CAPWAP DNS ESP GRE L2 1588
L4 1588 LACP RARP SCTP then the packet will still send a extra copy to the CPU port. This
can be disabled by setting the cpu port to zero in the send-to-cpu bitmask in each function.

• Routing is not carried out.

• SMON statistics is performed.

• Basic assignment of MMP is done.

• Meter-Marker-Policer check is done.

• MBSC is bypassed.

• All spanning tree and multiple spanning treeperations are bypassed.

• No learning operation.

• Check Reserved DMAC is done.

• Check Reserved SMAC is done.

• ACL operations are done.

158 Packet Architects AB

CHAPTER 28. PACKETS TO AND FROM THE CPU

• ACL statistics are done.

• SMON statistics is done.

28.2 Packets To the CPU

DA SA Ethernet Type
0x9999

TAG

To CPU tag

Rest of Ethernet Frame

Original
Ethernet
Frame

DA SA Rest of Ethernet Frame

Outgoing
Ethernet
Frame

to CPU Tag is added

48 bits

Figure 28.2: Packet to CPU with CPU tag

Packets can also be sent to the CPU port bypassing the normal L2 lookup. By default all packets to the
CPU port have an extra protocol header (as shown in Figure 28.2). The header indicates the reason that
the packet was sent to the CPU, and the port on which it was received. Packets which arrives on the CPU
Port are modified according to what actions the packet was subjected to one example is VLAN header
modifications.

When packets are sent to the CPU port (number 52 in this core), the packets are tagged with a specific
Ethernet Type (type 39321). Figure 28.2 shows the Ethernet type field followed by a tag, and together
these constitute the extra protocol header mentioned above. The unmodified incoming packet follows
just after this header.

The insertion of the extra protocol header can be disabled by setting the register Disable CPU tag on
CPU Port to 1.

Byte Number Contents of Byte
0 Bits [5:0] contains the source port where the packet

entered the switch.
1 to 2 Reason for packet sent to CPU. See table 28.3. Byte

1 is the msb of the reason code.

3 PTP bit, if bit 0 is set to one then the packet is a PTP
packet and the Timestamp field is valid.

4 to 11 Timestamp (64 bits). The lowest numbered byte con-
tains the msb of the timestamp value.

Table 28.2: To CPU tag format

28.2.1 Reason Table

The reason codes why a packet was sent to the CPU. Reason code 0 means that the packet was switches or
routed and the CPU port was part of the normal forwardings destination ports.If a packet can be directed
to the CPU port with multiple reasons, the first hit in the check list below will give the reason code to the
egress packet header.

159 Packet Architects AB

CHAPTER 28. PACKETS TO AND FROM THE CPU

Reason Description
0 The MAC table, L2 MC table, ACL send to port action sent the packet to the CPU

port.
1 The packet decoder requires more than one cell.
2 This is a BPDU / RSTP frame.
3 The Unique MAC address to the CPU was hit.
4 + HitIndex The Source MAC range sent the packet to the CPU..Index to rule.
12 + HitIndex The Destination MAC range sent the packet to the CPU..Index to rule.
20 + HitIndex The source port default ACL action sent the packet to the CPU..Index to source

port which sent the packet in.
73 + HitIndex The TCAM in the configurable ingress ACL engine 0 sent the packet to the

CPU..Index to rule.
105 + HitIndex The small table in the configurable ingress ACL engine 0 sent the packet to the

CPU..Index to rule.
361 + HitIndex The large table in the configurable ingress ACL engine 0 sent the packet to the

CPU..Index to rule.
2409 + HitIndex The TCAM in the configurable ingress ACL engine 1 sent the packet to the

CPU..Index to rule.
2425 + HitIndex The small table in the configurable ingress ACL engine 1 sent the packet to the

CPU..Index to rule.
2553 + HitIndex The large table in the configurable ingress ACL engine 1 sent the packet to the

CPU..Index to rule.
3577 + HitIndex The TCAM in the configurable ingress ACL engine 2 sent the packet to the

CPU..Index to rule.
3593 + HitIndex The small table in the configurable ingress ACL engine 2 sent the packet to the

CPU..Index to rule.
3657 + HitIndex The large table in the configurable ingress ACL engine 2 sent the packet to the

CPU..Index to rule.
4169 + HitIndex The TCAM in the configurable ingress ACL engine 3 sent the packet to the

CPU..Index to rule.
4185 + HitIndex The small table in the configurable ingress ACL engine 3 sent the packet to the

CPU..Index to rule.
4249 + HitIndex The large table in the configurable ingress ACL engine 3 sent the packet to the

CPU..Index to rule.
4505 This is an L2 1588 frame.
4506 This is an L4 1588 frame.
4507 This is an ARP frame.
4508 This is an RARP frame.
4509 This is an LLDP frame.
4510 This is an 802.1X EAPOL frame.
4511 This is an GRE frame.
4512 This is an SCTP frame.
4513 This is an LCAP frame.
4514 This is an AH frame.
4515 This is an ESP frame.
4516 This is an DNS frame.
4517 This is a BOOTP or DHCP frame.
4518 This is an CAPWAP frame.
4519 The IP TTL field was expired in the packet.
4520 Packet matched an L2 Multicast Reserved Address
4521 The L2 Action Table has determined that this packet shall be sent to the CPU.

Table 28.3: Reason for packet sent to CPU

160 Packet Architects AB

CHAPTER 28. PACKETS TO AND FROM THE CPU

The possible reasons are listed in Table 28.3.

1. Hit in the Reserved Source MAC Address Range with a sendToCpu action.

2. Hit in the Reserved Destination MAC Address Range with a sendToCpu action.

3. Hit in the L2 Reserved Multicast Address Base with sendToCpuMask enabled for the corre-
sponding source port.

4. Hit in the LLDP Configuration.

5. Hit in the Send to CPU register.

• Notice that when uniqueCpuMac is enabled then unicast packet will not be switched to the
CPU port. Instead packets from any source port with MAC DA equal to cpuMacAddr will be
sent to the CPU. Other mechanism for sending to the CPU port are not affected (e.g. ACL’s).

6. Hit in the Configurable ACL Engine with a sendToCpu action.

161 Packet Architects AB

CHAPTER 28. PACKETS TO AND FROM THE CPU

162 Packet Architects AB

Chapter 29

Core Interface Description

This chapter describes the interfaces to the core. An input is an input to the core, and an output is a signal
driven by the core. In analogy reception refers to packets to the core and transmission means packets from
the core.

29.1 Clock, Reset and Initialization interface

There is a core clock, mac clock signals for the packet interfaces, a global reset signal, mac reset signals
for the packet interfaces, and a doing init output (indicating when the core is in initialization and thus not
ready to receive packets). The one clk mult are higher frequency clocks, syncronous with the core clock,
that are used in a few places in the core where a higher clock gives a substantial area savings.

When the global reset, rstn, is asserted all packets buffered in the switch will be dropped, the learning
and aging engines and all statistics counters will be reset to the initial status. Reset can be pulled at any
time, but any ongoing transmit packets will be immidiately interrupted and no end of packet signal will be
given.

The packet interface resets cannot be used independently. If one reset is asserted, all resets (including the
core reset) have to be asserted before any reset can be released.1

1Thus the packet interface resets cannot be used to empty a specific packet interface. To do that, follow the procedure
in Section 19.8, while making sure that the packet interface halt is kept low.

163

CHAPTER 29. CORE INTERFACE DESCRIPTION

Signal Name Size In
Out

Description

clk 1 In Core clock. For 98 Gbit/s wire-speed throughput
use a core clock frequency of 156.25 MHz

rstn 1 In Global asynchronous reset (active low)
clk mac rx N 1 In Clock for the RX packet interface for port N.
rstn mac rx N 1 In Asynchronous reset (active low) for the RX

packet interface for port N
clk mac tx N 1 In Clock for the TX packet interface for port N.
rstn mac tx N 1 In Asynchronous reset (active low) for the TX

packet interface for port N
clk mult 0 1 In A 312.5MHz clock, synchronous with the core

clock.
assert reset 1 Out Signal indicating that the core has experienced

an unrecoverable error, and should be reset.
consistency check 1 In When pulled high internal checks will be made.

This is a simulation-only port, it shall be tied
low in hardware.

idle 1 Out Indicates when the packet processing pipelines
are empty.

doing init 1 Out Indicates that the core is in initialization. The
operation of the core is undefined if packets are
injected on the rx-interfaces when the core is in
initialization

Table 29.1: Clock and Reset interfaces

Core Initialization

Before packets are sent to the core it needs to be initialized. The initialization is initiated when reset
is released. Reset activation is asynchronous to any clock. The reset should be kept low at least one
cycle of the slowest clock. Releasing reset must be done synchronously with respect to all clocks. During
initialization doing init is kept high. See Figure 29.1. The length of the initialization is dependent on the
depth of the deepest initialized memory.

During initialization no activity is expected on the configuration interface or on the packet RX interfaces,
and the operation of the core is undefined if any such activity occurs.

clk

rstn

doing init

Figure 29.1: Core Initialization

29.1.1 Assert Reset

The assert reset signal will go high, and stay high, if the core experiences an unrecoverable error. The
behaviour of the core when assert reset is high is undefined, and the only way to get back to normal
operation is to reset the core.

The configuration bus will most likely still work when assert reset is high, but to figure out what went
wrong you will probably need to use the debug interface.

164 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

29.2 Packet Interface

There are 53 packet interfaces, or ports for short, each divided into a reception part and a transmission
part. The ports are numbered from 0 to 52.

Pin Size Direction Description
rx axis tvalid N 1 In Set high to indicate that the current bus

cycle is valid. The core must accept the
data, there is no backpressure mecha-
nism.

rx axis tlast N 1 In End-of-packet flag. Indicates that the
current bus cycle contains the last data
transfer for the packet. This is the only
time a partially-filled data word is permit-
ted.

rx axis tdata N 8 In Packet data.
rx axis tkeep N 1 In A per-byte data valid indication for the

last word. Only valid when tlast is high.
If tkeep[0] is high, tdata[7:0] is valid; if
tkeep[1] is high, tdata[15:8] is also valid;
and so on and so forth. The axis tkeep
port shall be connected to the LSBś of
axis tkeep user.

rx axis tuser N 1 In Error indication for the packet. Valid
only when tlast is high. The axis tuser
port shall be connected to the MSB of
axis tkeep user.

Table 29.2: Packet RX interface for ports 0-47. N is the ingress interface number.

The port interfaces are not all the same. There are two different port interface variants in this core, each
with an RX and a TX direction:

1. Ports 0-47: RX-interface see Table 29.2 on page 165, TX-interface see Table 29.3 on page 166

2. Ports 48-52: RX-interface see Table 29.4 on page 167, TX-interface see Table 29.5 on page 168

Each direction of a packet interface consists of tvalid, tlast, tkeep, tdata and tuser fields. The transmit
direction has an additional tready signal to allow the receiving end to moderate the data rate transmitted
from the core.

Packet data is presented in order, i.e. the most recent byte is the, so far, highest numbered byte in the
packet. The first valid byte on the bus is byte 0, and all bytes are valid up to the last byte indicated by
tkeep. Unless the tlast flag is set all bytes or no bytes must be valid.

Sending and Receiving packets

Data transmission, either to or from the core, begins with a transaction where the tvalid field is high
and the valid bytes field is non-zero, and ends with a data transmission where the tlast field is high. Idle
transactions—where tkeep, tvalid and tlast are all zero—are allowed at any time, but unless halted there
will be no idle transactions on the transmission interfaces other than between packets.

By default, the core has a short packet size limit of 60 bytes. All shorter packets will be dropped. This
assumes that the receiving MAC removes the FCS before sending the packet to the core.

Jumbo packets

The maximum packet length that this core can cope with is 16359 bytes. If this length was allowed to be
exceeded either on the ingress or the egress it would corrupt the internal counters.

165 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

Pin Size Direction Description
tx axis tvalid N 1 Out Set high to indicate that the current bus

cycle is valid.
tx axis tlast N 1 Out End-of-packet flag. Indicates that the

current bus cycle contains the last data
transfer for the packet. This is the only
time a partially-filled data word is permit-
ted.

tx axis tdata N 8 Out Packet data.
tx axis tkeep N 1 Out A per-byte data valid indication for the

last word. Only valid when tlast is high.
If tkeep[0] is high, tdata[7:0] is valid;
if tkeep[1] is high, tdata[15:8] is also
valid; and so on and so forth. The
axis tkeep user signal is created by con-
catenating {axis tuser,axis tkeep}.

tx axis tuser N 1 Out Error indication for the packet. Valid only
when tlast is high.

tx axis tready N 1 In Driven by the MAC to indicate that the
interface is able to accept the data cur-
rently present on the bus. If the tready
signal deasserts during a transfer, the cur-
rent data on the bus must be held until
tready is asserted again.

Table 29.3: Packet TX interface for ports 0-47. N is the egress interface number.

It should be noted that it is not guaranteed that a packet of that length will always be able to pass through
the switch, even if the destination queue is not congested. Depending on the Egress Resource Management
settings, and/or the congestion status of other ports, there may not be enough free cells in the packet
buffer to store such a large packet. But the switch core will, when properly configured and reasonably
uncongested, be able to switch 16359-byte packets.

Longest Packet for No-Overlap Mesh

The longest packet that can pass a no-overlap mesh test is highly dependent on the ERM settings. But
with the default settings you can expect to pass a no-overlap mesh test with 9600-byte packets.

Inter-frame gap

For small packets it is possible to feed the switch with more packets than it can handle. This will cause
the SP to overflow, and packets to be dropped. To avoid packet drops an inter-frame gap (IFG) of at
least 192 bits is needed between each packet. There is a small fifo in the SP, so a single smaller IFG is
fine, but it needs to average at or above the minimum IFG over a window of a few packets.

On the output from the switch packets will be sent back to back, without IFG, and it is up to the receiver
to halt the transmission using the tready interface to prevent overflows.

Broken packets

A packet ending with tuser set high is considered a broken packet. Broken packets received by the core will
never be output on the egress ports, but will be dropped at the earliest convenience. So any broken packets
output from the switch are packet that were somehow corrupted in the core. There are no benign cases
where this happens. Depending on the packet length a broken packet input to the core will be dropped
either before or after ingress packet processing. Broken packets larger than a cell will pass through the
packet processing pipeline and then been dropped, while packets shorter than a cell will be filtered out
before the packet processing pipeline.

166 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

Pin Size Direction Description
rx axis tvalid N 1 In Set high to indicate that the current bus

cycle is valid. The core must accept the
data, there is no backpressure mecha-
nism.

rx axis tlast N 1 In End-of-packet flag. Indicates that the
current bus cycle contains the last data
transfer for the packet. This is the only
time a partially-filled data word is permit-
ted.

rx axis tdata N 32 In Packet data.
rx axis tkeep N 4 In A per-byte data valid indication for the

last word. Only valid when tlast is high.
If tkeep[0] is high, tdata[7:0] is valid; if
tkeep[1] is high, tdata[15:8] is also valid;
and so on and so forth. The axis tkeep
port shall be connected to the LSBś of
axis tkeep user.

rx axis tuser N 1 In Error indication for the packet. Valid
only when tlast is high. The axis tuser
port shall be connected to the MSB of
axis tkeep user.

Table 29.4: Packet RX interface for ports 48-52. N is the ingress interface number.

All broken packets are counted in the MAC RX Broken Packets.

Byte Order

We define the packet byte order by the first transmitted/received byte on the wire labeled byte 0, as in
IEEE 802.3. On a packet interface wider than 8 bits the packets byte 0 is placed on the bits data[7:0]
followed by byte 1 on bits data[15:8] and so on.

The tkeep indicates how many of the bytes of the data field that holds valid packet data. From the start
of a packet this must always be all bytes on the bus up till the last transfer. At the end of the packet on
the last bus transfer the tkeep can indicate less than the full bus width. In this case the byte order is still
the same as previous transfers. For example when tkeep is 1 the last byte of the packet is placed on bits
[7:0] and with tkeep of 3 the last byte of the packet is placed on bits [15:8] and the second to last is on
bits [7:0].

29.3 Configuration Interface

The CPU-accessible registers and tables in the core are accessed using the configuration interface.

Each transaction on the configuration interface consists of a request to the core and a resulting reply from
the core.

The pins for the configuration interface are listed in Table 29.6 below.

167 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

Pin Size Direction Description
tx axis tvalid N 1 Out Set high to indicate that the current bus

cycle is valid.
tx axis tlast N 1 Out End-of-packet flag. Indicates that the

current bus cycle contains the last data
transfer for the packet. This is the only
time a partially-filled data word is permit-
ted.

tx axis tdata N 32 Out Packet data.
tx axis tkeep N 4 Out A per-byte data valid indication for the

last word. Only valid when tlast is high.
If tkeep[0] is high, tdata[7:0] is valid;
if tkeep[1] is high, tdata[15:8] is also
valid; and so on and so forth. The
axis tkeep user signal is created by con-
catenating {axis tuser,axis tkeep}.

tx axis tuser N 1 Out Error indication for the packet. Valid only
when tlast is high.

tx axis tready N 1 In Driven by the MAC to indicate that the
interface is able to accept the data cur-
rently present on the bus. If the tready
signal deasserts during a transfer, the cur-
rent data on the bus must be held until
tready is asserted again.

Table 29.5: Packet TX interface for ports 48-52. N is the egress interface number.

Pin Size Direction Description
apb paddr 24 In Address. This is the APB address bus. The

highest address bit (23) on the APB bus is not
a normal address bit and is referred to as the
Accumulator Bit. This is described further in
section 30.

apb psel 1 In Select.
apb penable 1 In Enable.
apb pwrite 1 In Direction. This signal indicates an APB write

access when HIGH and an APB read access when
LOW.

apb pwdata 32 In Write data.
apb pready 1 Out Ready. The slave uses this signal to extend an

APB transfer.
apb prdata 32 Out Read Data.
apb pslverr 1 Out Error. This signal indicates a transfer failure.

Table 29.6: The APB interface signals

The paddr is a byte address, however the core only supports accessing complete 32-bit words. The lowest
address bits, which addresses the byte within a bus word, will always be discarded. The register addresses
described in this document always refer to word addresses, not byte addresses.

The core has a varying access latency and therefore an APB master should use pready.

The pslverr signal is set when a transaction is aborted due to an internal timeout. This can occur if the
core clock is lower than required and there is a high traffic rate. It will also occur if the address is outside
of any defined register.

For a detailed description of the APB interface see the AMBA APB Protocol Specification Version 2.0,

168 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

available at developer.arm.com

29.4 Pause Interfaces

There are separate pause interfaces for sending status information from the switch to the MAC, opfc status,
and from the MAC to the switch, iext pause. Note that these interfaces are in the core clock domain, so
they have to be syncronized to the MAC clock if connected to the MAC. However the interfaces can be
though of as quasi static. With properly configured pausing thresholds there will never be a short high pulse
(due to hysteresis), and losing a short low pulse due to synchronization will create no problems.

29.4.1 PFC Status

The ipfc status interface is used to transfer pause status from the switch resource manager to the MAC,
so the MAC can generate pause frames.

The switch will merely indicate its current pause status, it is up to the MAC to generate the necessary
pause frames to keep the far end switch in the desired pausing state.

29.4.2 External Pause

The iext pause interface is used to transfer PFC pause status received by the MAC to the switch egress
scheduler. When the status is XOFF the switch egress scheduler will not send any new packets. Ongoing
packets are not affected. There is one iext pause interface for each packet interface.

Pin Direction Size Description
iext pause N In 1 Xoff=1, Xon=0.
opfc status N Out 1 Xoff=1, Xon=0.

Table 29.7: ThePFC status and External Pause interfaces, where N is the packet interface number

29.5 Debug Read Interface

The debug read interface outputs internal debug signals on the debug read data port. Which signals to
observe is selected with the debug read select port. The mapping between select value and debug signal
is described in Table 29.9. Both these signals are pipelined.

Pin Direction Size Description
debug read select In 11 Selects the signal to monitor. See Table 29.9.
debug read data In 32 The debug output data.

Table 29.8: The Debug Read interface

id instance signal
0 pa top.switch.mactop constant-0
1 —"— rx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
2 —"— tx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
3 —"— rx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
4 —"— tx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
5 —"— rx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
6 —"— tx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
7 —"— rx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
8 —"— tx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
9 —"— rx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
10 —"— tx pkt bus {27’data, 3’valid bytes, 1’last, 1’first}
11 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
12 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
13 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
14 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
15 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
16 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
17 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}

169 Packet Architects AB

https://developer.arm.com/documentation/ihi0024/c/

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
18 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
19 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
20 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
21 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
22 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
23 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
24 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
25 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
26 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
27 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
28 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
29 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
30 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
31 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
32 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
33 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
34 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
35 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
36 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
37 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
38 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
39 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
40 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
41 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
42 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
43 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
44 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
45 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
46 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
47 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
48 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
49 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
50 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
51 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
52 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
53 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
54 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
55 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
56 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
57 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
58 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
59 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
60 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
61 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
62 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
63 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
64 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
65 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
66 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
67 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
68 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
69 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
70 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
71 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
72 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
73 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
74 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
75 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
76 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
77 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
78 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
79 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
80 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
81 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
82 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
83 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
84 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
85 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
86 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
87 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
88 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
89 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
90 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
91 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
92 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
93 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
94 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
95 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
96 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
97 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}

170 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
98 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
99 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
100 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
101 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
102 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
103 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
104 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
105 —"— rx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
106 —"— tx pkt bus {8’data, 1’valid bytes, 1’last, 1’first}
107 —"— constant-107
108 pa top.switch.ipp0 constant-108
109 —"— ipp ipkt bus {16’data, 8’valid bytes, 6’id, 1’last, 1’first}
110 —"— ipp opkt bus {16’data, 8’valid bytes, 6’id, 1’last, 1’first}
111 —"— pass da 0
112 —"— pass da 1
113 —"— dut iIpp iDropper dbg drop
114 —"— dut iIpp iDropper dbg ifirst
115 —"— dut iIpp iDropper dbg ilast
116 —"— pass sa 0
117 —"— pass sa 1
118 —"— constant-118
119 pa top.switch.ipp0.pm constant-119
120 —"— pm fifo overflow
121 —"— dut dbg fifo full
122 —"— halt from pm
123 —"— dut iFifoa debug in
124 —"— dut iFifoa debug out
125 —"— constant-125
126 pa top.switch.sp0 constant-126
127 —"— dut iSpbridge assert reset sp bridge
128 —"— dut iSpbridge assert reset sp bridge
129 —"— dut iSpbridge assert reset sp bridge
130 —"— dut iSpbridge assert reset sp bridge
131 —"— dut iSpbridge assert reset sp bridge
132 —"— dut iSpbridge assert reset sp bridge
133 —"— dut iSpbridge assert reset sp bridge
134 —"— dut iSpbridge assert reset sp bridge
135 —"— dut iSpbridge assert reset sp bridge
136 —"— dut iSpbridge assert reset sp bridge
137 —"— dut iSpbridge assert reset sp bridge
138 —"— dut iSpbridge assert reset sp bridge
139 —"— dut iSpbridge assert reset sp bridge
140 —"— dut iSpbridge assert reset sp bridge
141 —"— dut iSpbridge assert reset sp bridge
142 —"— dut iSpbridge assert reset sp bridge
143 —"— dut iSpbridge assert reset sp bridge
144 —"— dut iSpbridge assert reset sp bridge
145 —"— dut iSpbridge assert reset sp bridge
146 —"— dut iSpbridge assert reset sp bridge
147 —"— dut iSpbridge assert reset sp bridge
148 —"— dut iSpbridge assert reset sp bridge
149 —"— dut iSpbridge assert reset sp bridge
150 —"— dut iSpbridge assert reset sp bridge
151 —"— dut iSpbridge assert reset sp bridge
152 —"— dut iSpbridge assert reset sp bridge
153 —"— dut iSpbridge assert reset sp bridge
154 —"— dut iSpbridge assert reset sp bridge
155 —"— dut iSpbridge assert reset sp bridge
156 —"— dut iSpbridge assert reset sp bridge
157 —"— dut iSpbridge assert reset sp bridge
158 —"— dut iSpbridge assert reset sp bridge
159 —"— dut iSpbridge assert reset sp bridge
160 —"— dut iSpbridge assert reset sp bridge
161 —"— dut iSpbridge assert reset sp bridge
162 —"— dut iSpbridge assert reset sp bridge
163 —"— dut iSpbridge assert reset sp bridge
164 —"— dut iSpbridge assert reset sp bridge
165 —"— dut iSpbridge assert reset sp bridge
166 —"— dut iSpbridge assert reset sp bridge
167 —"— dut iSpbridge assert reset sp bridge
168 —"— dut iSpbridge assert reset sp bridge
169 —"— dut iSpbridge assert reset sp bridge
170 —"— dut iSpbridge assert reset sp bridge
171 —"— dut iSpbridge assert reset sp bridge
172 —"— dut iSpbridge assert reset sp bridge
173 —"— dut iSpbridge assert reset sp bridge
174 —"— dut iSpbridge assert reset sp bridge
175 —"— dut iSpbridge assert reset sp bridge
176 —"— dut iSpbridge assert reset sp bridge
177 —"— dut iSpbridge assert reset sp bridge

171 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
178 —"— dut iSpbridge assert reset sp bridge
179 —"— dut iSpbridge assert reset sp bridge
180 —"— constant-180
181 pa top.switch.pb0 constant-181
182 —"— dut iPbu debug refc inc
183 —"— dut iPbu debug port sch
184 —"— dut iPbu dmux wrr
185 —"— dut iPbu debug qenext
186 —"— dut iPbu assert qediff
187 —"— dut iPbu assert reque sp
188 —"— Mask of currently receiving packets that have been broken due to BM full
189 —"— dut iPbu follow pfc accept
190 —"— dut iPbu iAssertpacket 0 assert out
191 —"— pa.top.switch.pb0.iAssertpacket0 {8’valid bytes, 6’port, 1’last, 1’first}
192 —"— dut iPbu iPortshaper iBuckets reg stat
193 —"— dut iPbu zPassdbgqeread 0 o
194 —"— dut iPbu iRequeue iReFifo 52 iF iFifos zFcnt pop empty
195 —"— dut iPbu iRequeue iReFifo 52 iF iFifos zFcnt push full
196 —"— dut iPbu iRequeue iReFifo 51 iF iFifos zFcnt pop empty
197 —"— dut iPbu iRequeue iReFifo 51 iF iFifos zFcnt push full
198 —"— dut iPbu iRequeue iReFifo 50 iF iFifos zFcnt pop empty
199 —"— dut iPbu iRequeue iReFifo 50 iF iFifos zFcnt push full
200 —"— dut iPbu iRequeue iReFifo 49 iF iFifos zFcnt pop empty
201 —"— dut iPbu iRequeue iReFifo 49 iF iFifos zFcnt push full
202 —"— dut iPbu iRequeue iReFifo 48 iF iFifos zFcnt pop empty
203 —"— dut iPbu iRequeue iReFifo 48 iF iFifos zFcnt push full
204 —"— dut iPbu iRequeue iReFifo 47 iF iFifos zFcnt pop empty
205 —"— dut iPbu iRequeue iReFifo 47 iF iFifos zFcnt push full
206 —"— dut iPbu iRequeue iReFifo 46 iF iFifos zFcnt pop empty
207 —"— dut iPbu iRequeue iReFifo 46 iF iFifos zFcnt push full
208 —"— dut iPbu iRequeue iReFifo 45 iF iFifos zFcnt pop empty
209 —"— dut iPbu iRequeue iReFifo 45 iF iFifos zFcnt push full
210 —"— dut iPbu iRequeue iReFifo 44 iF iFifos zFcnt pop empty
211 —"— dut iPbu iRequeue iReFifo 44 iF iFifos zFcnt push full
212 —"— dut iPbu iRequeue iReFifo 43 iF iFifos zFcnt pop empty
213 —"— dut iPbu iRequeue iReFifo 43 iF iFifos zFcnt push full
214 —"— dut iPbu iRequeue iReFifo 42 iF iFifos zFcnt pop empty
215 —"— dut iPbu iRequeue iReFifo 42 iF iFifos zFcnt push full
216 —"— dut iPbu iRequeue iReFifo 41 iF iFifos zFcnt pop empty
217 —"— dut iPbu iRequeue iReFifo 41 iF iFifos zFcnt push full
218 —"— dut iPbu iRequeue iReFifo 40 iF iFifos zFcnt pop empty
219 —"— dut iPbu iRequeue iReFifo 40 iF iFifos zFcnt push full
220 —"— dut iPbu iRequeue iReFifo 39 iF iFifos zFcnt pop empty
221 —"— dut iPbu iRequeue iReFifo 39 iF iFifos zFcnt push full
222 —"— dut iPbu iRequeue iReFifo 38 iF iFifos zFcnt pop empty
223 —"— dut iPbu iRequeue iReFifo 38 iF iFifos zFcnt push full
224 —"— dut iPbu iRequeue iReFifo 37 iF iFifos zFcnt pop empty
225 —"— dut iPbu iRequeue iReFifo 37 iF iFifos zFcnt push full
226 —"— dut iPbu iRequeue iReFifo 36 iF iFifos zFcnt pop empty
227 —"— dut iPbu iRequeue iReFifo 36 iF iFifos zFcnt push full
228 —"— dut iPbu iRequeue iReFifo 35 iF iFifos zFcnt pop empty
229 —"— dut iPbu iRequeue iReFifo 35 iF iFifos zFcnt push full
230 —"— dut iPbu iRequeue iReFifo 34 iF iFifos zFcnt pop empty
231 —"— dut iPbu iRequeue iReFifo 34 iF iFifos zFcnt push full
232 —"— dut iPbu iRequeue iReFifo 33 iF iFifos zFcnt pop empty
233 —"— dut iPbu iRequeue iReFifo 33 iF iFifos zFcnt push full
234 —"— dut iPbu iRequeue iReFifo 32 iF iFifos zFcnt pop empty
235 —"— dut iPbu iRequeue iReFifo 32 iF iFifos zFcnt push full
236 —"— dut iPbu iRequeue iReFifo 31 iF iFifos zFcnt pop empty
237 —"— dut iPbu iRequeue iReFifo 31 iF iFifos zFcnt push full
238 —"— dut iPbu iRequeue iReFifo 30 iF iFifos zFcnt pop empty
239 —"— dut iPbu iRequeue iReFifo 30 iF iFifos zFcnt push full
240 —"— dut iPbu iRequeue iReFifo 29 iF iFifos zFcnt pop empty
241 —"— dut iPbu iRequeue iReFifo 29 iF iFifos zFcnt push full
242 —"— dut iPbu iRequeue iReFifo 28 iF iFifos zFcnt pop empty
243 —"— dut iPbu iRequeue iReFifo 28 iF iFifos zFcnt push full
244 —"— dut iPbu iRequeue iReFifo 27 iF iFifos zFcnt pop empty
245 —"— dut iPbu iRequeue iReFifo 27 iF iFifos zFcnt push full
246 —"— dut iPbu iRequeue iReFifo 26 iF iFifos zFcnt pop empty
247 —"— dut iPbu iRequeue iReFifo 26 iF iFifos zFcnt push full
248 —"— dut iPbu iRequeue iReFifo 25 iF iFifos zFcnt pop empty
249 —"— dut iPbu iRequeue iReFifo 25 iF iFifos zFcnt push full
250 —"— dut iPbu iRequeue iReFifo 24 iF iFifos zFcnt pop empty
251 —"— dut iPbu iRequeue iReFifo 24 iF iFifos zFcnt push full
252 —"— dut iPbu iRequeue iReFifo 23 iF iFifos zFcnt pop empty
253 —"— dut iPbu iRequeue iReFifo 23 iF iFifos zFcnt push full
254 —"— dut iPbu iRequeue iReFifo 22 iF iFifos zFcnt pop empty
255 —"— dut iPbu iRequeue iReFifo 22 iF iFifos zFcnt push full
256 —"— dut iPbu iRequeue iReFifo 21 iF iFifos zFcnt pop empty
257 —"— dut iPbu iRequeue iReFifo 21 iF iFifos zFcnt push full

172 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
258 —"— dut iPbu iRequeue iReFifo 20 iF iFifos zFcnt pop empty
259 —"— dut iPbu iRequeue iReFifo 20 iF iFifos zFcnt push full
260 —"— dut iPbu iRequeue iReFifo 19 iF iFifos zFcnt pop empty
261 —"— dut iPbu iRequeue iReFifo 19 iF iFifos zFcnt push full
262 —"— dut iPbu iRequeue iReFifo 18 iF iFifos zFcnt pop empty
263 —"— dut iPbu iRequeue iReFifo 18 iF iFifos zFcnt push full
264 —"— dut iPbu iRequeue iReFifo 17 iF iFifos zFcnt pop empty
265 —"— dut iPbu iRequeue iReFifo 17 iF iFifos zFcnt push full
266 —"— dut iPbu iRequeue iReFifo 16 iF iFifos zFcnt pop empty
267 —"— dut iPbu iRequeue iReFifo 16 iF iFifos zFcnt push full
268 —"— dut iPbu iRequeue iReFifo 15 iF iFifos zFcnt pop empty
269 —"— dut iPbu iRequeue iReFifo 15 iF iFifos zFcnt push full
270 —"— dut iPbu iRequeue iReFifo 14 iF iFifos zFcnt pop empty
271 —"— dut iPbu iRequeue iReFifo 14 iF iFifos zFcnt push full
272 —"— dut iPbu iRequeue iReFifo 13 iF iFifos zFcnt pop empty
273 —"— dut iPbu iRequeue iReFifo 13 iF iFifos zFcnt push full
274 —"— dut iPbu iRequeue iReFifo 12 iF iFifos zFcnt pop empty
275 —"— dut iPbu iRequeue iReFifo 12 iF iFifos zFcnt push full
276 —"— dut iPbu iRequeue iReFifo 11 iF iFifos zFcnt pop empty
277 —"— dut iPbu iRequeue iReFifo 11 iF iFifos zFcnt push full
278 —"— dut iPbu iRequeue iReFifo 10 iF iFifos zFcnt pop empty
279 —"— dut iPbu iRequeue iReFifo 10 iF iFifos zFcnt push full
280 —"— dut iPbu iRequeue iReFifo 9 iF iFifos zFcnt pop empty
281 —"— dut iPbu iRequeue iReFifo 9 iF iFifos zFcnt push full
282 —"— dut iPbu iRequeue iReFifo 8 iF iFifos zFcnt pop empty
283 —"— dut iPbu iRequeue iReFifo 8 iF iFifos zFcnt push full
284 —"— dut iPbu iRequeue iReFifo 7 iF iFifos zFcnt pop empty
285 —"— dut iPbu iRequeue iReFifo 7 iF iFifos zFcnt push full
286 —"— dut iPbu iRequeue iReFifo 6 iF iFifos zFcnt pop empty
287 —"— dut iPbu iRequeue iReFifo 6 iF iFifos zFcnt push full
288 —"— dut iPbu iRequeue iReFifo 5 iF iFifos zFcnt pop empty
289 —"— dut iPbu iRequeue iReFifo 5 iF iFifos zFcnt push full
290 —"— dut iPbu iRequeue iReFifo 4 iF iFifos zFcnt pop empty
291 —"— dut iPbu iRequeue iReFifo 4 iF iFifos zFcnt push full
292 —"— dut iPbu iRequeue iReFifo 3 iF iFifos zFcnt pop empty
293 —"— dut iPbu iRequeue iReFifo 3 iF iFifos zFcnt push full
294 —"— dut iPbu iRequeue iReFifo 2 iF iFifos zFcnt pop empty
295 —"— dut iPbu iRequeue iReFifo 2 iF iFifos zFcnt push full
296 —"— dut iPbu iRequeue iReFifo 1 iF iFifos zFcnt pop empty
297 —"— dut iPbu iRequeue iReFifo 1 iF iFifos zFcnt push full
298 —"— dut iPbu iRequeue iReFifo 0 iF iFifos zFcnt pop empty
299 —"— dut iPbu iRequeue iReFifo 0 iF iFifos zFcnt push full
300 —"— dut iPbu iRefc refc mem debug
301 —"— dut iPbu zPassqesp zPasslist 0 o
302 —"— Filter mask for packets dropped by ERM
303 —"— dut iPbu debug pb drop
304 —"— constant-304
305 pa top.switch.pb0.erm.dut iEql constant-305
306 —"— red zone
307 —"— constant-307
308 pa top.switch.pb0.pfc constant-308
309 —"— dut debug pause
310 —"— constant-310
311 pa top.switch.pb0.qe0 constant-311
312 —"— dut assert dfifo
313 —"— dut assert firstflag
314 —"— dut assert reset next
315 —"— dut drop cnt
316 —"— dut send cnt
317 —"— dut iDfifo iF iFifos zFcnt pop empty
318 —"— dut iDfifo iF iFifos zFcnt push full
319 —"— dut ipkt fifo 52 debug in
320 —"— dut ipkt fifo 52 debug out
321 —"— dut ipkt fifo 51 debug in
322 —"— dut ipkt fifo 51 debug out
323 —"— dut ipkt fifo 50 debug in
324 —"— dut ipkt fifo 50 debug out
325 —"— dut ipkt fifo 49 debug in
326 —"— dut ipkt fifo 49 debug out
327 —"— dut ipkt fifo 48 debug in
328 —"— dut ipkt fifo 48 debug out
329 —"— dut ipkt fifo 47 debug in
330 —"— dut ipkt fifo 47 debug out
331 —"— dut ipkt fifo 46 debug in
332 —"— dut ipkt fifo 46 debug out
333 —"— dut ipkt fifo 45 debug in
334 —"— dut ipkt fifo 45 debug out
335 —"— dut ipkt fifo 44 debug in
336 —"— dut ipkt fifo 44 debug out
337 —"— dut ipkt fifo 43 debug in

173 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
338 —"— dut ipkt fifo 43 debug out
339 —"— dut ipkt fifo 42 debug in
340 —"— dut ipkt fifo 42 debug out
341 —"— dut ipkt fifo 41 debug in
342 —"— dut ipkt fifo 41 debug out
343 —"— dut ipkt fifo 40 debug in
344 —"— dut ipkt fifo 40 debug out
345 —"— dut ipkt fifo 39 debug in
346 —"— dut ipkt fifo 39 debug out
347 —"— dut ipkt fifo 38 debug in
348 —"— dut ipkt fifo 38 debug out
349 —"— dut ipkt fifo 37 debug in
350 —"— dut ipkt fifo 37 debug out
351 —"— dut ipkt fifo 36 debug in
352 —"— dut ipkt fifo 36 debug out
353 —"— dut ipkt fifo 35 debug in
354 —"— dut ipkt fifo 35 debug out
355 —"— dut ipkt fifo 34 debug in
356 —"— dut ipkt fifo 34 debug out
357 —"— dut ipkt fifo 33 debug in
358 —"— dut ipkt fifo 33 debug out
359 —"— dut ipkt fifo 32 debug in
360 —"— dut ipkt fifo 32 debug out
361 —"— dut ipkt fifo 31 debug in
362 —"— dut ipkt fifo 31 debug out
363 —"— dut ipkt fifo 30 debug in
364 —"— dut ipkt fifo 30 debug out
365 —"— dut ipkt fifo 29 debug in
366 —"— dut ipkt fifo 29 debug out
367 —"— dut ipkt fifo 28 debug in
368 —"— dut ipkt fifo 28 debug out
369 —"— dut ipkt fifo 27 debug in
370 —"— dut ipkt fifo 27 debug out
371 —"— dut ipkt fifo 26 debug in
372 —"— dut ipkt fifo 26 debug out
373 —"— dut ipkt fifo 25 debug in
374 —"— dut ipkt fifo 25 debug out
375 —"— dut ipkt fifo 24 debug in
376 —"— dut ipkt fifo 24 debug out
377 —"— dut ipkt fifo 23 debug in
378 —"— dut ipkt fifo 23 debug out
379 —"— dut ipkt fifo 22 debug in
380 —"— dut ipkt fifo 22 debug out
381 —"— dut ipkt fifo 21 debug in
382 —"— dut ipkt fifo 21 debug out
383 —"— dut ipkt fifo 20 debug in
384 —"— dut ipkt fifo 20 debug out
385 —"— dut ipkt fifo 19 debug in
386 —"— dut ipkt fifo 19 debug out
387 —"— dut ipkt fifo 18 debug in
388 —"— dut ipkt fifo 18 debug out
389 —"— dut ipkt fifo 17 debug in
390 —"— dut ipkt fifo 17 debug out
391 —"— dut ipkt fifo 16 debug in
392 —"— dut ipkt fifo 16 debug out
393 —"— dut ipkt fifo 15 debug in
394 —"— dut ipkt fifo 15 debug out
395 —"— dut ipkt fifo 14 debug in
396 —"— dut ipkt fifo 14 debug out
397 —"— dut ipkt fifo 13 debug in
398 —"— dut ipkt fifo 13 debug out
399 —"— dut ipkt fifo 12 debug in
400 —"— dut ipkt fifo 12 debug out
401 —"— dut ipkt fifo 11 debug in
402 —"— dut ipkt fifo 11 debug out
403 —"— dut ipkt fifo 10 debug in
404 —"— dut ipkt fifo 10 debug out
405 —"— dut ipkt fifo 9 debug in
406 —"— dut ipkt fifo 9 debug out
407 —"— dut ipkt fifo 8 debug in
408 —"— dut ipkt fifo 8 debug out
409 —"— dut ipkt fifo 7 debug in
410 —"— dut ipkt fifo 7 debug out
411 —"— dut ipkt fifo 6 debug in
412 —"— dut ipkt fifo 6 debug out
413 —"— dut ipkt fifo 5 debug in
414 —"— dut ipkt fifo 5 debug out
415 —"— dut ipkt fifo 4 debug in
416 —"— dut ipkt fifo 4 debug out
417 —"— dut ipkt fifo 3 debug in

174 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
418 —"— dut ipkt fifo 3 debug out
419 —"— dut ipkt fifo 2 debug in
420 —"— dut ipkt fifo 2 debug out
421 —"— dut ipkt fifo 1 debug in
422 —"— dut ipkt fifo 1 debug out
423 —"— dut ipkt fifo 0 debug in
424 —"— dut ipkt fifo 0 debug out
425 —"— dut pfifo level
426 —"— dut pfifo level
427 —"— dut pfifo level
428 —"— dut pfifo level
429 —"— dut pfifo level
430 —"— dut pfifo level
431 —"— dut pfifo level
432 —"— dut pfifo level
433 —"— dut pfifo level
434 —"— dut pfifo level
435 —"— dut pfifo level
436 —"— dut pfifo level
437 —"— dut pfifo level
438 —"— dut pfifo level
439 —"— dut pfifo level
440 —"— dut pfifo level
441 —"— dut pfifo level
442 —"— dut pfifo level
443 —"— dut pfifo level
444 —"— dut pfifo level
445 —"— dut pfifo level
446 —"— dut pfifo level
447 —"— dut pfifo level
448 —"— dut pfifo level
449 —"— dut pfifo level
450 —"— dut pfifo level
451 —"— dut pfifo level
452 —"— dut pfifo level
453 —"— dut pfifo level
454 —"— dut pfifo level
455 —"— dut pfifo level
456 —"— dut pfifo level
457 —"— dut pfifo level
458 —"— dut pfifo level
459 —"— dut pfifo level
460 —"— dut pfifo level
461 —"— dut pfifo level
462 —"— dut pfifo level
463 —"— dut pfifo level
464 —"— dut pfifo level
465 —"— dut pfifo level
466 —"— dut pfifo level
467 —"— dut pfifo level
468 —"— dut pfifo level
469 —"— dut pfifo level
470 —"— dut pfifo level
471 —"— dut pfifo level
472 —"— dut pfifo level
473 —"— dut pfifo level
474 —"— dut pfifo level
475 —"— dut pfifo level
476 —"— dut pfifo level
477 —"— dut pfifo level
478 —"— constant-478
479 pa top.switch.pb0.wrr constant-479
480 —"— dut debug below
481 —"— dut zPassdebugbvalpipe zPasslist 7 o
482 —"— dut zPassdebugbvalpipe zPasslist 6 o
483 —"— dut zPassdebugbvalpipe zPasslist 5 o
484 —"— dut zPassdebugbvalpipe zPasslist 4 o
485 —"— dut zPassdebugbvalpipe zPasslist 3 o
486 —"— dut zPassdebugbvalpipe zPasslist 2 o
487 —"— dut zPassdebugbvalpipe zPasslist 1 o
488 —"— dut zPassdebugbvalpipe zPasslist 0 o
489 —"— dut reg bval
490 —"— dut reg bval
491 —"— dut reg bval
492 —"— dut reg bval
493 —"— dut reg bval
494 —"— dut reg bval
495 —"— dut reg bval
496 —"— dut reg bval
497 —"— dut reg bval

175 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
498 —"— dut reg bval
499 —"— dut reg bval
500 —"— dut reg bval
501 —"— dut reg bval
502 —"— dut reg bval
503 —"— dut reg bval
504 —"— dut reg bval
505 —"— dut reg bval
506 —"— dut reg bval
507 —"— dut reg bval
508 —"— dut reg bval
509 —"— dut reg bval
510 —"— dut reg bval
511 —"— dut reg bval
512 —"— dut reg bval
513 —"— dut reg bval
514 —"— dut reg bval
515 —"— dut reg bval
516 —"— dut reg bval
517 —"— dut reg bval
518 —"— dut reg bval
519 —"— dut reg bval
520 —"— dut reg bval
521 —"— dut reg bval
522 —"— dut reg bval
523 —"— dut reg bval
524 —"— dut reg bval
525 —"— dut reg bval
526 —"— dut reg bval
527 —"— dut reg bval
528 —"— dut reg bval
529 —"— dut reg bval
530 —"— dut reg bval
531 —"— dut reg bval
532 —"— dut reg bval
533 —"— dut reg bval
534 —"— dut reg bval
535 —"— dut reg bval
536 —"— dut reg bval
537 —"— dut reg bval
538 —"— dut reg bval
539 —"— dut reg bval
540 —"— dut reg bval
541 —"— dut reg bval
542 —"— dut reg bval
543 —"— dut reg bval
544 —"— dut reg bval
545 —"— dut reg bval
546 —"— dut reg bval
547 —"— dut reg bval
548 —"— dut reg bval
549 —"— dut reg bval
550 —"— dut reg bval
551 —"— dut reg bval
552 —"— dut reg bval
553 —"— dut reg bval
554 —"— dut reg bval
555 —"— dut reg bval
556 —"— dut reg bval
557 —"— dut reg bval
558 —"— dut reg bval
559 —"— dut reg bval
560 —"— dut reg bval
561 —"— dut reg bval
562 —"— dut reg bval
563 —"— dut reg bval
564 —"— dut reg bval
565 —"— dut reg bval
566 —"— dut reg bval
567 —"— dut reg bval
568 —"— dut reg bval
569 —"— dut reg bval
570 —"— dut reg bval
571 —"— dut reg bval
572 —"— dut reg bval
573 —"— dut reg bval
574 —"— dut reg bval
575 —"— dut reg bval
576 —"— dut reg bval
577 —"— dut reg bval

176 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
578 —"— dut reg bval
579 —"— dut reg bval
580 —"— dut reg bval
581 —"— dut reg bval
582 —"— dut reg bval
583 —"— dut reg bval
584 —"— dut reg bval
585 —"— dut reg bval
586 —"— dut reg bval
587 —"— dut reg bval
588 —"— dut reg bval
589 —"— dut reg bval
590 —"— dut reg bval
591 —"— dut reg bval
592 —"— dut reg bval
593 —"— dut reg bval
594 —"— dut reg bval
595 —"— dut reg bval
596 —"— dut reg bval
597 —"— dut reg bval
598 —"— dut reg bval
599 —"— dut reg bval
600 —"— dut reg bval
601 —"— dut reg bval
602 —"— dut reg bval
603 —"— dut reg bval
604 —"— dut reg bval
605 —"— dut reg bval
606 —"— dut reg bval
607 —"— dut reg bval
608 —"— dut reg bval
609 —"— dut reg bval
610 —"— dut reg bval
611 —"— dut reg bval
612 —"— dut reg bval
613 —"— dut reg bval
614 —"— dut reg bval
615 —"— dut reg bval
616 —"— dut reg bval
617 —"— dut reg bval
618 —"— dut reg bval
619 —"— dut reg bval
620 —"— dut reg bval
621 —"— dut reg bval
622 —"— dut reg bval
623 —"— dut reg bval
624 —"— dut reg bval
625 —"— dut reg bval
626 —"— dut reg bval
627 —"— dut reg bval
628 —"— dut reg bval
629 —"— dut reg bval
630 —"— dut reg bval
631 —"— dut reg bval
632 —"— dut reg bval
633 —"— dut reg bval
634 —"— dut reg bval
635 —"— dut reg bval
636 —"— dut reg bval
637 —"— dut reg bval
638 —"— dut reg bval
639 —"— dut reg bval
640 —"— dut reg bval
641 —"— dut reg bval
642 —"— dut reg bval
643 —"— dut reg bval
644 —"— dut reg bval
645 —"— dut reg bval
646 —"— dut reg bval
647 —"— dut reg bval
648 —"— dut reg bval
649 —"— dut reg bval
650 —"— dut reg bval
651 —"— dut reg bval
652 —"— dut reg bval
653 —"— dut reg bval
654 —"— dut reg bval
655 —"— dut reg bval
656 —"— dut reg bval
657 —"— dut reg bval

177 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
658 —"— dut reg bval
659 —"— dut reg bval
660 —"— dut reg bval
661 —"— dut reg bval
662 —"— dut reg bval
663 —"— dut reg bval
664 —"— dut reg bval
665 —"— dut reg bval
666 —"— dut reg bval
667 —"— dut reg bval
668 —"— dut reg bval
669 —"— dut reg bval
670 —"— dut reg bval
671 —"— dut reg bval
672 —"— dut reg bval
673 —"— dut reg bval
674 —"— dut reg bval
675 —"— dut reg bval
676 —"— dut reg bval
677 —"— dut reg bval
678 —"— dut reg bval
679 —"— dut reg bval
680 —"— dut reg bval
681 —"— dut reg bval
682 —"— dut reg bval
683 —"— dut reg bval
684 —"— dut reg bval
685 —"— dut reg bval
686 —"— dut reg bval
687 —"— dut reg bval
688 —"— dut reg bval
689 —"— dut reg bval
690 —"— dut reg bval
691 —"— dut reg bval
692 —"— dut reg bval
693 —"— dut reg bval
694 —"— dut reg bval
695 —"— dut reg bval
696 —"— dut reg bval
697 —"— dut reg bval
698 —"— dut reg bval
699 —"— dut reg bval
700 —"— dut reg bval
701 —"— dut reg bval
702 —"— dut reg bval
703 —"— dut reg bval
704 —"— dut reg bval
705 —"— dut reg bval
706 —"— dut reg bval
707 —"— dut reg bval
708 —"— dut reg bval
709 —"— dut reg bval
710 —"— dut reg bval
711 —"— dut reg bval
712 —"— dut reg bval
713 —"— dut reg bval
714 —"— dut reg bval
715 —"— dut reg bval
716 —"— dut reg bval
717 —"— dut reg bval
718 —"— dut reg bval
719 —"— dut reg bval
720 —"— dut reg bval
721 —"— dut reg bval
722 —"— dut reg bval
723 —"— dut reg bval
724 —"— dut reg bval
725 —"— dut reg bval
726 —"— dut reg bval
727 —"— dut reg bval
728 —"— dut reg bval
729 —"— dut reg bval
730 —"— dut reg bval
731 —"— dut reg bval
732 —"— dut reg bval
733 —"— dut reg bval
734 —"— dut reg bval
735 —"— dut reg bval
736 —"— dut reg bval
737 —"— dut reg bval

178 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
738 —"— dut reg bval
739 —"— dut reg bval
740 —"— dut reg bval
741 —"— dut reg bval
742 —"— dut reg bval
743 —"— dut reg bval
744 —"— dut reg bval
745 —"— dut reg bval
746 —"— dut reg bval
747 —"— dut reg bval
748 —"— dut reg bval
749 —"— dut reg bval
750 —"— dut reg bval
751 —"— dut reg bval
752 —"— dut reg bval
753 —"— dut reg bval
754 —"— dut reg bval
755 —"— dut reg bval
756 —"— dut reg bval
757 —"— dut reg bval
758 —"— dut reg bval
759 —"— dut reg bval
760 —"— dut reg bval
761 —"— dut reg bval
762 —"— dut reg bval
763 —"— dut reg bval
764 —"— dut reg bval
765 —"— dut reg bval
766 —"— dut reg bval
767 —"— dut reg bval
768 —"— dut reg bval
769 —"— dut reg bval
770 —"— dut reg bval
771 —"— dut reg bval
772 —"— dut reg bval
773 —"— dut reg bval
774 —"— dut reg bval
775 —"— dut reg bval
776 —"— dut reg bval
777 —"— dut reg bval
778 —"— dut reg bval
779 —"— dut reg bval
780 —"— dut reg bval
781 —"— dut reg bval
782 —"— dut reg bval
783 —"— dut reg bval
784 —"— dut reg bval
785 —"— dut reg bval
786 —"— dut reg bval
787 —"— dut reg bval
788 —"— dut reg bval
789 —"— dut reg bval
790 —"— dut reg bval
791 —"— dut reg bval
792 —"— dut reg bval
793 —"— dut reg bval
794 —"— dut reg bval
795 —"— dut reg bval
796 —"— dut reg bval
797 —"— dut reg bval
798 —"— dut reg bval
799 —"— dut reg bval
800 —"— dut reg bval
801 —"— dut reg bval
802 —"— dut reg bval
803 —"— dut reg bval
804 —"— dut reg bval
805 —"— dut reg bval
806 —"— dut reg bval
807 —"— dut reg bval
808 —"— dut reg bval
809 —"— dut reg bval
810 —"— dut reg bval
811 —"— dut reg bval
812 —"— dut reg bval
813 —"— dut reg bval
814 —"— dut reg bval
815 —"— dut reg bval
816 —"— dut reg bval
817 —"— dut reg bval

179 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
818 —"— dut reg bval
819 —"— dut reg bval
820 —"— dut reg bval
821 —"— dut reg bval
822 —"— dut reg bval
823 —"— dut reg bval
824 —"— dut reg bval
825 —"— dut reg bval
826 —"— dut reg bval
827 —"— dut reg bval
828 —"— dut reg bval
829 —"— dut reg bval
830 —"— dut reg bval
831 —"— dut reg bval
832 —"— dut reg bval
833 —"— dut reg bval
834 —"— dut reg bval
835 —"— dut reg bval
836 —"— dut reg bval
837 —"— dut reg bval
838 —"— dut reg bval
839 —"— dut reg bval
840 —"— dut reg bval
841 —"— dut reg bval
842 —"— dut reg bval
843 —"— dut reg bval
844 —"— dut reg bval
845 —"— dut reg bval
846 —"— dut reg bval
847 —"— dut reg bval
848 —"— dut reg bval
849 —"— dut reg bval
850 —"— dut reg bval
851 —"— dut reg bval
852 —"— dut reg bval
853 —"— dut reg bval
854 —"— dut reg bval
855 —"— dut reg bval
856 —"— dut reg bval
857 —"— dut reg bval
858 —"— dut reg bval
859 —"— dut reg bval
860 —"— dut reg bval
861 —"— dut reg bval
862 —"— dut reg bval
863 —"— dut reg bval
864 —"— dut reg bval
865 —"— dut reg bval
866 —"— dut reg bval
867 —"— dut reg bval
868 —"— dut reg bval
869 —"— dut reg bval
870 —"— dut reg bval
871 —"— dut reg bval
872 —"— dut reg bval
873 —"— dut reg bval
874 —"— dut reg bval
875 —"— dut reg bval
876 —"— dut reg bval
877 —"— dut reg bval
878 —"— dut reg bval
879 —"— dut reg bval
880 —"— dut reg bval
881 —"— dut reg bval
882 —"— dut reg bval
883 —"— dut reg bval
884 —"— dut reg bval
885 —"— dut reg bval
886 —"— dut reg bval
887 —"— dut reg bval
888 —"— dut reg bval
889 —"— dut reg bval
890 —"— dut reg bval
891 —"— dut reg bval
892 —"— dut reg bval
893 —"— dut reg bval
894 —"— dut reg bval
895 —"— dut reg bval
896 —"— dut reg bval
897 —"— dut reg bval

180 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
898 —"— dut reg bval
899 —"— dut reg bval
900 —"— dut reg bval
901 —"— dut reg bval
902 —"— dut reg bval
903 —"— dut reg bval
904 —"— dut reg bval
905 —"— dut reg bval
906 —"— dut reg bval
907 —"— dut reg bval
908 —"— dut reg bval
909 —"— dut reg bval
910 —"— dut reg bval
911 —"— dut reg bval
912 —"— dut reg bval
913 —"— dut reg rank
914 —"— dut reg rank
915 —"— dut reg rank
916 —"— dut reg rank
917 —"— dut reg rank
918 —"— dut reg rank
919 —"— dut reg rank
920 —"— dut reg rank
921 —"— dut reg rank
922 —"— dut reg rank
923 —"— dut reg rank
924 —"— dut reg rank
925 —"— dut reg rank
926 —"— dut reg rank
927 —"— dut reg rank
928 —"— dut reg rank
929 —"— dut reg rank
930 —"— dut reg rank
931 —"— dut reg rank
932 —"— dut reg rank
933 —"— dut reg rank
934 —"— dut reg rank
935 —"— dut reg rank
936 —"— dut reg rank
937 —"— dut reg rank
938 —"— dut reg rank
939 —"— dut reg rank
940 —"— dut reg rank
941 —"— dut reg rank
942 —"— dut reg rank
943 —"— dut reg rank
944 —"— dut reg rank
945 —"— dut reg rank
946 —"— dut reg rank
947 —"— dut reg rank
948 —"— dut reg rank
949 —"— dut reg rank
950 —"— dut reg rank
951 —"— dut reg rank
952 —"— dut reg rank
953 —"— dut reg rank
954 —"— dut reg rank
955 —"— dut reg rank
956 —"— dut reg rank
957 —"— dut reg rank
958 —"— dut reg rank
959 —"— dut reg rank
960 —"— dut reg rank
961 —"— dut reg rank
962 —"— dut reg rank
963 —"— dut reg rank
964 —"— dut reg rank
965 —"— dut reg rank
966 —"— constant-966
967 pa top.switch.pb0.qshp constant-967
968 —"— dut iPrioshaper reg stat
969 —"— dut iQueueshaper reg stat
970 —"— constant-970
971 pa top.switch.bm0 constant-971
972 —"— dut bm ifree debug free
973 —"— constant-973
974 pa top.switch.ps0 constant-974
975 —"— halt from ps
976 —"— dut iPs2 zPsAssert item
977 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 52.iPsassertout {3’valid bytes, 1’last, 1’first}

181 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
978 —"— dut iPs2 iBridge 51 assert reset
979 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 51.iPsassertout {3’valid bytes, 1’last, 1’first}
980 —"— dut iPs2 iBridge 50 assert reset
981 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 50.iPsassertout {3’valid bytes, 1’last, 1’first}
982 —"— dut iPs2 iBridge 49 assert reset
983 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 49.iPsassertout {3’valid bytes, 1’last, 1’first}
984 —"— dut iPs2 iBridge 48 assert reset
985 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 48.iPsassertout {3’valid bytes, 1’last, 1’first}
986 —"— dut iPs2 iBridge 47 assert reset
987 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 47.iPsassertout {1’valid bytes, 1’last, 1’first}
988 —"— dut iPs2 iBridge 46 assert reset
989 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 46.iPsassertout {1’valid bytes, 1’last, 1’first}
990 —"— dut iPs2 iBridge 45 assert reset
991 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 45.iPsassertout {1’valid bytes, 1’last, 1’first}
992 —"— dut iPs2 iBridge 44 assert reset
993 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 44.iPsassertout {1’valid bytes, 1’last, 1’first}
994 —"— dut iPs2 iBridge 43 assert reset
995 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 43.iPsassertout {1’valid bytes, 1’last, 1’first}
996 —"— dut iPs2 iBridge 42 assert reset
997 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 42.iPsassertout {1’valid bytes, 1’last, 1’first}
998 —"— dut iPs2 iBridge 41 assert reset
999 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 41.iPsassertout {1’valid bytes, 1’last, 1’first}
1000 —"— dut iPs2 iBridge 40 assert reset
1001 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 40.iPsassertout {1’valid bytes, 1’last, 1’first}
1002 —"— dut iPs2 iBridge 39 assert reset
1003 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 39.iPsassertout {1’valid bytes, 1’last, 1’first}
1004 —"— dut iPs2 iBridge 38 assert reset
1005 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 38.iPsassertout {1’valid bytes, 1’last, 1’first}
1006 —"— dut iPs2 iBridge 37 assert reset
1007 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 37.iPsassertout {1’valid bytes, 1’last, 1’first}
1008 —"— dut iPs2 iBridge 36 assert reset
1009 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 36.iPsassertout {1’valid bytes, 1’last, 1’first}
1010 —"— dut iPs2 iBridge 35 assert reset
1011 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 35.iPsassertout {1’valid bytes, 1’last, 1’first}
1012 —"— dut iPs2 iBridge 34 assert reset
1013 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 34.iPsassertout {1’valid bytes, 1’last, 1’first}
1014 —"— dut iPs2 iBridge 33 assert reset
1015 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 33.iPsassertout {1’valid bytes, 1’last, 1’first}
1016 —"— dut iPs2 iBridge 32 assert reset
1017 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 32.iPsassertout {1’valid bytes, 1’last, 1’first}
1018 —"— dut iPs2 iBridge 31 assert reset
1019 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 31.iPsassertout {1’valid bytes, 1’last, 1’first}
1020 —"— dut iPs2 iBridge 30 assert reset
1021 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 30.iPsassertout {1’valid bytes, 1’last, 1’first}
1022 —"— dut iPs2 iBridge 29 assert reset
1023 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 29.iPsassertout {1’valid bytes, 1’last, 1’first}
1024 —"— dut iPs2 iBridge 28 assert reset
1025 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 28.iPsassertout {1’valid bytes, 1’last, 1’first}
1026 —"— dut iPs2 iBridge 27 assert reset
1027 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 27.iPsassertout {1’valid bytes, 1’last, 1’first}
1028 —"— dut iPs2 iBridge 26 assert reset
1029 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 26.iPsassertout {1’valid bytes, 1’last, 1’first}
1030 —"— dut iPs2 iBridge 25 assert reset
1031 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 25.iPsassertout {1’valid bytes, 1’last, 1’first}
1032 —"— dut iPs2 iBridge 24 assert reset
1033 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 24.iPsassertout {1’valid bytes, 1’last, 1’first}
1034 —"— dut iPs2 iBridge 23 assert reset
1035 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 23.iPsassertout {1’valid bytes, 1’last, 1’first}
1036 —"— dut iPs2 iBridge 22 assert reset
1037 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 22.iPsassertout {1’valid bytes, 1’last, 1’first}
1038 —"— dut iPs2 iBridge 21 assert reset
1039 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 21.iPsassertout {1’valid bytes, 1’last, 1’first}
1040 —"— dut iPs2 iBridge 20 assert reset
1041 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 20.iPsassertout {1’valid bytes, 1’last, 1’first}
1042 —"— dut iPs2 iBridge 19 assert reset
1043 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 19.iPsassertout {1’valid bytes, 1’last, 1’first}
1044 —"— dut iPs2 iBridge 18 assert reset
1045 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 18.iPsassertout {1’valid bytes, 1’last, 1’first}
1046 —"— dut iPs2 iBridge 17 assert reset
1047 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 17.iPsassertout {1’valid bytes, 1’last, 1’first}
1048 —"— dut iPs2 iBridge 16 assert reset
1049 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 16.iPsassertout {1’valid bytes, 1’last, 1’first}
1050 —"— dut iPs2 iBridge 15 assert reset
1051 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 15.iPsassertout {1’valid bytes, 1’last, 1’first}
1052 —"— dut iPs2 iBridge 14 assert reset
1053 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 14.iPsassertout {1’valid bytes, 1’last, 1’first}
1054 —"— dut iPs2 iBridge 13 assert reset
1055 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 13.iPsassertout {1’valid bytes, 1’last, 1’first}
1056 —"— dut iPs2 iBridge 12 assert reset
1057 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 12.iPsassertout {1’valid bytes, 1’last, 1’first}

182 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
1058 —"— dut iPs2 iBridge 11 assert reset
1059 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 11.iPsassertout {1’valid bytes, 1’last, 1’first}
1060 —"— dut iPs2 iBridge 10 assert reset
1061 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 10.iPsassertout {1’valid bytes, 1’last, 1’first}
1062 —"— dut iPs2 iBridge 9 assert reset
1063 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 9.iPsassertout {1’valid bytes, 1’last, 1’first}
1064 —"— dut iPs2 iBridge 8 assert reset
1065 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 8.iPsassertout {1’valid bytes, 1’last, 1’first}
1066 —"— dut iPs2 iBridge 7 assert reset
1067 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 7.iPsassertout {1’valid bytes, 1’last, 1’first}
1068 —"— dut iPs2 iBridge 6 assert reset
1069 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 6.iPsassertout {1’valid bytes, 1’last, 1’first}
1070 —"— dut iPs2 iBridge 5 assert reset
1071 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 5.iPsassertout {1’valid bytes, 1’last, 1’first}
1072 —"— dut iPs2 iBridge 4 assert reset
1073 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 4.iPsassertout {1’valid bytes, 1’last, 1’first}
1074 —"— dut iPs2 iBridge 3 assert reset
1075 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 3.iPsassertout {1’valid bytes, 1’last, 1’first}
1076 —"— dut iPs2 iBridge 2 assert reset
1077 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 2.iPsassertout {1’valid bytes, 1’last, 1’first}
1078 —"— dut iPs2 iBridge 1 assert reset
1079 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 1.iPsassertout {1’valid bytes, 1’last, 1’first}
1080 —"— dut iPs2 iBridge 0 assert reset
1081 —"— pa.top.switch.ps0.ps wrap bridge.mem bridge 0.iPsassertout {1’valid bytes, 1’last, 1’first}
1082 —"— dut iPs2 iSplitter 0 assert noend
1083 —"— dut iPs2 iSplitter 0 assert ptr
1084 —"— dut iPs2 iSplitter 0 used mem
1085 —"— dut iPs2 iSplitter 0 used mem
1086 —"— dut iPs2 iSplitter 0 used mem
1087 —"— dut iPs2 iSplitter 0 used mem
1088 —"— dut iPs2 iSplitter 0 used mem
1089 —"— dut iPs2 iSplitter 0 used mem
1090 —"— dut iPs2 iSplitter 0 used mem
1091 —"— dut iPs2 iSplitter 0 used mem
1092 —"— dut iPs2 iSplitter 0 used mem
1093 —"— dut iPs2 iSplitter 0 used mem
1094 —"— dut iPs2 iSplitter 0 used mem
1095 —"— dut iPs2 iSplitter 0 used mem
1096 —"— dut iPs2 iSplitter 0 used mem
1097 —"— dut iPs2 iSplitter 0 used mem
1098 —"— dut iPs2 iSplitter 0 used mem
1099 —"— dut iPs2 iSplitter 0 used mem
1100 —"— dut iPs2 iSplitter 0 used mem
1101 —"— dut iPs2 iSplitter 0 used mem
1102 —"— dut iPs2 iSplitter 0 used mem
1103 —"— dut iPs2 iSplitter 0 used mem
1104 —"— dut iPs2 iSplitter 0 used mem
1105 —"— dut iPs2 iSplitter 0 used mem
1106 —"— dut iPs2 iSplitter 0 used mem
1107 —"— dut iPs2 iSplitter 0 used mem
1108 —"— dut iPs2 iSplitter 0 used mem
1109 —"— dut iPs2 iSplitter 0 used mem
1110 —"— dut iPs2 iSplitter 0 used mem
1111 —"— dut iPs2 iSplitter 0 used mem
1112 —"— dut iPs2 iSplitter 0 used mem
1113 —"— dut iPs2 iSplitter 0 used mem
1114 —"— dut iPs2 iSplitter 0 used mem
1115 —"— dut iPs2 iSplitter 0 used mem
1116 —"— dut iPs2 iSplitter 0 used mem
1117 —"— dut iPs2 iSplitter 0 used mem
1118 —"— dut iPs2 iSplitter 0 used mem
1119 —"— dut iPs2 iSplitter 0 used mem
1120 —"— dut iPs2 iSplitter 0 used mem
1121 —"— dut iPs2 iSplitter 0 used mem
1122 —"— dut iPs2 iSplitter 0 used mem
1123 —"— dut iPs2 iSplitter 0 used mem
1124 —"— dut iPs2 iSplitter 0 used mem
1125 —"— dut iPs2 iSplitter 0 used mem
1126 —"— dut iPs2 iSplitter 0 used mem
1127 —"— dut iPs2 iSplitter 0 used mem
1128 —"— dut iPs2 iSplitter 0 used mem
1129 —"— dut iPs2 iSplitter 0 used mem
1130 —"— dut iPs2 iSplitter 0 used mem
1131 —"— dut iPs2 iSplitter 0 used mem
1132 —"— dut iPs2 iSplitter 0 used mem
1133 —"— dut iPs2 iSplitter 0 used mem
1134 —"— dut iPs2 iSplitter 0 used mem
1135 —"— dut iPs2 iSplitter 0 used mem
1136 —"— dut iPs2 iSplitter 0 used mem
1137 —"— constant-1137

183 Packet Architects AB

CHAPTER 29. CORE INTERFACE DESCRIPTION

id instance signal
1138 pa top.switch.epp0 constant-1138
1139 —"— dut iEpp assert ipkt
1140 —"— dut iEpp assert opkt
1141 —"— epp ipkt bus {16’data, 8’valid bytes, 6’id, 1’last, 1’first}
1142 —"— epp opkt bus {16’data, 8’valid bytes, 6’id, 1’last, 1’first}
1143 —"— dut iEpp iDropper da 0
1144 —"— dut iEpp iDropper da 1
1145 —"— dut iEpp iDropper dbg drop
1146 —"— dut iEpp iDropper dbg ifirst
1147 —"— dut iEpp iDropper dbg ilast
1148 —"— dut iEpp iDropper sa 0
1149 —"— dut iEpp iDropper sa 1
1150 —"— pa.top.switch.epp0.iPacketassertpm {8’valid bytes, 6’port, 1’last, 1’first}
1151 —"— pa.top.switch.epp0.iPacketassertin {8’valid bytes, 6’port, 1’last, 1’first}
1152 —"— constant-1152
1153 pa top.switch.epp0.pm constant-1153
1154 —"— pm fifo overflow
1155 —"— dut dbg fifo full
1156 —"— halt from pm
1157 —"— dut iFifoa debug in
1158 —"— dut iFifoa debug out
1159 —"— constant-1159
1160 pa top.switch.ingress common constant-1160
1161 —"— dut iLearnage iHitUpdate iFifo 0 iF iFifos zFcnt pop empty
1162 —"— dut iLearnage iHitUpdate iFifo 0 iF iFifos zFcnt push full
1163 —"— dut iMbsc iFloodMc reg stat
1164 —"— dut iMbsc iFloodUc reg stat
1165 —"— dut iMbsc iMc reg stat
1166 —"— dut iMbsc iBc reg stat
1167 —"— constant-1167
1168 pa top.switch.interface common constant-1168
1169 —"— dut zFaii iMf zMf 1 item
1170 —"— dut zFaip iMf zMf 1 item
1171 —"— dut zFaie iMf zMf 1 item
1172 —"— dut zFaiq iMf zMf 1 item
1173 —"— dut zFais iMf zMf 1 item
1174 —"— constant-1174

Table 29.9: Debug Selection Map

29.6 Debug Write Interface

The debug write interface is an input port to the Switch Core that can be used for debugging purposes. In
normal operation the debug write data pins must be tied low. The function of the debug write interface
is controlled by registers in the individual blocks. In this core only the tick dividers use the debug write
interface. See Core Tick Select.

Pin Direction Size Description
debug write data In 1 The debug write input data. Must be tied low

for normal switch operation.

Table 29.10: The Debug Write interface

184 Packet Architects AB

Chapter 30

Configuration Interface

The configuration interface is an AMBA APB interface used for monitoring the core and for configuration
of internal registers and tables. The pins are described in Table 29.6 on page 168, but for a detailed
description of the APB interface see the AMBA APB Protocol Specification Version 2.0, available at
developer.arm.com

30.1 Response time

The response time may vary between registers, and even vary for the same register depending on how busy
the core is switching packets. The response time is in the order of tens of core clock cycles.

30.2 Out of range accesses

There is no range check on the configuration interface, so an access to an address that is not mapped to
any register will result in a internal timeout and raise the pslverr on the bus.

30.3 Atomic Wide Access

There are a few recommendations how to access wide registers (registers that are wider than the APB
data bus). The interface does allow a more flexible access pattern than what is described here. If that is
needed then see the next section.

The highest address bit (23) on the APB bus is not a normal address bit. It is used to control wide register
access. It will be referred to as the Accumulator Bit in the following description.

• Wide Reads

– always read wide register starting with the lowest address and ending with the highest address.

– when reading the lowest address of the register the Accumulator Bit should be 0.

– when reading the other addresses of the register the Accumulator Bit should be 1.

• Wide Writes

– always write wide register starting with the lowest address and ending with the highest address.

– when writing the highest address of the register the Accumulator Bit should be 0.

– when writing the other addresses of the register the Accumulator Bit should be 1.

• Narrow reads and writes
If the register fits within the APB data bus width then the Accumulator Bit should be 0.

185

https://developer.arm.com/documentation/ihi0024/c/

CHAPTER 30. CONFIGURATION INTERFACE

Note that if there are bridges between the CPU and the APB bus then they need to be set up to guarantee
the order of accesses.

The software API implementation provided with the switch handles the Accumulator Bit thereby hiding it
completely for the software that use the API.

30.4 Accumulator Accesses

Each table or register bank where the data is wider than the configuration data bus, will be equipped
with a shadow-register called an accumulator. The accumulator allows the full data width to be updated
atomically even though the bus width is narrower than the data. The accumulator is accessed by setting
bit 23 of the address high during a normal register access. An access with bit 23 of the address low we call
a DEFAULT access, while an access with bit 23 of the address high is called an ACCUMULATOR access. The
register section of the datasheet will only list the addresses for DEFAULT access to the registers. Address
bit 23 is considered an accumulator flag, and not a part of the address.

A DEFAULT read will return the requested data in the reply, and at the same time load the full data width
into the accumulator. Thus following up the DEFAULT read with ACCUMULATOR reads will allow reading the
state of the register at the time of the original DEFAULT read. If data consistency is not important, all the
reads can be of the DEFAULT type, but there is no point because the read performance is the same. In fact
reading a table will potentially be faster using the accumulator, because only the first access will have to
wait for access to the physical memory.

Writes work similarly, but the other way around. The accumulator will first be loaded using ACCUMULATOR
writes and then the contents of the accumulator is written to the register. The final DEFAULT write will
use the data given as wdata, and fill it out with the data in the accumulator. Writing data wider than the
bus cannot be done without taking the accumulator into account.

If only a part of a very wide register is to be written, the most efficient approach may be to do a DEFAULT
read (loading the accumulator) followed by a DEFAULT write. But note that there is no way to do a
truly atomic read-modify-write. Any write that the core slips in while the accumulator is loaded will be
over-written by the following DEFAULT write.

When the data is wider than the bus the address is stepped by 2n between table indexes or registers. For
instance a 32-bit bus and a 65 bit wide table will result in index 1 starting at address 4, with address 3
unused and address 2 only containing a single valid bit.

186 Packet Architects AB

Chapter 31

Implementation

31.1 Floorplanning

The top of the core is the pa top level, it wraps the switch core, pa top switch, and may also contain
interface bridges.

The switch hierarchy is divided into six major blocks that we call floorplan blocks. These are: SP, IPP,
BM, PB, EPP, and PS. There is also two smaller blocks: ingress common, interface common. In some
configurations these are very small, but in some the ingress common can be quite substantial.

Besides the configuration bus, which spreads it’s tentacles to every corner of the core, the dataflow through
the floorplan blocks is basically that of the path of a packet. The flow from ingress to egress is SP, IPP,
BM/PB, EPP, and PS. The PB/BM are lumped together in the list because the packet data goes through
the BM, and the control data through the PB. The ingress common contains auxillary functions for the
ingress packet processing and thus mainly talks to the IPP. The other small block, interface common, is
mostly comprised of shim logic for the external interfaces.

31.1.1 Pipelining

The number of pipeline stages in the data paths between the floorplan blocks can be set freely when the
RTL is generated. The same goes for the number of input flops and output flops on each floorplan block.
If you need to change the number of pipeline stages it is a trivial task, but the RTL has to be re-generated.
It cannot be adjusted in the existing verilog files.

Connection Pipeline stages

SP ↔ IPP 0
IPP ↔ PB/BM 0

PB ↔ BM 0
BM ↔ EPP 0
EPP ↔ PS 0

Table 31.1: The settings for pipeline flops between floorplan blocks

Floorplan block Input flops Output flops

SP 0 0
IPP 0 0
PB 0 1
BM 0 0
EPP 0 0
PS 1 1

Table 31.2: The settings for input and output flops for the floorplan blocks

187

CHAPTER 31. IMPLEMENTATION

The pipeline settings used when generating this core are shown in Table 31.1, and the input/output flops
are listed in Table 31.21.

31.1.2 Configuration and debug

The configuration and debug busses are in principle extremely flexible in how they can be pipelined. Flops
can be added and removed anywhere so long as each bus is still in sync. This, as the other changes in
pipelining, can only be done by generating new RTL.

31.2 Clock crossings

The bulk of the core is in a single clock domain, the core domain, driven by the clk clock. Each packet
interface has separate clock domains for TX and RX. All paths between these domains are synchronized
by either two synchronization flops, or by an asynchronous memory. The synchronization flops are al-
ways instantiations of the verilog sync flops verilog module, and the asynchronous memories are always
instantiations of verilog memory 2c.

31.2.1 IPP and EPP Structure

The IPP and EPP modules are both pipelines with a main dataflow from input to output. The floorplan
is recommended to follow the pipeline dataflow. The logic input to a memory comes from the preceding
pipeline stage and the output goes to the following pipeline stage. Which pipeline stage a specific memory
belongs to is documented in the delivered files eppp0 raw opt.ramstat and ippp0 raw opt.ramstat.

In addition to the memory instances, the pipeline flipflops belonging to each pipeline stage is documented
in ippp0 raw opt.fflist and eppp0 raw opt.fflist.

The exact Verilog instance names are not listed in these files but the names in the lists are part of the
instance names and uniquely identify them.

In addition to the main dataflow there is also a configuration bus that has access to all memory instances
and to the configuration registers. These paths are normally not in the critical path.

The configuration registers as opposed to the configuration memories can be accessed in multiple pipeline
stages and therefore does not have a simple placement strategy.

31.3 Memory wrappers

The memories in the core are instantiated using the verilog memory.v wrapper. It is expected that this
wrapper is replaced, or modified, by the customer to instanciate appropriate memory macros. The macros
needed are listed in Table 31.3. For memories with the write through attribute set, simultaneous reading
and writing the of same address is expected to yield the write data as read result. For memories with
write through set to 0 simultaneous reading and writing to the same address shall not occur.

type width depth write
through

write
mask

input
flops

output
flops

dp 3 4096 1 None 0 0
dp 3 4096 0 None 0 0
dp 256 212 1 None 0 0
dp 165 256 1 None 0 0
dp 10 512 1 None 0 0
dp 5 2048 1 None 0 0
dp 321 512 1 None 0 0
dp 321 64 1 None 0 0
dp 98 32 1 None 0 0

1It should be noted that the input/output flops for the PS is not as clear cut as for the other blocks, due to the slightly
more complex interface to the MAC.

188 Packet Architects AB

CHAPTER 31. IMPLEMENTATION

dp 421 256 1 None 0 0
dp 421 32 1 None 0 0
dp 321 128 1 None 0 0
dp 321 16 1 None 0 0
dp 89 53 1 None 0 0
dp 108 4096 1 None 0 0
dp 106 64 1 None 0 0
dp 1 4096 1 None 0 0
dp 1 4096 0 None 0 0
dp 60 4096 1 None 0 0
dp 60 4096 0 None 0 0
dp 15 32832 1 None 0 0
dp 15 32832 0 None 0 0
dp 53 1024 1 None 0 0
dp 20 128 1 None 0 0
dp 91 128 1 None 0 0
dp 32 128 1 None 0 0
dp 118 128 1 None 0 0
dp 10 212 0 None 0 0
dp 1583 214 0 None 0 0
dp 1280 53 1 None 0 0
dp 6 13466 1 None 0 0
dp 41 53 0 None 0 0
dp 8 13466 0 None 0 0
dp 22 13466 0 None 0 0
dp 6 13466 0 None 0 0
dp 16 13466 0 None 0 0
dp 15 13466 0 None 0 0
dp 77 13466 1 None 0 0
dp 1280 13466 0 None 0 0
dp 14 13466 1 None 0 0
dp 39 53 1 None 0 0
dp 52 512 1 None 0 0
dp 38 128 1 None 0 0
dp 48 512 1 None 0 0
dp 48 64 1 None 0 0
dp 10 318 0 None 0 0
dp 9 318 1 None 0 0
dp 1361 320 0 None 0 0
dp 9 320 1 None 0 0
dp 256 318 0 None 0 0
dc 13 16 0 None 0 0
dc 8 16 0 None 0 0
dc 32 16 0 None 0 0

Table 31.3: The memory macros needed for this core.Types: dp=two ports, one read and one write,
running on the same clock. dc=two ports, one read and one write, with separate clocks for read and write.

For this design all dual-clock memories are generated as memory instances, but for synchronous memories
only those with 2048 bits or more have been generated as a memory instance. Smaller synchronous
memories are created as arrays of flops in the verilog source code. To change the criterium for making a

189 Packet Architects AB

CHAPTER 31. IMPLEMENTATION

memory as an instance or as an array of flops, new RTL has to be generated2.

31.4 Dual ported memories

All memories are dual ported. Some dual-ported memories have different clocks for the two ports, these are
all instanciated using verilog memory 2c wrapper. For these a real dual-port memory macro is the preferred
choice. Most dual-port memories, however, are running on a single clock, and for these a better approch is
to use a single-port memory macro clocked at twice the frequency. Unless, of course, the frequency would
be prohibitively high. Note in the example timing diagram that the write is done in the first clock cycle to
satisfy the write through criterium. For memories that are not write through it may be desirable for timing
reasons to have the read in the first clock cycle.

clk2x

clk

wenable

renable

waddr A

raddr A

idata Y

odata Y

mem wenable

mem waddr A

mem idata Y

mem renable

mem raddr A

mem odata Y

Figure 31.1: Timing diagram for a single ported memory used in the dual ported memory wrapper. In this
case a concurrent read and write to the same address of a memory wrapper set for one cycle latency and
with the write through attribute set.

There is no dedicated double frequency clock connected to the memories, it has to be provided using the
*meminst in busses to the memory wrappers.

31.5 Memory timing

All memories in the design can be selected to have either:

• One cycle latency

• Two cycles latency, with the flop added on the input to the memory

• Two cycles latency, with the flop added on the output from the memory

• Three cycles latency, with flops added on both the input and the output

Which setting is used for each memory instance can be seen in the input flops and output flops columns
of Table 31.3.

31.6 Lint set up

For spyglass linting the following settings are assumed:

2Although, any instantiated memory wrapper can of course be left as is, and thus be implemented as an array of flops in
synthesis.

190 Packet Architects AB

CHAPTER 31. IMPLEMENTATION

• set parameter ignore local variables yes

• set parameter handle zero padding “W362”

31.6.1 Waivers

Besides the inline waivers in the code these blanket waivers shall be applied:

• waive -rule STARC05-2.11.3.1 -comment “Case statements are used in the sequential blocks of
state-machines. This is not an issue”

• waive -rule STARC05-2.2.3.3 -comment “Flip-flops may be written several times in the same sequen-
tial block. This is not an issue”

• waive -regexp -du “consistency check.*” -rule ”W240” -comment “consistency check is guarded by
SYNTHESIS, and is not used in hardware.”

• waive -rule W415a -comment “Assigning multiple times in the same always block is a code style we
use. This is not an issue”

• waive -rule W528 -comment “The way we pipeline will leave a lot of unread signals. This is not an
issue”

191 Packet Architects AB

CHAPTER 31. IMPLEMENTATION

192 Packet Architects AB

Chapter 32

Registers and Tables

Contents
32.1 Address Space For Tables and Registers . 199

32.2 Byte Order . 199

32.3 Register Banks . 200

32.4 Registers and Tables in Alphabetical Order . 206

32.5 Active Queue Manager . 212

32.5.1 ERM Red Configuration . 212

32.5.2 ERM Yellow Configuration . 212

32.5.3 Egress Resource Manager Pointer . 213

32.5.4 Resource Limiter Set . 214

32.6 Core Information . 214

32.6.1 Core Version . 214

32.7 Egress Packet Processing . 215

32.7.1 Color Remap From Egress Port . 215

32.7.2 Color Remap From Ingress Admission Control 215

32.7.3 Disable CPU tag on CPU Port . 216

32.7.4 Drain Port . 216

32.7.5 Egress Ethernet Type for VLAN tag . 217

32.7.6 Egress MAC Operations . 217

32.7.7 Egress Multiple Spanning Tree State 218

32.7.8 Egress Port Configuration . 218

32.7.9 Egress Queue To PCP And CFI/DEI Mapping Table 221

32.7.10 Egress RSPAN Configuration . 221

32.7.11 Egress VLAN Translation Large Table 222

32.7.12 Egress VLAN Translation Search Mask 222

32.7.13 Egress VLAN Translation Selection . 223

32.7.14 Egress VLAN Translation Small Table 223

32.7.15 Egress VLAN Translation TCAM . 224

32.7.16 Egress VLAN Translation TCAM Answer 225

32.7.17 Output Mirroring Table . 225

32.8 Flow Control . 225

32.8.1 FFA Used . 225

32.8.2 Port Pause Settings . 226

32.8.3 Port Reserved . 226

32.8.4 Port Tail-Drop FFA Threshold . 227

32.8.5 Port Tail-Drop Settings . 227

32.8.6 Port Used . 227

32.8.7 Port Xoff FFA Threshold . 228

193

CHAPTER 32. REGISTERS AND TABLES

32.8.8 Port Xon FFA Threshold . 228

32.8.9 Tail-Drop FFA Threshold . 228

32.8.10 Xoff FFA Threshold . 229

32.8.11 Xon FFA Threshold . 229

32.9 Global Configuration . 229

32.9.1 CPU Port . 229

32.9.2 Core Tick Configuration . 230

32.9.3 Core Tick Select . 230

32.9.4 MAC RX Maximum Packet Length . 231

32.9.5 Scratch . 231

32.10 Ingress Packet Processing . 231

32.10.1 AH Header Packet Decoder Options . 231

32.10.2 ARP Packet Decoder Options . 232

32.10.3 Allow Special Frame Check For L2 Action Table 232

32.10.4 BOOTP and DHCP Packet Decoder Options 234

32.10.5 CAPWAP Packet Decoder Options . 234

32.10.6 Check IPv4 Header Checksum . 235

32.10.7 DNS Packet Decoder Options . 235

32.10.8 Debug dstPortmask . 236

32.10.9 Debug srcPort . 236

32.10.10 ESP Header Packet Decoder Options 237

32.10.11 Egress Spanning Tree State . 237

32.10.12 Enable Enqueue To Ports And Queues 237

32.10.13 Expired TTL to CPU . 238

32.10.14 Flooding Action Send to Port . 238

32.10.15 Force Non VLAN Packet To Specific Color 239

32.10.16 Force Non VLAN Packet To Specific Queue 239

32.10.17 Force Unknown L3 Packet To Specific Color 239

32.10.18 Force Unknown L3 Packet To Specific Egress Queue 240

32.10.19 Forward From CPU . 240

32.10.20 GRE Packet Decoder Options . 240

32.10.21 Hairpin Enable . 241

32.10.22 Hardware Learning Configuration . 241

32.10.23 Hardware Learning Counter . 242

32.10.24 ICMP Length Check . 242

32.10.25 IEEE 1588 L2 Packet Decoder Options 243

32.10.26 IEEE 1588 L4 Packet Decoder Options 243

32.10.27 IEEE 802.1X and EAPOL Packet Decoder Options 244

32.10.28 IPv4 TOS Field To Egress Queue Mapping Table 245

32.10.29 IPv4 TOS Field To Packet Color Mapping Table 245

32.10.30 IPv6 Class of Service Field To Egress Queue Mapping Table 245

32.10.31 IPv6 Class of Service Field To Packet Color Mapping Table 246

32.10.32 Ingress Admission Control Current Status 246

32.10.33 Ingress Admission Control Initial Pointer 246

32.10.34 Ingress Admission Control Mark All Red 247

32.10.35 Ingress Admission Control Mark All Red Enable 247

32.10.36 Ingress Admission Control Reset . 247

32.10.37 Ingress Admission Control Token Bucket Configuration 248

32.10.38 Ingress Configurable ACL 0 Large Table 249

32.10.39 Ingress Configurable ACL 0 Pre Lookup 252

32.10.40 Ingress Configurable ACL 0 Rules Setup 252

32.10.41 Ingress Configurable ACL 0 Search Mask 253

32.10.42 Ingress Configurable ACL 0 Selection 253

194 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.43 Ingress Configurable ACL 0 Small Table 253

32.10.44 Ingress Configurable ACL 0 TCAM . 256

32.10.45 Ingress Configurable ACL 0 TCAM Answer 256

32.10.46 Ingress Configurable ACL 1 Large Table 258

32.10.47 Ingress Configurable ACL 1 Pre Lookup 261

32.10.48 Ingress Configurable ACL 1 Rules Setup 262

32.10.49 Ingress Configurable ACL 1 Search Mask 262

32.10.50 Ingress Configurable ACL 1 Selection 262

32.10.51 Ingress Configurable ACL 1 Small Table 263

32.10.52 Ingress Configurable ACL 1 TCAM . 265

32.10.53 Ingress Configurable ACL 1 TCAM Answer 266

32.10.54 Ingress Configurable ACL 2 Large Table 268

32.10.55 Ingress Configurable ACL 2 Pre Lookup 270

32.10.56 Ingress Configurable ACL 2 Rules Setup 271

32.10.57 Ingress Configurable ACL 2 Search Mask 272

32.10.58 Ingress Configurable ACL 2 Selection 272

32.10.59 Ingress Configurable ACL 2 Small Table 272

32.10.60 Ingress Configurable ACL 2 TCAM . 275

32.10.61 Ingress Configurable ACL 2 TCAM Answer 275

32.10.62 Ingress Configurable ACL 3 Large Table 277

32.10.63 Ingress Configurable ACL 3 Pre Lookup 280

32.10.64 Ingress Configurable ACL 3 Rules Setup 281

32.10.65 Ingress Configurable ACL 3 Search Mask 281

32.10.66 Ingress Configurable ACL 3 Selection 281

32.10.67 Ingress Configurable ACL 3 Small Table 282

32.10.68 Ingress Configurable ACL 3 TCAM . 284

32.10.69 Ingress Configurable ACL 3 TCAM Answer 285

32.10.70 Ingress Drop Options . 287

32.10.71 Ingress Egress Port Packet Type Filter 287

32.10.72 Ingress Ethernet Type for VLAN tag 290

32.10.73 Ingress MMP Drop Mask . 290

32.10.74 Ingress Multiple Spanning Tree State 290

32.10.75 Ingress Port Packet Type Filter . 291

32.10.76 Ingress Ports With Timestamp . 293

32.10.77 Ingress VID Ethernet Type Range Assignment Answer 294

32.10.78 Ingress VID Ethernet Type Range Search Data 294

32.10.79 Ingress VID Inner VID Range Assignment Answer 294

32.10.80 Ingress VID Inner VID Range Search Data 295

32.10.81 Ingress VID MAC Range Assignment Answer 295

32.10.82 Ingress VID MAC Range Search Data 296

32.10.83 Ingress VID Outer VID Range Assignment Answer 296

32.10.84 Ingress VID Outer VID Range Search Data 297

32.10.85 L2 Action Table . 297

32.10.86 L2 Action Table Egress Port State . 298

32.10.87 L2 Action Table Source Port . 298

32.10.88 L2 Aging Collision Shadow Table . 300

32.10.89 L2 Aging Collision Table . 300

32.10.90 L2 Aging Status Shadow Table . 300

32.10.91 L2 Aging Table . 301

32.10.92 L2 DA Hash Lookup Table . 301

32.10.93 L2 Destination Table . 302

32.10.94 L2 Lookup Collision Table . 302

32.10.95 L2 Lookup Collision Table Masks . 303

195 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.96 L2 Multicast Handling . 303

32.10.97 L2 Multicast Table . 304

32.10.98 L2 Reserved Multicast Address Action 304

32.10.99 L2 Reserved Multicast Address Base 304

32.10.100 LACP Packet Decoder Options . 305

32.10.101 LLDP Configuration . 305

32.10.102 Learning And Aging Enable . 306

32.10.103 Learning Conflict . 307

32.10.104 Learning Overflow . 307

32.10.105 Link Aggregate Weight . 308

32.10.106 Link Aggregation Ctrl . 308

32.10.107 Link Aggregation Membership . 309

32.10.108 Link Aggregation To Physical Ports Members 309

32.10.109 MPLS EXP Field To Egress Queue Mapping Table 309

32.10.110 MPLS EXP Field To Packet Color Mapping Table 310

32.10.111 Mask MAC Table Lookup . 310

32.10.112 Port Move Options . 310

32.10.113 RARP Packet Decoder Options . 311

32.10.114 Reserved Destination MAC Address Range 311

32.10.115 Reserved Source MAC Address Range 312

32.10.116 SCTP Packet Decoder Options . 313

32.10.117 SMON Set Search . 314

32.10.118 Send to CPU . 314

32.10.119 Source Port Default ACL Action . 315

32.10.120 Source Port Table . 316

32.10.121 TCP/UDP Flag Rules . 320

32.10.122 Time to Age . 321

32.10.123 VLAN PCP And DEI To Color Mapping Table 322

32.10.124 VLAN PCP To Queue Mapping Table 322

32.10.125 VLAN Table . 322

32.11 MBSC . 324

32.11.1 L2 Broadcast Storm Control Bucket Capacity Configuration 324

32.11.2 L2 Broadcast Storm Control Bucket Threshold Configuration 324

32.11.3 L2 Broadcast Storm Control Enable . 325

32.11.4 L2 Broadcast Storm Control Rate Configuration 325

32.11.5 L2 Multicast Storm Control Bucket Capacity Configuration 325

32.11.6 L2 Multicast Storm Control Bucket Threshold Configuration 326

32.11.7 L2 Multicast Storm Control Enable . 326

32.11.8 L2 Multicast Storm Control Rate Configuration 326

32.11.9 L2 Unknown Multicast Storm Control Bucket Capacity Configuration . . 327

32.11.10 L2 Unknown Multicast Storm Control Bucket Threshold Configuration . 327

32.11.11 L2 Unknown Multicast Storm Control Enable 328

32.11.12 L2 Unknown Multicast Storm Control Rate Configuration 328

32.11.13 L2 Unknown Unicast Storm Control Bucket Capacity Configuration . . . 328

32.11.14 L2 Unknown Unicast Storm Control Bucket Threshold Configuration . . 329

32.11.15 L2 Unknown Unicast Storm Control Enable 329

32.11.16 L2 Unknown Unicast Storm Control Rate Configuration 329

32.12 Scheduling . 330

32.12.1 DWRR Bucket Capacity Configuration 330

32.12.2 DWRR Bucket Misc Configuration . 330

32.12.3 DWRR Weight Configuration . 331

32.12.4 Map Queue to Priority . 331

32.12.5 Output Disable . 331

196 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.13 Shapers . 332

32.13.1 Port Shaper Bucket Capacity Configuration 332

32.13.2 Port Shaper Bucket Threshold Configuration 332

32.13.3 Port Shaper Enable . 333

32.13.4 Port Shaper Rate Configuration . 333

32.13.5 Prio Shaper Bucket Capacity Configuration 334

32.13.6 Prio Shaper Bucket Threshold Configuration 334

32.13.7 Prio Shaper Enable . 334

32.13.8 Prio Shaper Rate Configuration . 335

32.13.9 Queue Shaper Bucket Capacity Configuration 335

32.13.10 Queue Shaper Bucket Threshold Configuration 335

32.13.11 Queue Shaper Enable . 336

32.13.12 Queue Shaper Rate Configuration . 336

32.14 Shared Buffer Memory . 337

32.14.1 Buffer Free . 337

32.14.2 Egress Port Depth . 337

32.14.3 Egress Queue Depth . 337

32.14.4 Minimum Buffer Free . 338

32.14.5 Packet Buffer Status . 338

32.15 Statistics: ACL . 338

32.15.1 Ingress Configurable ACL Match Counter 338

32.16 Statistics: Debug . 339

32.16.1 EPP PM Drop . 339

32.16.2 IPP PM Drop . 339

32.16.3 PS Error Counter . 339

32.16.4 SP Overflow Drop . 340

32.17 Statistics: EPP Egress Port Drop . 340

32.17.1 Egress Port Disabled Drop . 340

32.17.2 Egress Port Filtering Drop . 340

32.17.3 Unknown Egress Drop . 341

32.18 Statistics: IPP Egress Port Drop . 341

32.18.1 Egress Spanning Tree Drop . 341

32.18.2 Ingress-Egress Packet Filtering Drop 341

32.18.3 L2 Action Table Per Port Drop . 342

32.18.4 MBSC Drop . 342

32.18.5 Queue Off Drop . 343

32.19 Statistics: IPP Ingress Port Drop . 343

32.19.1 AH Decoder Drop . 343

32.19.2 ARP Decoder Drop . 343

32.19.3 Attack Prevention Drop . 344

32.19.4 BOOTP and DHCP Decoder Drop . 344

32.19.5 CAPWAP Decoder Drop . 344

32.19.6 DNS Decoder Drop . 345

32.19.7 ESP Decoder Drop . 345

32.19.8 Empty Mask Drop . 345

32.19.9 Expired TTL Drop . 346

32.19.10 GRE Decoder Drop . 346

32.19.11 IEEE 802.1X and EAPOL Decoder Drop 346

32.19.12 IP Checksum Drop . 347

32.19.13 Ingress Configurable ACL Drop . 347

32.19.14 Ingress Packet Filtering Drop . 347

32.19.15 Ingress Spanning Tree Drop: Blocking 348

32.19.16 Ingress Spanning Tree Drop: Learning 348

197 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.17 Ingress Spanning Tree Drop: Listen . 348

32.19.18 L2 Action Table Drop . 349

32.19.19 L2 Action Table Port Move Drop . 349

32.19.20 L2 Action Table Special Packet Type Drop 349

32.19.21 L2 Destination Table SA Lookup Drop 350

32.19.22 L2 IEEE 1588 Decoder Drop . 350

32.19.23 L2 Lookup Drop . 350

32.19.24 L2 Reserved Multicast Address Drop 351

32.19.25 L4 IEEE 1588 Decoder Drop . 351

32.19.26 LACP Decoder Drop . 351

32.19.27 Maximum Allowed VLAN Drop . 352

32.19.28 Minimum Allowed VLAN Drop . 352

32.19.29 RARP Decoder Drop . 352

32.19.30 Reserved MAC DA Drop . 353

32.19.31 Reserved MAC SA Drop . 353

32.19.32 SCTP Decoder Drop . 353

32.19.33 Source Port Default ACL Action Drop 354

32.19.34 Unknown Ingress Drop . 354

32.19.35 VLAN Member Drop . 354

32.20 Statistics: Misc . 355

32.20.1 Buffer Overflow Drop . 355

32.20.2 Drain Port Drop . 355

32.20.3 Egress Resource Manager Drop . 355

32.20.4 Flow Classification And Metering Drop 356

32.20.5 IPP Empty Destination Drop . 356

32.20.6 Ingress Resource Manager Drop . 356

32.20.7 MAC RX Broken Packets . 357

32.20.8 MAC RX Long Packet Drop . 357

32.20.9 MAC RX Short Packet Drop . 357

32.20.10 Re-queue Overflow Drop . 358

32.21 Statistics: Packet Datapath . 358

32.21.1 EPP Packet Head Counter . 358

32.21.2 EPP Packet Tail Counter . 358

32.21.3 IPP Packet Head Counter . 359

32.21.4 IPP Packet Tail Counter . 359

32.21.5 PB Packet Head Counter . 359

32.21.6 PB Packet Tail Counter . 360

32.21.7 PS Packet Head Counter . 360

32.21.8 PS Packet Tail Counter . 360

32.22 Statistics: SMON . 361

32.22.1 SMON Set 0 Byte Counter . 361

32.22.2 SMON Set 0 Packet Counter . 361

32.22.3 SMON Set 1 Byte Counter . 361

32.22.4 SMON Set 1 Packet Counter . 362

32.22.5 SMON Set 10 Byte Counter . 362

32.22.6 SMON Set 10 Packet Counter . 362

32.22.7 SMON Set 11 Byte Counter . 363

32.22.8 SMON Set 11 Packet Counter . 363

32.22.9 SMON Set 12 Byte Counter . 363

32.22.10 SMON Set 12 Packet Counter . 364

32.22.11 SMON Set 13 Byte Counter . 364

32.22.12 SMON Set 13 Packet Counter . 364

32.22.13 SMON Set 14 Byte Counter . 365

198 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.14 SMON Set 14 Packet Counter . 365

32.22.15 SMON Set 15 Byte Counter . 365

32.22.16 SMON Set 15 Packet Counter . 366

32.22.17 SMON Set 2 Byte Counter . 366

32.22.18 SMON Set 2 Packet Counter . 366

32.22.19 SMON Set 3 Byte Counter . 367

32.22.20 SMON Set 3 Packet Counter . 367

32.22.21 SMON Set 4 Byte Counter . 367

32.22.22 SMON Set 4 Packet Counter . 368

32.22.23 SMON Set 5 Byte Counter . 368

32.22.24 SMON Set 5 Packet Counter . 368

32.22.25 SMON Set 6 Byte Counter . 369

32.22.26 SMON Set 6 Packet Counter . 369

32.22.27 SMON Set 7 Byte Counter . 369

32.22.28 SMON Set 7 Packet Counter . 370

32.22.29 SMON Set 8 Byte Counter . 370

32.22.30 SMON Set 8 Packet Counter . 370

32.22.31 SMON Set 9 Byte Counter . 371

32.22.32 SMON Set 9 Packet Counter . 371

All registers and tables that are accessible from a configuration interface are listed in this chapter. A user
guide for the configuration interface is found in Chapter 30, and the pins for the configuration interfaces
are described in Section 29.3.

32.1 Address Space For Tables and Registers

All tables in the address space are linear. The size of a table entry is always rounded up to nearest power
of two of the bus width. For example if the bus is 32 bits and a entry in a table is 33 bits wide, it will then
use two addresses per entry. Second example, the bus is still 32 bits, but the entry is 181 bits wide, the
entry will then use a address space of 8 addresses per table entry (181 bits fits within 6 bus words but is
rounded up to nearest power of two). This is shown in figure 32.1. The total address space used by this
core is 280648 addresses.

32.2 Byte Order

When a register field is wider than a byte and the field represents an integer value or the field is related to
a packet header field, the order of the bytes needs to be defined.

Integer fields in the registers have a little endian byte order so that the lowest bits in a field will be at
lowest bits on the configuration bus. When a field spans multiple configuration bus addresses the lowest
address will hold the lowest bits of the field. If this is memory mapped and accessed by a host CPU it will
be in the correct byte order for a little endian CPU.

In network byte order the first transmitted or received byte has byte number 0. One example is the Ethernet
MAC address with the printed representation a1-b2-c3-d4-e5-f6 where a1 would be sent first and would
be byte 0). When used in a register field the highest bits in the register field corresponds to the lowest
network byte. Therefore the MAC address above would be the value 0xa1b2c3d4e5f6 and as seen by a
little endian host CPU the byte 0xf6 would be at the lowest address.

A special case are IPv6 addresses. In the standard printed representation 0102:0304:0506:... the leftmost
byte 01 is byte 0 in the network order followed by byte 02 as network byte 1. When configuring this in a
register field the lowest bytes are from the lowest network byte numbers. However each pair of bytes are
also swapped. The address above would therefore be the value 0x....050603040102.

199 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bus Width
N bits

Bus Width
N bits

Bus Width
N bits

Bus Width
N bits

Unused
Space

Read/Write
To these
Bits Are
Unknown
Behavior

Actual
Register / Table

Space

Actual Table/Register Width

 2x * N Register Space , N = CPU Bus Width

Register / Table Entry #0

Register / Table Entry #1

Register / Table Entry #Last

Address XAddress X+1Address X+2Address X+3

Figure 32.1: Address space usage by tables

32.3 Register Banks

A bank is a hardware unit which holds a number of registers or a single table. In a bank containing data
wider than 32 bits, registers (or table entries) must be accessed one at a time, or the accesses will interfere
with each other.

Bank Name Connected Registers or Tables
switch info regbank Core Version
top regs Buffer Free

Core Tick Configuration
Core Tick Select
CPU Port
Scratch

rx length ref MAC RX Maximum Packet Length[0..52]
rx length drop MAC RX Broken Packets[0..52]

MAC RX Short Packet Drop[0..52]
MAC RX Long Packet Drop[0..52]

l2 broadcast storm control rate settings L2 Broadcast Storm Control Rate Configuration
l2 broadcast storm control bucket settings L2 Broadcast Storm Control Bucket Capacity Configuration

L2 Broadcast Storm Control Bucket Threshold Configuration
l2 broadcast storm control misc L2 Broadcast Storm Control Enable
l2 multicast storm control rate settings L2 Multicast Storm Control Rate Configuration
l2 multicast storm control bucket settings L2 Multicast Storm Control Bucket Capacity Configuration

L2 Multicast Storm Control Bucket Threshold Configuration
l2 multicast storm control misc L2 Multicast Storm Control Enable
l2 unknown unicast storm control rate settingsL2 Unknown Unicast Storm Control Rate Configuration
l2 unknown unicast storm control bucket settingsL2 Unknown Unicast Storm Control Bucket Capacity Config-

uration
L2 Unknown Unicast Storm Control Bucket Threshold Con-
figuration

l2 unknown unicast storm control misc L2 Unknown Unicast Storm Control Enable
l2 unknown multicast storm control rate settingsL2 Unknown Multicast Storm Control Rate Configuration

200 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bank Name Connected Registers or Tables
l2 unknown multicast storm control bucket settingsL2 Unknown Multicast Storm Control Bucket Capacity Con-

figuration
L2 Unknown Multicast Storm Control Bucket Threshold Con-
figuration

l2 unknown multicast storm control misc L2 Unknown Multicast Storm Control Enable
le ae status Learning Conflict

Learning Overflow
le ae control Learning And Aging Enable

Hardware Learning Configuration[0..52]
Time to Age

age cam register bank L2 Aging Collision Table[0..63]
mac cnt register bank Hardware Learning Counter[0..52]
L2 Aging Table L2 Aging Table
count sp ss0 SP Overflow Drop
count broken pkt ss0 IPP PM Drop

IPP Empty Destination Drop
count pa top switch ipp0 conf Unknown Ingress Drop

Empty Mask Drop
Ingress Spanning Tree Drop: Listen
Ingress Spanning Tree Drop: Learning
Ingress Spanning Tree Drop: Blocking
L2 Lookup Drop
Ingress Packet Filtering Drop
Reserved MAC DA Drop
Reserved MAC SA Drop
VLAN Member Drop
Minimum Allowed VLAN Drop
Maximum Allowed VLAN Drop
Expired TTL Drop
IP Checksum Drop
L2 Reserved Multicast Address Drop
Ingress Configurable ACL Drop
Attack Prevention Drop
ARP Decoder Drop
RARP Decoder Drop
L2 IEEE 1588 Decoder Drop
L4 IEEE 1588 Decoder Drop
IEEE 802.1X and EAPOL Decoder Drop
SCTP Decoder Drop
LACP Decoder Drop
AH Decoder Drop
ESP Decoder Drop
DNS Decoder Drop
BOOTP and DHCP Decoder Drop
CAPWAP Decoder Drop
GRE Decoder Drop
L2 Action Table Special Packet Type Drop
L2 Action Table Drop
L2 Action Table Port Move Drop
L2 Destination Table SA Lookup Drop
Source Port Default ACL Action Drop

count opkt pa top switch ipp0 conf IPP Packet Head Counter
IPP Packet Tail Counter

L2 Reserved Multicast Address Action L2 Reserved Multicast Address Action
Ingress Admission Control Initial Pointer Ingress Admission Control Initial Pointer

201 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bank Name Connected Registers or Tables
Ingress Configurable ACL 0 Pre Lookup Ingress Configurable ACL 0 Pre Lookup
Ingress Configurable ACL 0 Large Table Ingress Configurable ACL 0 Large Table
Ingress Configurable ACL 0 Small Table Ingress Configurable ACL 0 Small Table
Ingress Configurable ACL 0 TCAM An-
swer

Ingress Configurable ACL 0 TCAM Answer

Ingress Configurable ACL 1 Pre Lookup Ingress Configurable ACL 1 Pre Lookup
Ingress Configurable ACL 1 Large Table Ingress Configurable ACL 1 Large Table
Ingress Configurable ACL 1 Small Table Ingress Configurable ACL 1 Small Table
Ingress Configurable ACL 1 TCAM An-
swer

Ingress Configurable ACL 1 TCAM Answer

Ingress Configurable ACL 2 Pre Lookup Ingress Configurable ACL 2 Pre Lookup
Ingress Configurable ACL 2 Large Table Ingress Configurable ACL 2 Large Table
Ingress Configurable ACL 2 Small Table Ingress Configurable ACL 2 Small Table
Ingress Configurable ACL 2 TCAM An-
swer

Ingress Configurable ACL 2 TCAM Answer

Ingress Configurable ACL 3 Pre Lookup Ingress Configurable ACL 3 Pre Lookup
Ingress Configurable ACL 3 Large Table Ingress Configurable ACL 3 Large Table
Ingress Configurable ACL 3 Small Table Ingress Configurable ACL 3 Small Table
Ingress Configurable ACL 3 TCAM An-
swer

Ingress Configurable ACL 3 TCAM Answer

Source Port Default ACL Action Source Port Default ACL Action
Ingress VID MAC Range Assignment An-
swer

Ingress VID MAC Range Assignment Answer

Ingress VID Outer VID Range Assign-
ment Answer

Ingress VID Outer VID Range Assignment Answer

Ingress VID Inner VID Range Assignment
Answer

Ingress VID Inner VID Range Assignment Answer

VLAN Table VLAN Table
Ingress Multiple Spanning Tree State Ingress Multiple Spanning Tree State
IPv4 TOS Field To Egress Queue Map-
ping Table

IPv4 TOS Field To Egress Queue Mapping Table

IPv6 Class of Service Field To Egress
Queue Mapping Table

IPv6 Class of Service Field To Egress Queue Mapping Table

VLAN PCP And DEI To Color Mapping
Table

VLAN PCP And DEI To Color Mapping Table

IPv4 TOS Field To Packet Color Mapping
Table

IPv4 TOS Field To Packet Color Mapping Table

IPv6 Class of Service Field To Packet
Color Mapping Table

IPv6 Class of Service Field To Packet Color Mapping Table

MPLS EXP Field To Packet Color Map-
ping Table

MPLS EXP Field To Packet Color Mapping Table

L2 Aging Status Shadow Table L2 Aging Status Shadow Table
L2 DA Hash Lookup Table L2 DA Hash Lookup Table
L2 Destination Table L2 Destination Table
L2 Multicast Table L2 Multicast Table
Egress Multiple Spanning Tree State Egress Multiple Spanning Tree State
L2 Action Table L2 Action Table
L2 Action Table Source Port L2 Action Table Source Port
ipp register bank ss0 Link Aggregation Ctrl

ICMP Length Check
Ingress Configurable ACL 0 Selection
Ingress Configurable ACL 1 Selection
Ingress Configurable ACL 2 Selection
Ingress Configurable ACL 3 Selection

202 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bank Name Connected Registers or Tables
Expired TTL to CPU
Check IPv4 Header Checksum
Force Non VLAN Packet To Specific Queue
Force Unknown L3 Packet To Specific Egress Queue
Force Non VLAN Packet To Specific Color
Force Unknown L3 Packet To Specific Color
Forward From CPU
L2 Multicast Handling
Debug srcPort
Enable Enqueue To Ports And Queues
Flooding Action Send to Port
Allow Special Frame Check For L2 Action Table
Hairpin Enable
L2 Aging Collision Shadow Table
MPLS EXP Field To Egress Queue Mapping Table
VLAN PCP To Queue Mapping Table
TCP/UDP Flag Rules
Ingress VID Ethernet Type Range Assignment Answer
Ingress Configurable ACL 3 Rules Setup
Ingress Configurable ACL 2 Rules Setup
Ingress Configurable ACL 1 Rules Setup
Ingress Configurable ACL 0 Rules Setup
Ingress Port Packet Type Filter
SMON Set Search
Link Aggregation Membership
Source Port Table
Ingress Egress Port Packet Type Filter
Ingress VID Ethernet Type Range Search Data
Ingress VID Inner VID Range Search Data
Ingress VID Outer VID Range Search Data
Ingress Ethernet Type for VLAN tag
ARP Packet Decoder Options
RARP Packet Decoder Options
IEEE 1588 L2 Packet Decoder Options
IEEE 802.1X and EAPOL Packet Decoder Options
SCTP Packet Decoder Options
AH Header Packet Decoder Options
ESP Header Packet Decoder Options
DNS Packet Decoder Options
Ingress Ports With Timestamp
L2 Reserved Multicast Address Base
Mask MAC Table Lookup
Port Move Options
L2 Action Table Egress Port State
Ingress MMP Drop Mask
Debug dstPortmask
Link Aggregation To Physical Ports Members
Link Aggregate Weight
L2 Lookup Collision Table Masks
L2 Lookup Collision Table
Send to CPU
LLDP Configuration
GRE Packet Decoder Options
LACP Packet Decoder Options
BOOTP and DHCP Packet Decoder Options
CAPWAP Packet Decoder Options

203 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bank Name Connected Registers or Tables
Egress Spanning Tree State
Ingress VID MAC Range Search Data
Reserved Source MAC Address Range
Reserved Destination MAC Address Range
IEEE 1588 L4 Packet Decoder Options
Ingress Configurable ACL 1 Search Mask
Ingress Configurable ACL 1 TCAM
Ingress Configurable ACL 0 Search Mask
Ingress Configurable ACL 2 Search Mask
Ingress Configurable ACL 3 Search Mask
Ingress Configurable ACL 3 TCAM
Ingress Configurable ACL 2 TCAM
Ingress Configurable ACL 0 TCAM

ipp register bank misc ss0 Ingress Drop Options
count packets ipp0 smonStatisticsBlock SMON Set 0 Packet Counter[0..7]

SMON Set 1 Packet Counter[0..7]
SMON Set 2 Packet Counter[0..7]
SMON Set 3 Packet Counter[0..7]
SMON Set 4 Packet Counter[0..7]
SMON Set 5 Packet Counter[0..7]
SMON Set 6 Packet Counter[0..7]
SMON Set 7 Packet Counter[0..7]
SMON Set 8 Packet Counter[0..7]
SMON Set 9 Packet Counter[0..7]
SMON Set 10 Packet Counter[0..7]
SMON Set 11 Packet Counter[0..7]
SMON Set 12 Packet Counter[0..7]
SMON Set 13 Packet Counter[0..7]
SMON Set 14 Packet Counter[0..7]
SMON Set 15 Packet Counter[0..7]

count bytes ipp0 smonStatisticsBlock SMON Set 0 Byte Counter[0..7]
SMON Set 1 Byte Counter[0..7]
SMON Set 2 Byte Counter[0..7]
SMON Set 3 Byte Counter[0..7]
SMON Set 4 Byte Counter[0..7]
SMON Set 5 Byte Counter[0..7]
SMON Set 6 Byte Counter[0..7]
SMON Set 7 Byte Counter[0..7]
SMON Set 8 Byte Counter[0..7]
SMON Set 9 Byte Counter[0..7]
SMON Set 10 Byte Counter[0..7]
SMON Set 11 Byte Counter[0..7]
SMON Set 12 Byte Counter[0..7]
SMON Set 13 Byte Counter[0..7]
SMON Set 14 Byte Counter[0..7]
SMON Set 15 Byte Counter[0..7]

count ipp0 aclConfStatisticsBlock Ingress Configurable ACL Match Counter[0..255]
count ipp0 egressDropStatisticsBlock Queue Off Drop[0..52]

Egress Spanning Tree Drop[0..52]
MBSC Drop[0..52]
Ingress-Egress Packet Filtering Drop[0..52]
L2 Action Table Per Port Drop[0..52]

bk mmp stat 0 Flow Classification And Metering Drop
bk ingress admission control all red en 0 Ingress Admission Control Mark All Red Enable
bk ingress admission control all red 0 Ingress Admission Control Mark All Red

204 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bank Name Connected Registers or Tables
Ingress Admission Control Token Bucket
Configuration

Ingress Admission Control Token Bucket Configuration

Ingress Admission Control Reset Ingress Admission Control Reset
Ingress Admission Control Current Status Ingress Admission Control Current Status
bk erm ss0 ERM Yellow Configuration

ERM Red Configuration
Egress Resource Manager Pointer[0..52]
Resource Limiter Set[0..26]

count erm ss0 Egress Resource Manager Drop[0..52]
pb info regbank ss0 Packet Buffer Status
count drop pa top switch pb0 Buffer Overflow Drop

Ingress Resource Manager Drop
pb queue manage register bank ss0 Map Queue to Priority[0..52]
count drop pa top switch pb0 iRequeue Re-queue Overflow Drop
pfc regbank port rsv size ss0 Port Reserved[0..52]
pfc regbank cmn misc ss0 Port Used[0..52]

FFA Used
pfc regbank pause settings1 ss0 Port Pause Settings[0..52]
pfc regbank taildrop settings0 ss0 Port Tail-Drop Settings[0..52]
pfc regbank misc ss0 Xon FFA Threshold

Xoff FFA Threshold
Tail-Drop FFA Threshold
Port Xon FFA Threshold[0..52]
Port Xoff FFA Threshold[0..52]
Port Tail-Drop FFA Threshold[0..52]

qe register bank ss0 sp0 Egress Port Depth[0..52]
Egress Queue Depth[0..423]

pb r register bank ss0 Minimum Buffer Free
disable queue output register bank ss0 Output Disable[0..52]
dwrr bucket capacity settings ss0 DWRR Bucket Capacity Configuration[0..52]
dwrr bucket misc settings ss0 DWRR Bucket Misc Configuration[0..52]
dwrr weight settings ss0 DWRR Weight Configuration[0..423]
queue shaper rate settings Queue Shaper Rate Configuration
queue shaper bucket settings Queue Shaper Bucket Capacity Configuration

Queue Shaper Bucket Threshold Configuration
queue shaper misc Queue Shaper Enable
prio shaper rate settings Prio Shaper Rate Configuration
prio shaper bucket settings Prio Shaper Bucket Capacity Configuration

Prio Shaper Bucket Threshold Configuration
prio shaper misc Prio Shaper Enable
port shaper rate settings Port Shaper Rate Configuration
port shaper bucket settings Port Shaper Bucket Capacity Configuration

Port Shaper Bucket Threshold Configuration
port shaper misc Port Shaper Enable
count opkt pa top switch pb0 PB Packet Head Counter

PB Packet Tail Counter
drain port ss0 Drain Port
drain drop ss0 Drain Port Drop[0..52]
count pa top switch epp0 conf Unknown Egress Drop[0..52]

Egress Port Disabled Drop[0..52]
Egress Port Filtering Drop[0..52]
EPP PM Drop

count opkt pa top switch epp0 conf EPP Packet Head Counter
EPP Packet Tail Counter

205 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bank Name Connected Registers or Tables
Egress Port Configuration Egress Port Configuration
Egress MAC Operations Egress MAC Operations
Color Remap From Egress Port Color Remap From Egress Port
Color Remap From Ingress Admission
Control

Color Remap From Ingress Admission Control

Egress Queue To PCP And CFI/DEI
Mapping Table

Egress Queue To PCP And CFI/DEI Mapping Table

Egress VLAN Translation Large Table Egress VLAN Translation Large Table
Egress VLAN Translation Small Table Egress VLAN Translation Small Table
Egress VLAN Translation TCAM Answer Egress VLAN Translation TCAM Answer
epp register bank ss0 Output Mirroring Table

Egress Ethernet Type for VLAN tag
Egress VLAN Translation Selection
Disable CPU tag on CPU Port
Egress VLAN Translation Search Mask
Egress RSPAN Configuration
Egress VLAN Translation TCAM

count opkt pa top switch ps0
ps wrap bridge

PS Packet Head Counter

PS Packet Tail Counter
count error pa top switch ps0
ps wrap bridge

PS Error Counter

32.4 Registers and Tables in Alphabetical Order

Name Address Range
AH Decoder Drop 34058
AH Header Packet Decoder Options 267343
ARP Decoder Drop 34051
ARP Packet Decoder Options 267323
Allow Special Frame Check For L2 Action Table 266504 - 266507
Attack Prevention Drop 34050
BOOTP and DHCP Decoder Drop 34061
BOOTP and DHCP Packet Decoder Options 268163
Buffer Free 1
Buffer Overflow Drop 272061
CAPWAP Decoder Drop 34062
CAPWAP Packet Decoder Options 268171
CPU Port 4
Check IPv4 Header Checksum 266390
Color Remap From Egress Port 277685 - 277790
Color Remap From Ingress Admission Control 277791 - 278046
Core Tick Configuration 2
Core Tick Select 3
Core Version 0
DNS Decoder Drop 34060
DNS Packet Decoder Options 267351
DWRR Bucket Capacity Configuration 273023 - 273075
DWRR Bucket Misc Configuration 273076 - 273128
DWRR Weight Configuration 273129 - 273552

206 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Name Address Range
Debug dstPortmask 267367
Debug srcPort 266397
Disable CPU tag on CPU Port 280422
Drain Port 276338
Drain Port Drop 276340 - 276392
EPP PM Drop 276552
EPP Packet Head Counter 276553
EPP Packet Tail Counter 276554
ERM Red Configuration 271844
ERM Yellow Configuration 271840
ESP Decoder Drop 34059
ESP Header Packet Decoder Options 267347
Egress Ethernet Type for VLAN tag 280420
Egress MAC Operations 276661 - 277684
Egress Multiple Spanning Tree State 265871 - 266126
Egress Port Configuration 276555 - 276660
Egress Port Depth 272492 - 272544
Egress Port Disabled Drop 276446 - 276498
Egress Port Filtering Drop 276499 - 276551
Egress Queue Depth 272545 - 272968
Egress Queue To PCP And CFI/DEI Mapping Table 278047 - 278054
Egress RSPAN Configuration 280425 - 280530
Egress Resource Manager Drop 272006 - 272058
Egress Resource Manager Pointer 271846 - 271951
Egress Spanning Tree Drop 270561 - 270613
Egress Spanning Tree State 268179
Egress VLAN Translation Large Table 278055 - 280102
Egress VLAN Translation Search Mask 280423
Egress VLAN Translation Selection 280421
Egress VLAN Translation Small Table 280103 - 280358
Egress VLAN Translation TCAM 280531 - 280546
Egress VLAN Translation TCAM Answer 280359 - 280366
Empty Mask Drop 34035
Enable Enqueue To Ports And Queues 266398 - 266450
Expired TTL Drop 34046
Expired TTL to CPU 266389
FFA Used 272223
Flooding Action Send to Port 266451 - 266503
Flow Classification And Metering Drop 270773
Force Non VLAN Packet To Specific Color 266393
Force Non VLAN Packet To Specific Queue 266391
Force Unknown L3 Packet To Specific Color 266394
Force Unknown L3 Packet To Specific Egress Queue 266392
Forward From CPU 266395
GRE Decoder Drop 34063
GRE Packet Decoder Options 268147
Hairpin Enable 266508 - 266560
Hardware Learning Configuration 957 - 1009
Hardware Learning Counter 1076 - 1128
ICMP Length Check 266384
IEEE 1588 L2 Packet Decoder Options 267331
IEEE 1588 L4 Packet Decoder Options 268347
IEEE 802.1X and EAPOL Decoder Drop 34055

207 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Name Address Range
IEEE 802.1X and EAPOL Packet Decoder Options 267335
IP Checksum Drop 34047
IPP Empty Destination Drop 34033
IPP PM Drop 34032
IPP Packet Head Counter 34069
IPP Packet Tail Counter 34070
IPv4 TOS Field To Egress Queue Mapping Table 131639 - 131894
IPv4 TOS Field To Packet Color Mapping Table 132167 - 132422
IPv6 Class of Service Field To Egress Queue Mapping Table 131895 - 132150
IPv6 Class of Service Field To Packet Color Mapping Table 132423 - 132678
Ingress Admission Control Current Status 271670 - 271797
Ingress Admission Control Initial Pointer 36119 - 36630
Ingress Admission Control Mark All Red 270902 - 271029
Ingress Admission Control Mark All Red Enable 270774 - 270901
Ingress Admission Control Reset 271542 - 271669
Ingress Admission Control Token Bucket Configuration 271030 - 271541
Ingress Configurable ACL 0 Large Table 38679 - 71446
Ingress Configurable ACL 0 Pre Lookup 36631 - 38678
Ingress Configurable ACL 0 Rules Setup 266709 - 266724
Ingress Configurable ACL 0 Search Mask 268923
Ingress Configurable ACL 0 Selection 266385
Ingress Configurable ACL 0 Small Table 71447 - 75542
Ingress Configurable ACL 0 TCAM 269483 - 269994
Ingress Configurable ACL 0 TCAM Answer 75543 - 75670
Ingress Configurable ACL 1 Large Table 77719 - 94102
Ingress Configurable ACL 1 Pre Lookup 75671 - 77718
Ingress Configurable ACL 1 Rules Setup 266693 - 266708
Ingress Configurable ACL 1 Search Mask 268379
Ingress Configurable ACL 1 Selection 266386
Ingress Configurable ACL 1 Small Table 94103 - 96150
Ingress Configurable ACL 1 TCAM 268411 - 268922
Ingress Configurable ACL 1 TCAM Answer 96151 - 96214
Ingress Configurable ACL 2 Large Table 98263 - 106454
Ingress Configurable ACL 2 Pre Lookup 96215 - 98262
Ingress Configurable ACL 2 Rules Setup 266677 - 266692
Ingress Configurable ACL 2 Search Mask 268939
Ingress Configurable ACL 2 Selection 266387
Ingress Configurable ACL 2 Small Table 106455 - 107478
Ingress Configurable ACL 2 TCAM 269227 - 269482
Ingress Configurable ACL 2 TCAM Answer 107479 - 107542
Ingress Configurable ACL 3 Large Table 109591 - 113686
Ingress Configurable ACL 3 Pre Lookup 107543 - 109590
Ingress Configurable ACL 3 Rules Setup 266661 - 266676
Ingress Configurable ACL 3 Search Mask 268955
Ingress Configurable ACL 3 Selection 266388
Ingress Configurable ACL 3 Small Table 113687 - 114710
Ingress Configurable ACL 3 TCAM 268971 - 269226
Ingress Configurable ACL 3 TCAM Answer 114711 - 114774
Ingress Configurable ACL Drop 34049
Ingress Configurable ACL Match Counter 270252 - 270507
Ingress Drop Options 269995
Ingress Egress Port Packet Type Filter 267059 - 267270
Ingress Ethernet Type for VLAN tag 267319

208 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Name Address Range
Ingress MMP Drop Mask 267365
Ingress Multiple Spanning Tree State 131383 - 131638
Ingress Packet Filtering Drop 34040
Ingress Port Packet Type Filter 266725 - 266777
Ingress Ports With Timestamp 267355
Ingress Resource Manager Drop 272062
Ingress Spanning Tree Drop: Blocking 34038
Ingress Spanning Tree Drop: Learning 34037
Ingress Spanning Tree Drop: Listen 34036
Ingress VID Ethernet Type Range Assignment Answer 266657 - 266660
Ingress VID Ethernet Type Range Search Data 267271 - 267286
Ingress VID Inner VID Range Assignment Answer 114995 - 114998
Ingress VID Inner VID Range Search Data 267287 - 267302
Ingress VID MAC Range Assignment Answer 114987 - 114990
Ingress VID MAC Range Search Data 268187 - 268218
Ingress VID Outer VID Range Assignment Answer 114991 - 114994
Ingress VID Outer VID Range Search Data 267303 - 267318
Ingress-Egress Packet Filtering Drop 270667 - 270719
L2 Action Table 266127 - 266254
L2 Action Table Drop 34065
L2 Action Table Egress Port State 267363
L2 Action Table Per Port Drop 270720 - 270772
L2 Action Table Port Move Drop 34066
L2 Action Table Source Port 266255 - 266382
L2 Action Table Special Packet Type Drop 34064
L2 Aging Collision Shadow Table 266561 - 266624
L2 Aging Collision Table 1012 - 1075
L2 Aging Status Shadow Table 132687 - 165454
L2 Aging Table 1129 - 33896
L2 Broadcast Storm Control Bucket Capacity Configuration 357 - 409
L2 Broadcast Storm Control Bucket Threshold Configuration 410 - 462
L2 Broadcast Storm Control Enable 463
L2 Broadcast Storm Control Rate Configuration 304 - 356
L2 DA Hash Lookup Table 165455 - 230990
L2 Destination Table 230991 - 263822
L2 Destination Table SA Lookup Drop 34067
L2 IEEE 1588 Decoder Drop 34053
L2 Lookup Collision Table 268003 - 268130
L2 Lookup Collision Table Masks 267987 - 268002
L2 Lookup Drop 34039
L2 Multicast Handling 266396
L2 Multicast Storm Control Bucket Capacity Configuration 518 - 570
L2 Multicast Storm Control Bucket Threshold Configuration 571 - 623
L2 Multicast Storm Control Enable 624
L2 Multicast Storm Control Rate Configuration 465 - 517
L2 Multicast Table 263823 - 265870
L2 Reserved Multicast Address Action 34071 - 36118
L2 Reserved Multicast Address Base 267357
L2 Reserved Multicast Address Drop 34048
L2 Unknown Multicast Storm Control Bucket Capacity Config-
uration

840 - 892

L2 Unknown Multicast Storm Control Bucket Threshold Con-
figuration

893 - 945

209 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Name Address Range
L2 Unknown Multicast Storm Control Enable 946
L2 Unknown Multicast Storm Control Rate Configuration 787 - 839
L2 Unknown Unicast Storm Control Bucket Capacity Configu-
ration

679 - 731

L2 Unknown Unicast Storm Control Bucket Threshold Config-
uration

732 - 784

L2 Unknown Unicast Storm Control Enable 785
L2 Unknown Unicast Storm Control Rate Configuration 626 - 678
L4 IEEE 1588 Decoder Drop 34054
LACP Decoder Drop 34057
LACP Packet Decoder Options 268155
LLDP Configuration 268139
Learning And Aging Enable 956
Learning Conflict 948
Learning Overflow 952
Link Aggregate Weight 267475 - 267986
Link Aggregation Ctrl 266383
Link Aggregation Membership 266794 - 266846
Link Aggregation To Physical Ports Members 267369 - 267474
MAC RX Broken Packets 101 - 153
MAC RX Long Packet Drop 207 - 259
MAC RX Maximum Packet Length 48 - 100
MAC RX Short Packet Drop 154 - 206
MBSC Drop 270614 - 270666
MPLS EXP Field To Egress Queue Mapping Table 266625 - 266632
MPLS EXP Field To Packet Color Mapping Table 132679 - 132686
Map Queue to Priority 272063 - 272115
Mask MAC Table Lookup 267359
Maximum Allowed VLAN Drop 34045
Minimum Allowed VLAN Drop 34044
Minimum Buffer Free 272969
Output Disable 272970 - 273022
Output Mirroring Table 280367 - 280419
PB Packet Head Counter 276336
PB Packet Tail Counter 276337
PS Error Counter 280594 - 280646
PS Packet Head Counter 280592
PS Packet Tail Counter 280593
Packet Buffer Status 272059
Port Move Options 267361
Port Pause Settings 272224 - 272276
Port Reserved 272117 - 272169
Port Shaper Bucket Capacity Configuration 276182 - 276234
Port Shaper Bucket Threshold Configuration 276235 - 276287
Port Shaper Enable 276288
Port Shaper Rate Configuration 276129 - 276181
Port Tail-Drop FFA Threshold 272439 - 272491
Port Tail-Drop Settings 272277 - 272329
Port Used 272170 - 272222
Port Xoff FFA Threshold 272386 - 272438
Port Xon FFA Threshold 272333 - 272385
Prio Shaper Bucket Capacity Configuration 275265 - 275688
Prio Shaper Bucket Threshold Configuration 275689 - 276112

210 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Name Address Range
Prio Shaper Enable 276113
Prio Shaper Rate Configuration 274841 - 275264
Queue Off Drop 270508 - 270560
Queue Shaper Bucket Capacity Configuration 273977 - 274400
Queue Shaper Bucket Threshold Configuration 274401 - 274824
Queue Shaper Enable 274825
Queue Shaper Rate Configuration 273553 - 273976
RARP Decoder Drop 34052
RARP Packet Decoder Options 267327
Re-queue Overflow Drop 272116
Reserved Destination MAC Address Range 268283 - 268346
Reserved MAC DA Drop 34041
Reserved MAC SA Drop 34042
Reserved Source MAC Address Range 268219 - 268282
Resource Limiter Set 271952 - 272005
SCTP Decoder Drop 34056
SCTP Packet Decoder Options 267339
SMON Set 0 Byte Counter 270124 - 270131
SMON Set 0 Packet Counter 269996 - 270003
SMON Set 1 Byte Counter 270132 - 270139
SMON Set 1 Packet Counter 270004 - 270011
SMON Set 10 Byte Counter 270204 - 270211
SMON Set 10 Packet Counter 270076 - 270083
SMON Set 11 Byte Counter 270212 - 270219
SMON Set 11 Packet Counter 270084 - 270091
SMON Set 12 Byte Counter 270220 - 270227
SMON Set 12 Packet Counter 270092 - 270099
SMON Set 13 Byte Counter 270228 - 270235
SMON Set 13 Packet Counter 270100 - 270107
SMON Set 14 Byte Counter 270236 - 270243
SMON Set 14 Packet Counter 270108 - 270115
SMON Set 15 Byte Counter 270244 - 270251
SMON Set 15 Packet Counter 270116 - 270123
SMON Set 2 Byte Counter 270140 - 270147
SMON Set 2 Packet Counter 270012 - 270019
SMON Set 3 Byte Counter 270148 - 270155
SMON Set 3 Packet Counter 270020 - 270027
SMON Set 4 Byte Counter 270156 - 270163
SMON Set 4 Packet Counter 270028 - 270035
SMON Set 5 Byte Counter 270164 - 270171
SMON Set 5 Packet Counter 270036 - 270043
SMON Set 6 Byte Counter 270172 - 270179
SMON Set 6 Packet Counter 270044 - 270051
SMON Set 7 Byte Counter 270180 - 270187
SMON Set 7 Packet Counter 270052 - 270059
SMON Set 8 Byte Counter 270188 - 270195
SMON Set 8 Packet Counter 270060 - 270067
SMON Set 9 Byte Counter 270196 - 270203
SMON Set 9 Packet Counter 270068 - 270075
SMON Set Search 266778 - 266793
SP Overflow Drop 33936 - 33988
Scratch 5
Send to CPU 268131

211 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Name Address Range
Source Port Default ACL Action 114775 - 114986
Source Port Default ACL Action Drop 34068
Source Port Table 266847 - 267058
TCP/UDP Flag Rules 266641 - 266656
Tail-Drop FFA Threshold 272332
Time to Age 1010
Unknown Egress Drop 276393 - 276445
Unknown Ingress Drop 34034
VLAN Member Drop 34043
VLAN PCP And DEI To Color Mapping Table 132151 - 132166
VLAN PCP To Queue Mapping Table 266633 - 266640
VLAN Table 114999 - 131382
Xoff FFA Threshold 272331
Xon FFA Threshold 272330

32.5 Active Queue Manager

32.5.1 ERM Red Configuration

Configurations to mark the buffer memory congestion status as Red (heavily congested).

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 271844

Field Description

Bits
Field
Name

Description
Default
Value

13:0 redXoff Number of free cells below this value will invoke the
red congestion check for the incoming cells. The
checks include the number of enqueued cells in the
current queue and the packet length. The incoming
packet might be terminated and dropped based on the
check result.

0x212

27:14 redXon Once the red congestion check is applied, number of
free cells need to go above this value to disable the
check again. The value needs to be larger than redX-
off to provide an effective hysteresis.

0xd26

34:28 redMaxCells Maximum allowed packet length in cells when the
buffer memory congestion status is red.

0xb

32.5.2 ERM Yellow Configuration

Configurations to mark the buffer memory congestion status as Yellow (slightly congested).

212 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 271840

Field Description

Bits
Field
Name

Description
Default
Value

13:0 yellowXoff Number of free cells below this value will invoke
yellow congestion checks for the incoming cells.
The checks include the number of enqueued cells
in the current queue, higher priority queues and
optionally the total number of enqueued cells for
the current egress port. Incoming packets might
be terminated and dropped based on the check
result.

0x212

27:14 yellowXon Once the yellow congestion check is applied,
number of free cells need to go above this value
to disable the check again. The value needs to
be larger than yellowXoff to provide an effec-
tive hysteresis.

0xf07

80:28 redPortEn When the buffer memory congestion status is
yellow and a single port consumes more than
redPortXoff cells, this field can apply the
redLimit check on a per port basis.

253 − 1

94:81 redPortXoff When the buffer memory congestion status is
yellow and the total number of cells enqueued on
an egress port is larger than this value, redLimit
check for that port will be invoked. Only valid
when redPortEn is turned on.

0x247

32.5.3 Egress Resource Manager Pointer

This table provides each egress port a set of limiters. Different egress queues can have different pointers
to the Resource Limiter Set.

Number of Entries : 53
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 271846 to 271951

Field Description

Bits
Field
Name

Description
Default
Value

4:0 q0 Pointer to the Resource Limiter Set for egress queue 0. 0x0
9:5 q1 Pointer to the Resource Limiter Set for egress queue 1. 0x0
14:10 q2 Pointer to the Resource Limiter Set for egress queue 2. 0x0
19:15 q3 Pointer to the Resource Limiter Set for egress queue 3. 0x0
24:20 q4 Pointer to the Resource Limiter Set for egress queue 4. 0x0

213 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

29:25 q5 Pointer to the Resource Limiter Set for egress queue 5. 0x0
34:30 q6 Pointer to the Resource Limiter Set for egress queue 6. 0x0
39:35 q7 Pointer to the Resource Limiter Set for egress queue 7. 0x0

32.5.4 Resource Limiter Set

This resource limiter is for comparing how many cells are ahead of the incoming cell for scheduling, that
includes cells are enqueued in the same egress queue and all cells with a higher scheduling priority.

Number of Entries : 27
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : Pointer from the Egress Resource Manager Pointer
Address Space : 271952 to 272005

Field Description

Bits
Field
Name

Description
Default
Value

13:0 yellowAccumulated When the buffer memory is slightly congested (yel-
low), the ERM allows accumulation of cells with
the same queue or higher scheduling priorities
to the limit in this field before appling the yel-
lowLimit.

0x55

27:14 yellowLimit When the buffer memory is slightly congested
(yellow)and yellowAccumulated is reached, the
packet will be terminated and dropped if the en-
queued cells in the corresponding queue is more
than this value.

0x3d

41:28 redLimit When the buffer memory is heavily congested
(red), the incoming packet will be terminated and
dropped if the enqueued cells in the corresponding
egress queue is more than this value.

0x1a

48:42 maxCells Maximum allowed packet length in cells for this
limiter. Packet with cells more than this value will
be dropped.

0x7f

32.6 Core Information

32.6.1 Core Version

Adress 0 is reserved for the core version. Make sure the register value is the same as the revision number
in the front page of the datasheet.

Number of Entries : 1
Type of Operation : Read Only
Address Space : 0

214 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

31:0 version Version of the core. 0xcda53817

32.7 Egress Packet Processing

32.7.1 Color Remap From Egress Port

Options for remapping internal packet color to outgoing packet headers. Each egress port has a separate
color to field mapping.

Number of Entries : 53
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : Egress Port
Address Space : 277685 to 277790

Field Description

Bits
Field
Name

Description
Default
Value

1:0 colorMode
0 = Skip remap
1 = Remap to L3 only
2 = Remap to L2 only
3 = Remap to L2 and L3

0x1

25:2 color2Tos New TOS/TC value based on packet color.
bits [0:7] : TOS/TC value for green
bits [8:15] : TOS/TC value for yellow
bits [16:23] : TOS/TC value for red

0x0

33:26 tosMask Mask for updating the TOS/TC field. For each bit in the
mask, 0 means keep original value, 1 means update new
value to that bit.

0x0

36:34 color2Dei New DEI value based on packet color. This is located in
the outermost VLAN of the transmitted packet.
bit 0 : DEI value for green
bit 1 : DEI value for yellow
bit 2 : DEI value for red

0x0

32.7.2 Color Remap From Ingress Admission Control

Options from ingress admission control to remap internal packet color to outgoing packet headers.

Number of Entries : 128
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : Meter Pointer
Address Space : 277791 to 278046

215 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 enable If set, the colorMode field determines the remap process.
Otherwise color remapping based on the ingress admission
control is skipped.

0x0

2:1 colorMode
0 = Remap disabled
1 = Remap to L3 only
2 = Remap to L2 only
3 = Remap to L2 and L3

0x0

26:3 color2Tos New TOS/TC value based on packet color.
bits [0:7] : TOS/TC value for green
bits [8:15] : TOS/TC value for yellow
bits [16:23] : TOS/TC value for red

0x0

34:27 tosMask Mask for updating the TOS/TC field. For each bit in the
mask, 0 means keep original value, 1 means update new
value to that bit.

0x0

37:35 color2Dei New DEI value based on packet color. This is located in
the outermost VLAN of the transmitted packet.
bit 0 : DEI value for green
bit 1 : DEI value for yellow
bit 2 : DEI value for red

0x0

32.7.3 Disable CPU tag on CPU Port

When a packet is sent to the CPU port normally a To CPU Tag will be added to the packet. This register
provides a option to disable the CPU tag

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 280422

Field Description

Bits
Field
Name

Description
Default
Value

0 disable When set, the CPU port will no longer add a CPU
Tag to packets going to the CPU port.
0 = To CPU Tag enabled
1 = To CPU Tag disabled

0x0

1 disableReason0 When set, the CPU port will no longer add a CPU Tag
to packets going to the CPU port with reason code
0(default reason).
0 = To CPU Tag enabled
1 = To CPU Tag disabled

0x0

32.7.4 Drain Port

Drop all packets on all queues to egress ports. The dropped packets are counted in the Drain Port Drop
counter.

216 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 276338

Field Description

Bits
Field
Name

Description
Default
Value

52:0 drainMask Egress ports to be drained. One bit for each port in the
current switch slice where bit 0 corresponds to local port
0.

0x0

32.7.5 Egress Ethernet Type for VLAN tag

Ethernet type used in VLAN operations when typeSel selects User Defined VLAN type. This Ethernet type
is only used in VLAN push operations. In VLAN filtering a pushed user defined VLAN will be considered
to be a C-VLAN.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 280420

Field Description

Bits
Field
Name

Description
Default
Value

15:0 typeValue Ethernet Type value. 0xffff

32.7.6 Egress MAC Operations

The operation to do on the packets MAC fields.

Number of Entries : 512
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : From ingress ACL lookup
Address Space : 276661 to 277684

Field Description

Bits
Field
Name

Description
Default
Value

1:0 saOp Where shall the MAC SA come from.
0 = No Change
1 = Use DA MAC
2 = Use data from this table
3 = Reserved

0x0

217 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

3:2 daOp Where shall the MAC DA come from.
0 = No Change
1 = Use SA MAC
2 = Use data from this table
3 = Reserved

0x0

51:4 macData The data which can be used to update SA or DA MAC. 0x0

32.7.7 Egress Multiple Spanning Tree State

Table of egress Multiple Spanning Tree Protocol Instances. The field msptPtr in the VLAN Table is used
to address the instance/entry in this table. Each entry contains the egress spanning tree states for all ports
in this MSTI.

Number of Entries : 64
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : msptPtr from VLAN Table
Address Space : 265871 to 266126

Field Description

Bits
Field
Name

Description
Default
Value

105:0 portSptState The egress spanning tree state for this MSTI. Bit[1:0]
is the state for port #0, bit[3:2] is the state for port
#1, etc.
0 = Forwarding
1 = Discarding
2 = Learning

0x0

32.7.8 Egress Port Configuration

This table configures various functions that are dependent on which port the packet leaves the switch.
A VLAN operation (e.g. push, pop, swap) to be performed can be selected by the vlanSingleOp field.
For the push and swap operations the information used to create the new VLAN header is controlled by
the fields vidSel, cfiDeiSel, pcpSel and typeSel. Other configurations are VLAN LUT index, port disable
and different filtering rules based on packet VLAN fields when the egress processing is done.

Number of Entries : 53
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 276555 to 276660

Field Description

218 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

0 colorRemap If set, color remapping to outgoing packet head-
ers is allowed. The default color remapping op-
tions are based on the egress port number from
the Color Remap From Egress Port table. If
a packet is subjected to ingress admission con-
trol, its ingress admission control pointer can pro-
vide remap options from the Color Remap From
Ingress Admission Control table to override de-
fault options.

0x0

3:1 vlanSingleOp The egress port VLAN operation to perform on the
packet.
0 = No operation.
1 = Swap.
2 = Push.
3 = Pop.
4 = Penultimate pop(remove all VLAN headers).

0x0

5:4 typeSel Selects which TPID to use when building a new
VLAN header in a push or swap operation.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag field type-
Value.

0x0

7:6 vidSel Selects which VID to use when building a new
VLAN header in a egress port push or swap op-
eration. If the selected outermost VLAN header
doesn’t exist in the packet then this table entry’s
vid will be used.
0 = From outermost VLAN in the packet (if any).
1 = From this table entry’s vid.
2 = From the Ingress VID as selected in the

Source Port Table.

0x0

9:8 cfiDeiSel Selects which CFI/DEI to use when building a new
VLAN header in a egress port push or swap op-
eration. If the selected outermost VLAN header
doesn’t exist in the packet then this table entry’s
cfiDei will be used.
0 = From outermost VLAN in the packet (if any).
1 = From this table entry’s cfiDei.
2 = From Egress Queue To PCP And CFI/DEI

Mapping Table.

0x0

11:10 pcpSel Selects which PCP to use when building a new
VLAN header in a egress port push or swap op-
eration. If the selected outermost VLAN header
doesn’t exist in the packet then this table entry’s
cfiDei will be used.
0 = From outermost VLAN in the packet (if any).
1 = From this table entry’s pcp.
2 = From Egress Queue To PCP And CFI/DEI

Mapping Table.

0x0

23:12 vid The VID used in egress port VLAN push or swap
operation if selected by vidSel.

0x0

24 cfiDei The CFI/DEI used in egress port VLAN push or
swap operation if selected by cfiDeiSel.

0x0

219 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

27:25 pcp The PCP used in egress port VLAN push or swap
operation if selected by pcpSel.

0x0

28 disabled Disabling this port. All packets to this port is
dropped and Egress Port Disabled Drop is in-
cremented.
0 = All packets will be sent out.
1 = All packets will be dropped.

0x0

29 dropCtaggedVlans Drop or allow customer VLANs tagged pack-
ets on this egress port. Will only drop pack-
ets that has exactly one VLAN tag. Must set
moreThanOneVlans when this is used.
0 = Allow C-VLANs.
1 = Drop C-VLANs.

0x0

30 dropStaggedVlans Drop or allow service VLANs tagged packets
on this egress port. Will only drop packets
that has exactly one VLAN tag. Must set
moreThanOneVlans when this is used.
0 = Allow S-VLANs.
1 = Drop S-VLANs.

0x0

31 moreThanOneVlans When filtering with dropCtaggedVlans or drop-
StaggedVlans then this field must be set to 1.

0x0

32 dropUntaggedVlans Drop or Allow packets that are VLAN untagged on
this egress port.
0 = Allow untagged packets.
1 = Drop untagged packets.

0x0

33 dropSingleTaggedVlans Drop or Allow packets that has one VLAN tag on
this egress port.
0 = Allow untagged packets.
1 = Drop untagged packets.

0x0

34 dropDualTaggedVlans Drop or allow packets which has more than one
VLAN tag on this egress port.
0 = Allow packets which has more than one

VLAN tag.
1 = Drop packets which has more than one VLAN

tag.

0x0

35 dropCStaggedVlans Drop or allow packets which has a C-VLAN fol-
lowed by a S-VLAN tagged on this egress port.
0 = Allow packets which has a C-VLAN tag fol-

lowed by a S-VLAN tag.
1 = Drop packets which has a C-VLAN tag fol-

lowed by a S-VLAN tag.

0x0

36 dropSCtaggedVlans Drop or allow packets which has a S-VLAN fol-
lowed by a C-VLAN tagged on this egress port.
0 = Allow packets which has a S-VLAN followed

by a C-VLAN tag.
1 = Drop packets which has a S-VLAN tag fol-

lowed by a C-VLAN tag.

0x0

37 dropCCtaggedVlans Drop or allow packets which has a C-VLAN fol-
lowed by a C-VLAN tagged on this egress port.
0 = Allow packets which has a C-VLAN tag fol-

lowed by a C-VLAN tag.
1 = Drop packets which has a C-VLAN tag fol-

lowed by a C-VLAN tag.

0x0

220 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

38 dropSStaggedVlans Drop or allow packets which has a S-VLAN fol-
lowed by a S-VLAN tagged on this egress port.
0 = Allow packets which has a S-VLAN tag fol-

lowed by a S-VLAN tag.
1 = Drop packets which has a S-VLAN tag fol-

lowed by a S-VLAN tag.

0x0

32.7.9 Egress Queue To PCP And CFI/DEI Mapping Table

Get PCP and CFI/DEI from egress queues if selected by egress port VLAN operations push or swap.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : Egress Queue
Address Space : 278047 to 278054

Field Description

Bits
Field
Name

Description
Default
Value

0 cfiDei Map from egress queue to CFI/DEI. 0x0
3:1 pcp Map from egress queue to PCP. 0x0

32.7.10 Egress RSPAN Configuration

Configuration for RSPAN tags on each egress port. When configured to push or pop a RSPAN tag then
all packets will unconditionally be subject to this operation. When pushing an RSPAN tag the content of
the tag is specified in this register.

Number of Entries : 53
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 280425 to 280530

Field Description

Bits
Field
Name

Description
Default
Value

0 pushRspanTag Push an RSPAN tag to all packets on this port. 0x0
1 popRspanTag Pop an RSPAN tag from all packets on this port. 0x0
17:2 rspanTagEthType The EtherType used when pushing an RSPAN tag. 0x0
29:18 rspanTagVid The VID used when pushing an RSPAN tag. 0x0
30 rspanTagCfiDei The DEI used when pushing an RSPAN tag. 0x0
33:31 rspanTagPcp The PCP used when pushing an RSPAN tag. 0x0

221 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.7.11 Egress VLAN Translation Large Table

The outermost VID and VID Ethernet Type (Service tag or Customer tag types) of the outgoing packet is
compared.. If multiple buckets match then the result from the highest entry is selected.

Number of Entries : 1024
Number of Addresses per Entry : 2
Type of Operation : Read/Write

Addressing :
address[8:0] : hash of { dstPort outermostVid outermostVid-

Type }
address[9:9] : bucket number

Address Space : 278055 to 280102

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

6:1 dstPort This is a field which is used as search data. The
destination port which the packet is going out on

0x0

18:7 outermostVid This is a field which is used as search data. The
outermost VID of the modified packet.

0x0

19 outermostVidType This is a field which is used as search data. The
outermost VID is a S-tag or C-Tag.
0 = Customer tag
1 = Service tag

0x0

31:20 newVid This is a result field used when this entry is hit. The
new VID for the outgoing packet.

0x0

47:32 ethType This is a result field used when this entry is hit. The
new Ethernet Type for the outgoing packet

0x0

32.7.12 Egress VLAN Translation Search Mask

Before the hashing and searching is done in the Egress VLAN Translation Large Table and Egress
VLAN Translation Small Table The search data is AND:ed with this mask. If a bit in the mask is set to
zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and
large tables.

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 280423

Field Description

Bits
Field
Name

Description
Default
Value

5:0 dstPort mask small Which bits to compare in the field dstPort
in Egress VLAN Translation Small Ta-
ble lookup. A bit set to 1 means the cor-
responding bit in the search data is com-
pared and 0 means the bit is ignored.

0x3f

222 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

11:6 dstPort mask large Which bits to compare in the field dstPort
Egress VLAN Translation Large Table
lookup. A bit set to 1 means the corre-
sponding bit in the search data is com-
pared and 0 means the bit is ignored.

0x3f

23:12 outermostVid mask small Which bits to compare in the field out-
ermostVid in Egress VLAN Translation
Small Table lookup. A bit set to 1 means
the corresponding bit in the search data is
compared and 0 means the bit is ignored.

0xfff

35:24 outermostVid mask large Which bits to compare in the field out-
ermostVid Egress VLAN Translation
Large Table lookup. A bit set to 1 means
the corresponding bit in the search data is
compared and 0 means the bit is ignored.

0xfff

36 outermostVidType mask small Which bits to compare in the field outer-
mostVidType in Egress VLAN Transla-
tion Small Table lookup. A bit set to 1
means the corresponding bit in the search
data is compared and 0 means the bit is
ignored.

0x1

37 outermostVidType mask large Which bits to compare in the field out-
ermostVidType Egress VLAN Transla-
tion Large Table lookup. A bit set to 1
means the corresponding bit in the search
data is compared and 0 means the bit is
ignored.

0x1

32.7.13 Egress VLAN Translation Selection

This register selects which result to use when there are multiple hits.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 280421

Field Description

Bits
Field
Name

Description
Default
Value

0 selectTcamOrTable If set to zero then TCAM answer is selected. If set
to one then hash table answer is selected.

0x0

1 selectSmallOrLarge If set to zero then small hash table is selected. If
set to one then large hash table is selected.

0x0

32.7.14 Egress VLAN Translation Small Table

The outermost VID and VID Ethernet Type (Service tag or Customer tag types) of the outgoing packet is
compared.. If multiple buckets match then the result from the highest entry is selected.

223 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 128
Number of Addresses per Entry : 2
Type of Operation : Read/Write

Addressing :
address[5:0] : hash of { dstPort outermostVid outermostVid-

Type }
address[6:6] : bucket number

Address Space : 280103 to 280358

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

6:1 dstPort This is a field which is used as search data. The
destination port which the packet is going out on

0x0

18:7 outermostVid This is a field which is used as search data. The
outermost VID of the modified packet.

0x0

19 outermostVidType This is a field which is used as search data. The
outermost VID is a S-tag or C-Tag.
0 = Customer tag
1 = Service tag

0x0

31:20 newVid This is a result field used when this entry is hit. The
new VID for the outgoing packet.

0x0

47:32 ethType This is a result field used when this entry is hit. The
new Ethernet Type for the outgoing packet

0x0

32.7.15 Egress VLAN Translation TCAM

The outermost VID and VID Ethernet Type (Service tag or Customer tag types) of the outgoing packet is
compared.

Number of Entries : 8
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 280531 to 280546

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes

0x0

6:1 dstPort mask Mask for dstPort. 0x3f
12:7 dstPort The destination port which the packet is going

out on
0x0

24:13 outermostVid mask Mask for outermostVid. 0xfff
36:25 outermostVid The outermost VID of the modified packet. 0x0
37 outermostVidType mask Mask for outermostVidType. 0x1

224 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

38 outermostVidType The outermost VID is a S-tag or C-Tag.
0 = Customer tag
1 = Service tag

0x0

32.7.16 Egress VLAN Translation TCAM Answer

This is the table holding the answer for the Egress VLAN Translation TCAM.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : Egress VLAN Translation TCAM hit index
Address Space : 280359 to 280366

Field Description

Bits
Field
Name

Description
Default
Value

11:0 newVid The new VID for the outgoing packet. 0x0
27:12 ethType The new Ethernet Type for the outgoing packet 0x0

32.7.17 Output Mirroring Table

Output mirroring configuration. An egress port can be set to have a mirrored port, but output mirroring
cannot link more than one port. i.e. If Port A has an output mirroring Port B, Port B has an output
mirroring Port C, packets sent to port A will not be mirrored to Port C.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 280367 to 280419

Field Description

Bits
Field
Name

Description
Default
Value

0 outputMirrorEnabled If set to one, output mirroring is enabled for this
port.

0x0

6:1 outputMirrorPort Destination of output mirroring. Only valid if out-
putMirrorEnabled is set. Notice if the design con-
tains more than one switch slice, packets egressed
on one slice cannot be mirrored to another slice.

0x0

7 omUnderVlanMembership If set, output mirroring to a destination that not a
member of the VLAN will be ignored.

0x0

32.8 Flow Control

32.8.1 FFA Used

Total number of cells used from the common pool.

225 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 1
Type of Operation : Read Only
Address Space : 272223

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Number of cells 0x0

32.8.2 Port Pause Settings

Pause settings per source port.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Source port
Address Space : 272224 to 272276

Field Description

Bits
Field
Name

Description
Default
Value

0 enable
0 = Pausing disabled
1 = Pausing enabled

0x0

1 force Force pause to the value in pause pattern
0 = No force
1 = Force
Only valid if pausing is enabled.

0x0

2 pattern The value forced when pause force is set
0 = Not paused
1 = Paused

0x0

32.8.3 Port Reserved

Number of cells reserved in the buffer memory for this source port. Shall be set to zero for prio-mode ports
Note that this setting can only be changed for an empty port.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Source port
Address Space : 272117 to 272169

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Number of cells 0xb

226 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.8.4 Port Tail-Drop FFA Threshold

Settings for the Port Tail-Drop FFA Threshold

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Source port
Address Space : 272439 to 272491

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Tail-drop threshold in number of cells. When the FFA cells
used by the source port reaches this threshold no further
packets will be accepted for this source port

0x349a

14 enable
0 = This tail-drop threshold is disabled
1 = This tail-drop threshold is enabled

0x0

15 trip
0 = Normal operation
1 = Force this threshold to be counted as exceeded
Only valid if this tail-drop threshold is enabled.

0x0

32.8.5 Port Tail-Drop Settings

Tail-drop settings per source port.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Source port
Address Space : 272277 to 272329

Field Description

Bits
Field
Name

Description
Default
Value

0 enable
0 = Tail-drop is disabled for this source port
1 = Tail-drop is enabled for this source port

0x0

32.8.6 Port Used

Total number of cells used for this source port

Number of Entries : 53
Type of Operation : Read Only
Addressing : Source port
Address Space : 272170 to 272222

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Number of cells 0x0

227 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.8.7 Port Xoff FFA Threshold

Settings for Port Xoff FFA Threshold

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Source port
Address Space : 272386 to 272438

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Xoff threshold for the number of used FFA cells for this source
port

0x0

14 enable
0 = This Xoff threshold is disabled
1 = This Xoff threshold is enabled

0x0

15 trip
0 = Normal operation
1 = Force this threshold to be counted as exceeded
Only valid if this Xoff threshold is enabled.

0x0

32.8.8 Port Xon FFA Threshold

Settings for Port Xon FFA Threshold

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Source port
Address Space : 272333 to 272385

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Xon threshold for the number of used FFA cells for this source
port

0x0

32.8.9 Tail-Drop FFA Threshold

Settings for Tail-Drop FFA Threshold

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 272332

Field Description

228 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

13:0 cells Tail-drop threshold in number of cells. When the total
number of FFA cells used reaches this threshold no further
packets will be accepted.

0x3248

14 enable
0 = This tail-drop threshold is disabled
1 = This tail-drop threshold is enabled

0x0

15 trip
0 = Normal operation
1 = Force this threshold to be counted as exceeded
Only valid if this tail-drop threshold is enabled.

0x0

32.8.10 Xoff FFA Threshold

Settings for Xoff FFA Threshold

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 272331

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Xoff threshold for the total number of used FFA cells 0x0
14 enable

0 = This Xoff threshold is disabled
1 = This Xoff threshold is enabled

0x0

15 trip
0 = Normal operation
1 = Force this threshold to be counted as exceeded
Only valid if this Xoff threshold is enabled.

0x0

32.8.11 Xon FFA Threshold

Settings for Xon FFA Threshold

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 272330

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Xon threshold for the total number of used FFA cells 0x0

32.9 Global Configuration

32.9.1 CPU Port

Select which port is the CPU port.

229 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 4

Field Description

Bits
Field
Name

Description
Default
Value

5:0 port Port number 0x34

32.9.2 Core Tick Configuration

Global register for setting the frequency of the core tick

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 2

Field Description

Bits
Field
Name

Description
Default
Value

19:0 clkDivider The master Core Tick will be issued once every
rg tick div.clkDivider/4 core clock cycles. If set to
zero, there will be no tick.

0x271

23:20 stepDivider The five ticks derived from the mas-
ter core tick are issued once every
rg tick div.stepDividertick number+1 master ticks.
The master tick is tick number 0. If stepDivider is
set to zero, there will be no ticks except possibly the
master tick.

0xa

32.9.3 Core Tick Select

Global register for setting clock input to the core tick divider

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 3

Field Description

Bits
Field
Name

Description
Default
Value

1:0 clkSelect Select the source clock for the Core Tick divider. 0: dis-
abled, 1: core clock, 2: debug write data[0], 3: reserved

0x1

230 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.9.4 MAC RX Maximum Packet Length

Packets with length above this value will be dropped.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Ingress Port
Address Space : 48 to 100

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x2580

32.9.5 Scratch

Scratch Register

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 5

Field Description

Bits
Field
Name

Description
Default
Value

63:0 scratch scratch field. 0x0

32.10 Ingress Packet Processing

32.10.1 AH Header Packet Decoder Options

The L4 protocol number which is used to determine if the packet has a Authentical Header, the underlaying
packet must be a IPv4 or IPv6 packet.. If both the send to cpu option and drop packet option is selected
on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267343

Field Description

231 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

8:1 l4Proto The value to be used to find this packet type. 0x33
61:9 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

114:62 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.2 ARP Packet Decoder Options

The Ethernet type used to determine if a packet is a ARP packet.. If both the send to cpu option and
drop packet option is selected on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267323

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

16:1 eth The value to be used to find this packet type. 0x806
69:17 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

122:70 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.3 Allow Special Frame Check For L2 Action Table

The result in L2 Action Table is a pointer field allowPtr which allows result from the L2 SA Action Table
to setup rules of which types of packets/frames are allowed to be sent in on a port. If any of there is
a match and packet is not allowed then all instances are dropped of this packet. The drop counter L2
Action Table Special Packet Type Drop is updated.

Number of Entries : 4
Type of Operation : Read/Write
Addressing : Result from L2 Action Table
Address Space : 266504 to 266507

232 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 dontAllowBPDU Allow BPDU frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

1 dontAllow8021X EAPOL Allow 802.1X EAPOL frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

2 dontAllowCAPWAP Allow CAPWAP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

3 dontAllowARP Allow ARP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

4 dontAllowRARP Allow RARP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

5 dontAllowDNS Allow DNS frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

6 dontAllowBOOTP DHCP Allow BOOTP DHCP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

7 dontAllowSCTP Allow STCP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

8 dontAllowLLDP Allow LLDP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

9 dontAllowGRE Allow GRE frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

10 dontAllowESP Allow ESP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

11 dontAllowAH Allow AH frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

12 dontAllowL2 1588 Allow L2 1588 frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

13 dontAllowL4 1588 Allow L4 1588 frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

14 dontAllowICMP Allow ICMP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

15 dontAllowIGMP Allow IGMP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

16 dontAllowL2McReserved Allow L2 Reserved Da frames, see register L2 Re-
served Multicast Address Base.
0 = Allow frame.
1 = Do not allow frame.

0x0

233 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

17 dontAllowIPV4 Allow IPV4 frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

18 dontAllowIPV6 Allow IPV6 frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

19 dontAllowUDP Allow UDP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

20 dontAllowTCP Allow TCP frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

21 dontAllowMPLS Allow MPLS frames.
0 = Allow frame.
1 = Do not allow frame.

0x0

32.10.4 BOOTP and DHCP Packet Decoder Options

The UDP port 1 number used by the BOOTP protocol, the underlaying packet must be a IPv4 packet. If
L4 Source Port is this value then L4 Destination Port must be egisterbootpUdpPort2 value and vice versa.
. If both the send to cpu option and drop packet option is selected on same source port then the packet
will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Address Space : 268163

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

16:1 udp1 The value to be used to find this packet type. 0x43
32:17 udp2 The value to be used to find this packet type. 0x44
85:33 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

138:86 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.5 CAPWAP Packet Decoder Options

The fields needs to determine if a packet is a CAPWAP packet the underlaying packet must be a IPv4 or
IPv6 packet. . If both the send to cpu option and drop packet option is selected on same source port then
the packet will be dropped.

234 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 1
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Address Space : 268171

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

16:1 udp1 The value to be used to find this packet type. 0x147e
32:17 udp2 The value to be used to find this packet type. 0x147f
85:33 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

138:86 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.6 Check IPv4 Header Checksum

This register provides an option to drop the IPv4 packet if its header checksum field has an incorrect
value.The option is only for not routed IPv4 packet. For a routed IPv4 packet, the checksum check is
always performed.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266390

Field Description

Bits
Field
Name

Description
Default
Value

0 dropErrorChkSum If set, always calculate the checksum of the received
IPv4 packet. If the calculated value does not match
the IPv4 checksum field, the packet is dropped.

0x0

32.10.7 DNS Packet Decoder Options

The TCP/UDP destination port number used to determine if a packet is a DNS packet, the underlaying
packet must be a IPv4 or IPv6 packet.. If both the send to cpu option and drop packet option is selected
on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267351

235 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

16:1 l4Port The value to be used to find this packet type. 0x35
69:17 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

122:70 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.8 Debug dstPortmask

Packet processing pipeline status for dstPortmask.

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 267367

Field Description

Bits
Field
Name

Description
Default
Value

52:0 value Status from last processed packet. 0x0

32.10.9 Debug srcPort

Packet processing pipeline status for srcPort.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266397

Field Description

Bits
Field
Name

Description
Default
Value

31:0 value Status from last processed packet. 0x0

236 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.10 ESP Header Packet Decoder Options

The L4 protocol number which is used to determine if the packet has a Authentical Header, the underlaying
packet must be a IPv4 or IPv6 packet.. If both the send to cpu option and drop packet option is selected
on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267347

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

8:1 l4Proto The value to be used to find this packet type. 0x32
61:9 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

114:62 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.11 Egress Spanning Tree State

Spanning tree state for each egress port. The state Disabled implies that spanning tree protocol is not
enabled and hence frames will be forwarded on this egress port.

Number of Entries : 1
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Address Space : 268179

Field Description

Bits
Field
Name

Description
Default
Value

158:0 sptState State of the spanning tree protocol. Bit[2:0] is port #0,
bit[5:3] is port #1 etc.
0 = Disabled
1 = Blocking
2 = Listening
3 = Learning
4 = Forwarding.

0x0

32.10.12 Enable Enqueue To Ports And Queues

This register is used to control if a particular port and queue shall be able to enqueue new packets. One
queue mask exists for each port, setting a bit in the queue mask means packet is allowed to be queued on

237 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

the respective queue. Packets that are directed to a queue that is turned off will be dropped and counted
in Queue Off Drop.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port
Address Space : 266398 to 266450

Field Description

Bits
Field
Name

Description
Default
Value

7:0 q on If a bit is set, the corresponding queue is on. 0xff

32.10.13 Expired TTL to CPU

This register provides an option to forward IPv4/IPv6 packets to the CPU port when they hit the ACL
action to decrease the value of the TTL field and cause the decreased TTL equals 0. Without enabling
this register, the corresponding packets will be dropped.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266389

Field Description

Bits
Field
Name

Description
Default
Value

0 enable If set, IP Packet with TTL less than 2 and hit the ACL action
to decrease its TTL will be sent to the CPU port instead of
dropped.

0x0

32.10.14 Flooding Action Send to Port

If a packet is flooded and this function is enabled on the source port then the packet is send to a single
egress port instead of being flooded to all ports part of the packets VLAN membership.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Source Port
Address Space : 266451 to 266503

Field Description

Bits
Field
Name

Description
Default
Value

0 enable Enable sent to port instead of flooding.
0 = Disable
1 = Enable

0x0

238 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

6:1 destPort Once enabled this is the destination port to sent the packet
to in case of flooding.

0x0

32.10.15 Force Non VLAN Packet To Specific Color

If a packet is non-VLAN tagged, there is an option to force these packets to a certain initial color.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266393

Field Description

Bits
Field
Name

Description
Default
Value

0 forceColor When set, packets which are non-VLAN tagged are forced
to a color.

0x0

2:1 color Initial color of the packet 0x0

32.10.16 Force Non VLAN Packet To Specific Queue

If a packet is non-VLAN tagged, there is an option to force these packets to a certain ingress/egress
queue.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266391

Field Description

Bits
Field
Name

Description
Default
Value

0 forceQueue If set, the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

3:1 eQueue The egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

32.10.17 Force Unknown L3 Packet To Specific Color

If a packet does not contain IPv4, IPv6, MPLS or PPPoE carrying IPv4/IPv6 field there is an option to
force the packet to a certain initial color.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266394

Field Description

239 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

0 forceColor When set, unknown L3 packet types are forced to a color. 0x0
2:1 color Initial color of the packet 0x0

32.10.18 Force Unknown L3 Packet To Specific Egress Queue

If a packet does not contain IPv4, IPv6, MPLS or PPPoE carrying IPv4/IPv6 field there is an option to
force the packet to a certain egress queue.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266392

Field Description

Bits
Field
Name

Description
Default
Value

0 forceQueue If set, the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

3:1 eQueue The egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

32.10.19 Forward From CPU

Indicates if all frames received on the CPU port shall be forwarded while ignoring the egress port’s spanning
tree status.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266395

Field Description

Bits
Field
Name

Description
Default
Value

0 enable If set, any frame received on the CPU port is forwarded without
consideration of the egress port’s spanning tree state.

0x0

32.10.20 GRE Packet Decoder Options

The L4 protocol number which is used to detemine if the packet has a GRE header. If both the send to
cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Address Space : 268147

240 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

8:1 l4Proto The value to be used to find this packet type. 0x2f
24:9 udp1 The value to be used to find this packet type. 0x1292
40:25 udp2 The value to be used to find this packet type. 0x1293
93:41 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

146:94 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.21 Hairpin Enable

Decide if the L2 switching allows a packet to be switched back on the same port it entered the switch.
There are separate controls for flooding due to unknown MAC DA, multicast and unicast.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Ingress port
Address Space : 266508 to 266560

Field Description

Bits
Field
Name

Description
Default
Value

0 allowFlood Allow flooding to source port. 0x0
1 allowMc Allow multicast to source port. 0x0
2 allowUc Allow unicast to source port. 0x1

32.10.22 Hardware Learning Configuration

Configure default status for a newly learned entry, learning limits and learning exceptions.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Ingress Port
Address Space : 957 to 1009

Field Description

Bits
Field
Name

Description
Default
Value

0 valid For a new packet which is to be learned what value
shall the valid bit have?

0x1

241 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

1 stat For a new packet which is to be learned what value
shall the static bit have?

0x0

2 hit For a new packet which is to be learned what value
shall the hit bit have?

0x1

18:3 learnLimit Maximum number of entries can be learned on this
port. 0 means no limit.

0x0

19 portMoveException When the hardware learning unit is turned on and
the ingress packet processing determines to bypass
the hardware learning check, set this field to one
to still perform the port move action.

0x0

20 saHitException When the hardware learning unit is turned on and
the ingress packet processing determines to bypass
the hardware learning check, set this field to one
to still perform the SA hit update action.

0x0

32.10.23 Hardware Learning Counter

Number of MAC addresses learned by the hardware learning unit. Write 0 to clear.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Ingress Port
Address Space : 1076 to 1128

Field Description

Bits
Field
Name

Description
Default
Value

15:0 cnt Number of learned L2 entries. 0x0

32.10.24 ICMP Length Check

Length check for IP packets carrying ICMP protocol data. IP payload length larger than the maximum
size defined in this register can cause the packet get dropped.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266384

Field Description

Bits
Field
Name

Description
Default
Value

0 dropMaxICMPv4 If set, the IPv4 packet carrying ICMPv4 data size
larger than the defined maximum length will be
dropped

0x0

14:1 maxICMPv4Bytes Maximum size of ICMPv4 0x200

242 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

15 dropMaxICMPv6 If set, the IPv6 packet carrying ICMPv6 data size
larager than the defined maximum length will be
dropped

0x0

29:16 maxICMPv6Bytes Maximum size of ICMPv6 0x200

32.10.25 IEEE 1588 L2 Packet Decoder Options

The Ethernet type used to determine if a packet is a IEEE 1588 L2 Packet. If both the send to cpu option
and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267331

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

16:1 eth The value to be used to find this packet type. 0x88f7
69:17 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

122:70 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

123 ptp If a packet is sent to the CPU and this bit is set and the
packet has a timestamp then it will show having a valid
timestamp in the CPU-header.

0x0

32.10.26 IEEE 1588 L4 Packet Decoder Options

IEEE 1588 L4 packet is determined by this register. Fields from L2/L3/L4 are required for the comparison,
including two optional DA MAC, five optional IPv4 DA, two optional IPv6 DA with the first one maskable,
and two optional UDP destination ports. If both the send to cpu option and drop packet option is selected
on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 32
Type of Operation : Read/Write
Address Space : 268347

Field Description

243 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

48:1 da mac1 DA MAC to match. 0x11b19000000
96:49 da mac2 DA MAC to match. 0x180c200000e
128:97 da ipv4 addr1 IPv4 DA to match. 0xe0000181
160:129 da ipv4 addr2 IPv4 DA to match. 0xe0000182
192:161 da ipv4 addr3 IPv4 DA to match. 0xe0000183
224:193 da ipv4 addr4 IPv4 DA to match. 0xe0000184
256:225 da ipv4 addr5 IPv4 DA to match. 0xe000016b
384:257 da ipv6 addr1 IPv6 DA to match. This address is maskable. 0x1810000000000000000000000000ff0
512:385 da ipv6 mask1 Bit mask for da ipv6 addr1. For each bit of the

mask, 1 means valid for comparison.
0xfff0ffffffffffffffffffffffffffff

640:513 da ipv6 addr2 IPv6 DA to match. 0x6b000000000000000000000000ff02
656:641 udp1 UDP destination to match. 0x13f
672:657 udp2 UDP destination to match. 0x140
725:673 drop If a packet comes in on this source port then

drop the packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop

counter.

0x0

778:726 toCpu If a packet comes in on this source port then
send the packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of

packet.
1 = Send to CPU , bypass normal packet pro-

cessing.

0x0

779 ptp If a packet is sent to the CPU and this bit is set
and the packet has a timestamp then it will show
having a valid timestamp in the CPU-header.

0x0

32.10.27 IEEE 802.1X and EAPOL Packet Decoder Options

The Ethernet type used to determine if a packet is a 802.1X or EAPOL packet. If both the send to cpu
option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267335

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

16:1 eth The value to be used to find this packet type. 0x888e
69:17 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

244 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

122:70 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.28 IPv4 TOS Field To Egress Queue Mapping Table

Mapping table from TOS in the IPv4 header to an egress queue.

Number of Entries : 256
Type of Operation : Read/Write
Addressing : Incoming IPv4 packets TOS
Address Space : 131639 to 131894

Field Description

Bits
Field
Name

Description
Default
Value

2:0 pQueue Egress queue. 0x1

32.10.29 IPv4 TOS Field To Packet Color Mapping Table

Mapping table from TOS in the IPv4 header to a packet inital color.

Number of Entries : 256
Type of Operation : Read/Write
Addressing : Incoming IPv4 packets TOS pointer
Address Space : 132167 to 132422

Field Description

Bits
Field
Name

Description
Default
Value

1:0 color Packet initial color. 0x0

32.10.30 IPv6 Class of Service Field To Egress Queue Mapping Table

Mapping table from Class of Service in the IPv6 header to an egress queue.

Number of Entries : 256
Type of Operation : Read/Write
Addressing : Incoming IPv6 packets Class of Service
Address Space : 131895 to 132150

Field Description

245 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

2:0 pQueue Egress queue. 0x1

32.10.31 IPv6 Class of Service Field To Packet Color Mapping Table

Mapping table from Class of service in the IPv6 header to a packet inital color.

Number of Entries : 256
Type of Operation : Read/Write
Addressing : Incoming IPv6 packets Class os Service pointer
Address Space : 132423 to 132678

Field Description

Bits
Field
Name

Description
Default
Value

1:0 color Packet initial color. 0x0

32.10.32 Ingress Admission Control Current Status

Number of tokens currently in the token bucket.

Number of Entries : 128
Type of Operation : Read/Write
Addressing : Meter Pointer
Address Space : 271670 to 271797

Field Description

Bits
Field
Name

Description
Default
Value

15:0 tokens 0 Number of tokens after the last visit for token bucket 0. 0x0
31:16 tokens 1 Number of tokens after the last visit for token bucket 1. 0x0

32.10.33 Ingress Admission Control Initial Pointer

Initial ingress admission control pointer based on source port number and L2 priority. L2 priority is from
either the outermost VLAN PCP field or defaultPcp. Further processes may overwrite the initial pointer
by comparing the order of the pointer.

Number of Entries : 512
Type of Operation : Read/Write

Addressing :
address[5:0] : Ingress Port
address[8:6] : L2 Priority

Address Space : 36119 to 36630

246 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 mmpValid If set, this entry contains a valid MMP pointer 0x0
7:1 mmpPtr Initial pointer to the ingress MMP. 0x0
9:8 mmpOrder Order of the initial ingress MMP pointer. 0x0

32.10.34 Ingress Admission Control Mark All Red

Blocking status of the MMP entry due to packet drops in the MMP.

Number of Entries : 128
Type of Operation : Read/Write
Addressing : Meter Pointer
Address Space : 270902 to 271029

Field Description

Bits
Field
Name

Description
Default
Value

0 markAllRed When this field is set to 1 by the core, the correspond-
ing MMP entry is under the blocking status. As a conse-
quence, all packets with this MMP pointer will be dropped.
Clear this field to allow packets enter the MMP entry again.

0x0

32.10.35 Ingress Admission Control Mark All Red Enable

Option to block metering after MMP packet drops.

Number of Entries : 128
Type of Operation : Read/Write
Addressing : Meter Pointer
Address Space : 270774 to 270901

Field Description

Bits
Field
Name

Description
Default
Value

0 markAllRedEn After setting this field to 1, if a packet is dropped by
a MMP entry, this MMP entry will stop metering and
drop all packets with the corresponding MMP pointer.

0x0

32.10.36 Ingress Admission Control Reset

Reset token buckets so that it is back to the inital status. The reset will be kept high till new traffic arrives,
then the traffic is metered with a bucket full of tokens and the reset is deactivated. It is helpful when the
token bucket configuration is changed during runtime.

247 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 128
Type of Operation : Read/Write
Addressing : Meter Pointer
Address Space : 271542 to 271669

Field Description

Bits
Field
Name

Description
Default
Value

0 bucketReset if set, reload with full tokens for token buckets in this entry. 0x1

32.10.37 Ingress Admission Control Token Bucket Configuration

Configuration options for token buckets used by Ingress Admission Control. Each entry refers to either a
single rate three color marker (srTCM) or a two rate three color marker (trTCM) with two token buckets.
For each token bucket the rate is configured by filling in a certain number of tokens at one of the available
frequencies. Token bucket 0 shall always use the committed information rate (CIR). Runtime configuration
update requires writting 1 to the Ingress Admission Control Reset first.

Number of Entries : 128
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : Meter Pointer
Address Space : 271030 to 271541

Field Description

Bits
Field
Name

Description
Default
Value

15:0 bucketCapacity 0 Capacity for token bucket 0. 0x0
27:16 tokens 0 Number of tokens added each tick for token bucket

0.
0x0

30:28 tick 0 Select one of the 6 available ticks for token bucket
0. The tick frequencies are configured globaly in
the Core Tick Configuration register.

0x0

46:31 bucketCapacity 1 Capacity for token bucket 1. 0x0
58:47 tokens 1 Number of tokens added each tick for token bucket

1.
0x0

61:59 tick 1 Select one of the 6 available ticks for token bucket
1. The tick frequencies are configured globaly in
the Core Tick Configuration register.

0x0

62 bucketMode
0 = srTCM
1 = trTCM

0x0

63 colorBlind
0 = color-aware: The metering result is based on

the initial coloring from the ingress process
pipeline.

1 = color-blind: The metering ignores any pre-
coloring.

0x0

248 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

66:64 dropMask Drop mask for the three colors obtained from the
metering result. For each bit set to 1 the corre-
sponding color shall drop the packet. Bit 0, 1, 2
represents drop or not for green, yellow and red
respectively

0x4

80:67 maxLength Maximum allowed packet length in bytes. Packets
with bytes larger than this value will be dropped
before metering.

0x3fff

82:81 tokenMode
0 = Count in bytes and add extra bytes for me-

tering.
1 = Count in bytes and substract extra bytes for

metering.
2 = Count in packets.
3 = No tokens are counted.

0x0

90:83 byteCorrection Extra bytes per packet for IFG correction, only
valid under byte mode. Default is 4 byte FCS plus
20 byte IFG.

0x18

32.10.38 Ingress Configurable ACL 0 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.. If multiple buckets match then the result
from the highest entry is selected.

Number of Entries : 2048
Number of Addresses per Entry : 16
Type of Operation : Read/Write

Addressing :
address[8:0] : hash of {compareData }
address[10:9] : bucket number

Address Space : 38679 to 71446

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

222:1 compareData The data which shall be compared in this entry. 0x0
223 macOp This is a result field used when this entry is hit. If set

this packets MAC SA and DA can be changed.
0x0

232:224 macOpPtr This is a result field used when this entry is hit.
Pointer to egress MAC action, defined in Egress
MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

233 macPrio This is a result field used when this entry is hit. If
multiple mac operations are set and this prio bit is set
then this mac operation pointer will be selected.

0x0

234 sendToCpu This is a result field used when this entry is hit. If set,
the packet shall be sent to the CPU port.

0x0

249 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

235 decTtl This is a result field used when this entry is hit. If set
this packets L3 (IPv4,IPv6) TTL field will be decre-
mented. If the field is already zero then it will be
kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

236 dropEnable This is a result field used when this entry is hit. If set,
the packet shall be dropped and the Ingress Config-
urable ACL Drop counter is incremented.

0x0

237 sendToPort This is a result field used when this entry is hit. Send
the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

243:238 destPort This is a result field used when this entry is hit. The
port which the packet shall be sent to.

0x0

244 inputMirror This is a result field used when this entry is hit. If set,
input mirroring is enabled for this rule. In addition to
the normal processing of the packet a copy of the un-
modified input packet will be send to the destination
Input Mirror port and exit on that port. The copy will
be subject to the normal resource limitations in the
switch.

0x0

250:245 destInputMirror This is a result field used when this entry is hit. Des-
tination physical port for input mirroring.

0x0

251 imPrio This is a result field used when this entry is hit. If
multiple input mirror are set and this prio bit is set
then this input mirror will be selected.

0x0

252 noLearning This is a result field used when this entry is hit. If set
this packets MAC SA will not be learned.

0x0

253 updateCounter This is a result field used when this entry is hit. When
set the selected statistics counter will be updated.

0x0

261:254 counter This is a result field used when this entry is hit.
Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

262 updateCfiDei This is a result field used when this entry is hit. The
CFI/DEI value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

263 newCfiDeiValue This is a result field used when this entry is hit. The
value to update to.

0x0

264 updatePcp This is a result field used when this entry is hit. The
PCP value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

267:265 newPcpValue This is a result field used when this entry is hit. The
PCP value to update to.

0x0

268 updateVid This is a result field used when this entry is hit. The
VID value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

250 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

280:269 newVidValue This is a result field used when this entry is hit. The
VID value to update to.

0x0

281 updateEType This is a result field used when this entry is hit. The
VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

283:282 newEthType This is a result field used when this entry is hit. Select
which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

284 cfiDeiPrio This is a result field used when this entry is hit. If
multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

285 pcpPrio This is a result field used when this entry is hit. If
multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

286 vidPrio This is a result field used when this entry is hit. If
multiple updateVid are set and this prio bit is set then
this updateVid will be selected.

0x0

287 ethPrio This is a result field used when this entry is hit. If
multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

288 forceColor This is a result field used when this entry is hit. If set,
the packet shall have a forced color.

0x0

290:289 color This is a result field used when this entry is hit. Initial
color of the packet if the forceColor field is set.

0x0

291 forceColorPrio This is a result field used when this entry is hit. If
multiple forceColor are set and this prio bit is set then
this forceVid value will be selected.

0x0

292 mmpValid This is a result field used when this entry is hit. If set,
this entry contains a valid MMP pointer

0x0

299:293 mmpPtr This is a result field used when this entry is hit. Ingress
MMP pointer.

0x0

301:300 mmpOrder This is a result field used when this entry is hit. Ingress
MMP pointer order.

0x0

302 forceQueue This is a result field used when this entry is hit. If set,
the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

305:303 eQueue This is a result field used when this entry is hit. The
egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

306 forceQueuePrio This is a result field used when this entry is hit. If
multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

307 forceVidValid This is a result field used when this entry is hit. Over-
ride the Ingress VID, see chapter VLAN Processing.

0x0

319:308 forceVid This is a result field used when this entry is hit. The
new Ingress VID.

0x0

320 forceVidPrio This is a result field used when this entry is hit. If
multiple forceVid are set and this prio bit is set then
this forceVid value will be selected.

0x0

251 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.39 Ingress Configurable ACL 0 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 0.
Setting the valid bit and a new rule will override the default rule pointer from the source port table.

Number of Entries : 2048
Type of Operation : Read/Write

Addressing :

Address bits [2:0] Value from preLookupAclBits.
Address bits [4:3] Number of VLANs in incoming Packet.
Address bits [5:5] L2 Type Of Packet.

0 = Others - Not listed in this list.
1 = IEEE 1722/AVTP

Address bits [7:6] L3 Type Of Packet.
0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4, IPv6 or MPLS

Address bits
[10:8]

L4 Type Of Packet.
0 = Not known.
1 = Is IPv4 or IPv6 but type is not any L4 type

in this list.
2 = UDP
3 = TCP
4 = IGMP
5 = ICMP
6 = ICMPv6
7 = MLD

Address Space : 36631 to 38678

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid. If not then use default port rule. 0x0
4:1 rulePtr If the valid is entry then this rule pointer will be used. 0x0

32.10.40 Ingress Configurable ACL 0 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number
of fields. The fieldSelectBitmask has one bit for each field. The first 6 fields (bits) which are set to one
are selected. It is not allowed to set more than 6 bit in the bitmask. The fields are described in ACL
Fields

Number of Entries : 16
Type of Operation : Read/Write
Addressing : ACL rule pointer
Address Space : 266709 to 266724

Field Description

Bits
Field
Name

Description
Default
Value

18:0 fieldSelectBitmask Bitmask of which fields to select. Set a bit to one
to select this specific field, set zero to not select
field. At Maximum 6 bits should be set.

0x0

252 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.41 Ingress Configurable ACL 0 Search Mask

Before the hashing and searching is done in the Ingress Configurable ACL 0 Large Table and Ingress
Configurable ACL 0 Small Table. The search data is AND:ed with this mask. If a bit in the mask is set
to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and
large tables.

Number of Entries : 1
Number of Addresses per Entry : 16
Type of Operation : Read/Write
Address Space : 268923

Field Description

Bits
Field
Name

Description
Default
Value

221:0 mask small Which bits to compare in the Ingress Configurable ACL
0 Small Table lookup. A bit set to 1 means the corre-
sponding bit in the search data is compared and 0 means
the bit is ignored.

2222 − 1

443:222 mask large Which bits to compare in the Ingress Configurable ACL
0 Large Table lookup. A bit set to 1 means the corre-
sponding bit in the search data is compared and 0 means
the bit is ignored.

2222 − 1

32.10.42 Ingress Configurable ACL 0 Selection

This register selects which result to use when there are multiple hits.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266385

Field Description

Bits
Field
Name

Description
Default
Value

0 selectTcamOrTable If set to zero then TCAM answer is selected. If set
to one then hash table answer is selected.

0x0

1 selectSmallOrLarge If set to zero then small hash table is selected. If
set to one then large hash table is selected.

0x0

32.10.43 Ingress Configurable ACL 0 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.. If multiple buckets match then the result
from the highest entry is selected.

253 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 256
Number of Addresses per Entry : 16
Type of Operation : Read/Write

Addressing :
address[5:0] : hash of {compareData }
address[7:6] : bucket number

Address Space : 71447 to 75542

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

222:1 compareData The data which shall be compared in this entry. 0x0
223 macOp This is a result field used when this entry is hit. If set

this packets MAC SA and DA can be changed.
0x0

232:224 macOpPtr This is a result field used when this entry is hit.
Pointer to egress MAC action, defined in Egress
MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

233 macPrio This is a result field used when this entry is hit. If
multiple mac operations are set and this prio bit is set
then this mac operation pointer will be selected.

0x0

234 sendToCpu This is a result field used when this entry is hit. If set,
the packet shall be sent to the CPU port.

0x0

235 decTtl This is a result field used when this entry is hit. If set
this packets L3 (IPv4,IPv6) TTL field will be decre-
mented. If the field is already zero then it will be
kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

236 dropEnable This is a result field used when this entry is hit. If set,
the packet shall be dropped and the Ingress Config-
urable ACL Drop counter is incremented.

0x0

237 sendToPort This is a result field used when this entry is hit. Send
the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

243:238 destPort This is a result field used when this entry is hit. The
port which the packet shall be sent to.

0x0

244 inputMirror This is a result field used when this entry is hit. If set,
input mirroring is enabled for this rule. In addition to
the normal processing of the packet a copy of the un-
modified input packet will be send to the destination
Input Mirror port and exit on that port. The copy will
be subject to the normal resource limitations in the
switch.

0x0

250:245 destInputMirror This is a result field used when this entry is hit. Des-
tination physical port for input mirroring.

0x0

251 imPrio This is a result field used when this entry is hit. If
multiple input mirror are set and this prio bit is set
then this input mirror will be selected.

0x0

252 noLearning This is a result field used when this entry is hit. If set
this packets MAC SA will not be learned.

0x0

254 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

253 updateCounter This is a result field used when this entry is hit. When
set the selected statistics counter will be updated.

0x0

261:254 counter This is a result field used when this entry is hit.
Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

262 updateCfiDei This is a result field used when this entry is hit. The
CFI/DEI value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

263 newCfiDeiValue This is a result field used when this entry is hit. The
value to update to.

0x0

264 updatePcp This is a result field used when this entry is hit. The
PCP value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

267:265 newPcpValue This is a result field used when this entry is hit. The
PCP value to update to.

0x0

268 updateVid This is a result field used when this entry is hit. The
VID value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

280:269 newVidValue This is a result field used when this entry is hit. The
VID value to update to.

0x0

281 updateEType This is a result field used when this entry is hit. The
VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

283:282 newEthType This is a result field used when this entry is hit. Select
which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

284 cfiDeiPrio This is a result field used when this entry is hit. If
multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

285 pcpPrio This is a result field used when this entry is hit. If
multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

286 vidPrio This is a result field used when this entry is hit. If
multiple updateVid are set and this prio bit is set then
this updateVid will be selected.

0x0

287 ethPrio This is a result field used when this entry is hit. If
multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

288 forceColor This is a result field used when this entry is hit. If set,
the packet shall have a forced color.

0x0

290:289 color This is a result field used when this entry is hit. Initial
color of the packet if the forceColor field is set.

0x0

255 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

291 forceColorPrio This is a result field used when this entry is hit. If
multiple forceColor are set and this prio bit is set then
this forceVid value will be selected.

0x0

292 mmpValid This is a result field used when this entry is hit. If set,
this entry contains a valid MMP pointer

0x0

299:293 mmpPtr This is a result field used when this entry is hit. Ingress
MMP pointer.

0x0

301:300 mmpOrder This is a result field used when this entry is hit. Ingress
MMP pointer order.

0x0

302 forceQueue This is a result field used when this entry is hit. If set,
the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

305:303 eQueue This is a result field used when this entry is hit. The
egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

306 forceQueuePrio This is a result field used when this entry is hit. If
multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

307 forceVidValid This is a result field used when this entry is hit. Over-
ride the Ingress VID, see chapter VLAN Processing.

0x0

319:308 forceVid This is a result field used when this entry is hit. The
new Ingress VID.

0x0

320 forceVidPrio This is a result field used when this entry is hit. If
multiple forceVid are set and this prio bit is set then
this forceVid value will be selected.

0x0

32.10.44 Ingress Configurable ACL 0 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.

Number of Entries : 32
Number of Addresses per Entry : 16
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 269483 to 269994

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes

0x0

222:1 mask Which bits to compare in this entry. 2222 − 1
444:223 compareData The data which shall be compared in this entry. Observe

that this compare data must be AND:ed by software before
the entry is searched. The hardware does not do the AND
between mask and compareData (In order to save area).

0x0

32.10.45 Ingress Configurable ACL 0 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 0 TCAM.

256 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 32
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : Ingress Configurable ACL 0 TCAM hit index
Address Space : 75543 to 75670

Field Description

Bits
Field
Name

Description
Default
Value

0 macOp If set this packets MAC SA and DA can be changed. 0x0
9:1 macOpPtr Pointer to egress MAC action, defined in Egress

MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

10 macPrio If multiple mac operations are set and this prio bit is
set then this mac operation pointer will be selected.

0x0

11 sendToCpu If set, the packet shall be sent to the CPU port. 0x0
12 decTtl If set this packets L3 (IPv4,IPv6) TTL field will be

decremented. If the field is already zero then it will
be kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

13 dropEnable If set, the packet shall be dropped and the Ingress
Configurable ACL Drop counter is incremented.

0x0

14 sendToPort Send the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

20:15 destPort The port which the packet shall be sent to. 0x0
21 inputMirror If set, input mirroring is enabled for this rule. In addi-

tion to the normal processing of the packet a copy of
the unmodified input packet will be send to the des-
tination Input Mirror port and exit on that port. The
copy will be subject to the normal resource limitations
in the switch.

0x0

27:22 destInputMirror Destination physical port for input mirroring. 0x0
28 imPrio If multiple input mirror are set and this prio bit is set

then this input mirror will be selected.
0x0

29 noLearning If set this packets MAC SA will not be learned. 0x0
30 updateCounter When set the selected statistics counter will be up-

dated.
0x0

38:31 counter Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

39 updateCfiDei The CFI/DEI value of the packets outermost VLAN
should be updated.
0 = Do not update the value.
1 = Update the value.

0x0

40 newCfiDeiValue The value to update to. 0x0
41 updatePcp The PCP value of the packets outermost VLAN should

be updated.
0 = Do not update the value.
1 = Update the value.

0x0

44:42 newPcpValue The PCP value to update to. 0x0

257 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

45 updateVid The VID value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

57:46 newVidValue The VID value to update to. 0x0
58 updateEType The VLANs TPID type should be updated.

0 = Do not update the TPID.
1 = Update the TPID.

0x0

60:59 newEthType Select which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

61 cfiDeiPrio If multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

62 pcpPrio If multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

63 vidPrio If multiple updateVid are set and this prio bit is set
then this updateVid will be selected.

0x0

64 ethPrio If multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

65 forceColor If set, the packet shall have a forced color. 0x0
67:66 color Initial color of the packet if the forceColor field is set. 0x0
68 forceColorPrio If multiple forceColor are set and this prio bit is set

then this forceVid value will be selected.
0x0

69 mmpValid If set, this entry contains a valid MMP pointer 0x0
76:70 mmpPtr Ingress MMP pointer. 0x0
78:77 mmpOrder Ingress MMP pointer order. 0x0
79 forceQueue If set, the packet shall have a forced egress queue.

Please see Egress Queue Selection Diagram in Figure
19.1

0x0

82:80 eQueue The egress queue to be assigned if the forceQueue
field in this entry is set to 1.

0x0

83 forceQueuePrio If multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

84 forceVidValid Override the Ingress VID, see chapter VLAN Process-
ing.

0x0

96:85 forceVid The new Ingress VID. 0x0
97 forceVidPrio If multiple forceVid are set and this prio bit is set then

this forceVid value will be selected.
0x0

32.10.46 Ingress Configurable ACL 1 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.. If multiple buckets match then the result
from the highest entry is selected.

Number of Entries : 1024
Number of Addresses per Entry : 16
Type of Operation : Read/Write

Addressing :
address[7:0] : hash of {compareData }
address[9:8] : bucket number

Address Space : 77719 to 94102

258 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

322:1 compareData The data which shall be compared in this entry. 0x0
323 macOp This is a result field used when this entry is hit. If set

this packets MAC SA and DA can be changed.
0x0

332:324 macOpPtr This is a result field used when this entry is hit.
Pointer to egress MAC action, defined in Egress
MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

333 macPrio This is a result field used when this entry is hit. If
multiple mac operations are set and this prio bit is set
then this mac operation pointer will be selected.

0x0

334 sendToCpu This is a result field used when this entry is hit. If set,
the packet shall be sent to the CPU port.

0x0

335 decTtl This is a result field used when this entry is hit. If set
this packets L3 (IPv4,IPv6) TTL field will be decre-
mented. If the field is already zero then it will be
kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

336 dropEnable This is a result field used when this entry is hit. If set,
the packet shall be dropped and the Ingress Config-
urable ACL Drop counter is incremented.

0x0

337 sendToPort This is a result field used when this entry is hit. Send
the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

343:338 destPort This is a result field used when this entry is hit. The
port which the packet shall be sent to.

0x0

344 inputMirror This is a result field used when this entry is hit. If set,
input mirroring is enabled for this rule. In addition to
the normal processing of the packet a copy of the un-
modified input packet will be send to the destination
Input Mirror port and exit on that port. The copy will
be subject to the normal resource limitations in the
switch.

0x0

350:345 destInputMirror This is a result field used when this entry is hit. Des-
tination physical port for input mirroring.

0x0

351 imPrio This is a result field used when this entry is hit. If
multiple input mirror are set and this prio bit is set
then this input mirror will be selected.

0x0

352 noLearning This is a result field used when this entry is hit. If set
this packets MAC SA will not be learned.

0x0

353 updateCounter This is a result field used when this entry is hit. When
set the selected statistics counter will be updated.

0x0

361:354 counter This is a result field used when this entry is hit.
Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

259 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

362 updateCfiDei This is a result field used when this entry is hit. The
CFI/DEI value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

363 newCfiDeiValue This is a result field used when this entry is hit. The
value to update to.

0x0

364 updatePcp This is a result field used when this entry is hit. The
PCP value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

367:365 newPcpValue This is a result field used when this entry is hit. The
PCP value to update to.

0x0

368 updateVid This is a result field used when this entry is hit. The
VID value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

380:369 newVidValue This is a result field used when this entry is hit. The
VID value to update to.

0x0

381 updateEType This is a result field used when this entry is hit. The
VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

383:382 newEthType This is a result field used when this entry is hit. Select
which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

384 cfiDeiPrio This is a result field used when this entry is hit. If
multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

385 pcpPrio This is a result field used when this entry is hit. If
multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

386 vidPrio This is a result field used when this entry is hit. If
multiple updateVid are set and this prio bit is set then
this updateVid will be selected.

0x0

387 ethPrio This is a result field used when this entry is hit. If
multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

388 forceColor This is a result field used when this entry is hit. If set,
the packet shall have a forced color.

0x0

390:389 color This is a result field used when this entry is hit. Initial
color of the packet if the forceColor field is set.

0x0

391 forceColorPrio This is a result field used when this entry is hit. If
multiple forceColor are set and this prio bit is set then
this forceVid value will be selected.

0x0

392 mmpValid This is a result field used when this entry is hit. If set,
this entry contains a valid MMP pointer

0x0

399:393 mmpPtr This is a result field used when this entry is hit. Ingress
MMP pointer.

0x0

260 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

401:400 mmpOrder This is a result field used when this entry is hit. Ingress
MMP pointer order.

0x0

402 forceQueue This is a result field used when this entry is hit. If set,
the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

405:403 eQueue This is a result field used when this entry is hit. The
egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

406 forceQueuePrio This is a result field used when this entry is hit. If
multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

407 forceVidValid This is a result field used when this entry is hit. Over-
ride the Ingress VID, see chapter VLAN Processing.

0x0

419:408 forceVid This is a result field used when this entry is hit. The
new Ingress VID.

0x0

420 forceVidPrio This is a result field used when this entry is hit. If
multiple forceVid are set and this prio bit is set then
this forceVid value will be selected.

0x0

32.10.47 Ingress Configurable ACL 1 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 1.
Setting the valid bit and a new rule will override the default rule pointer from the source port table.

Number of Entries : 2048
Type of Operation : Read/Write

Addressing :

Address bits [2:0] Value from preLookupAclBits.
Address bits [4:3] Number of VLANs in incoming Packet.
Address bits [5:5] L2 Type Of Packet.

0 = Others - Not listed in this list.
1 = IEEE 1722/AVTP

Address bits [7:6] L3 Type Of Packet.
0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4, IPv6 or MPLS

Address bits
[10:8]

L4 Type Of Packet.
0 = Not known.
1 = Is IPv4 or IPv6 but type is not any L4 type

in this list.
2 = UDP
3 = TCP
4 = IGMP
5 = ICMP
6 = ICMPv6
7 = MLD

Address Space : 75671 to 77718

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid. If not then use default port rule. 0x0
4:1 rulePtr If the valid is entry then this rule pointer will be used. 0x0

261 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.48 Ingress Configurable ACL 1 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number
of fields. The fieldSelectBitmask has one bit for each field. The first 6 fields (bits) which are set to one
are selected. It is not allowed to set more than 6 bit in the bitmask. The fields are described in ACL
Fields

Number of Entries : 16
Type of Operation : Read/Write
Addressing : ACL rule pointer
Address Space : 266693 to 266708

Field Description

Bits
Field
Name

Description
Default
Value

30:0 fieldSelectBitmask Bitmask of which fields to select. Set a bit to one
to select this specific field, set zero to not select
field. At Maximum 6 bits should be set.

0x0

32.10.49 Ingress Configurable ACL 1 Search Mask

Before the hashing and searching is done in the Ingress Configurable ACL 1 Large Table and Ingress
Configurable ACL 1 Small Table. The search data is AND:ed with this mask. If a bit in the mask is set
to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and
large tables.

Number of Entries : 1
Number of Addresses per Entry : 32
Type of Operation : Read/Write
Address Space : 268379

Field Description

Bits
Field
Name

Description
Default
Value

321:0 mask small Which bits to compare in the Ingress Configurable ACL
1 Small Table lookup. A bit set to 1 means the corre-
sponding bit in the search data is compared and 0 means
the bit is ignored.

2322 − 1

643:322 mask large Which bits to compare in the Ingress Configurable ACL
1 Large Table lookup. A bit set to 1 means the corre-
sponding bit in the search data is compared and 0 means
the bit is ignored.

2322 − 1

32.10.50 Ingress Configurable ACL 1 Selection

This register selects which result to use when there are multiple hits.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266386

262 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 selectTcamOrTable If set to zero then TCAM answer is selected. If set
to one then hash table answer is selected.

0x0

1 selectSmallOrLarge If set to zero then small hash table is selected. If
set to one then large hash table is selected.

0x0

32.10.51 Ingress Configurable ACL 1 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.. If multiple buckets match then the result
from the highest entry is selected.

Number of Entries : 128
Number of Addresses per Entry : 16
Type of Operation : Read/Write

Addressing :
address[4:0] : hash of {compareData }
address[6:5] : bucket number

Address Space : 94103 to 96150

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

322:1 compareData The data which shall be compared in this entry. 0x0
323 macOp This is a result field used when this entry is hit. If set

this packets MAC SA and DA can be changed.
0x0

332:324 macOpPtr This is a result field used when this entry is hit.
Pointer to egress MAC action, defined in Egress
MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

333 macPrio This is a result field used when this entry is hit. If
multiple mac operations are set and this prio bit is set
then this mac operation pointer will be selected.

0x0

334 sendToCpu This is a result field used when this entry is hit. If set,
the packet shall be sent to the CPU port.

0x0

335 decTtl This is a result field used when this entry is hit. If set
this packets L3 (IPv4,IPv6) TTL field will be decre-
mented. If the field is already zero then it will be
kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

336 dropEnable This is a result field used when this entry is hit. If set,
the packet shall be dropped and the Ingress Config-
urable ACL Drop counter is incremented.

0x0

263 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

337 sendToPort This is a result field used when this entry is hit. Send
the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

343:338 destPort This is a result field used when this entry is hit. The
port which the packet shall be sent to.

0x0

344 inputMirror This is a result field used when this entry is hit. If set,
input mirroring is enabled for this rule. In addition to
the normal processing of the packet a copy of the un-
modified input packet will be send to the destination
Input Mirror port and exit on that port. The copy will
be subject to the normal resource limitations in the
switch.

0x0

350:345 destInputMirror This is a result field used when this entry is hit. Des-
tination physical port for input mirroring.

0x0

351 imPrio This is a result field used when this entry is hit. If
multiple input mirror are set and this prio bit is set
then this input mirror will be selected.

0x0

352 noLearning This is a result field used when this entry is hit. If set
this packets MAC SA will not be learned.

0x0

353 updateCounter This is a result field used when this entry is hit. When
set the selected statistics counter will be updated.

0x0

361:354 counter This is a result field used when this entry is hit.
Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

362 updateCfiDei This is a result field used when this entry is hit. The
CFI/DEI value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

363 newCfiDeiValue This is a result field used when this entry is hit. The
value to update to.

0x0

364 updatePcp This is a result field used when this entry is hit. The
PCP value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

367:365 newPcpValue This is a result field used when this entry is hit. The
PCP value to update to.

0x0

368 updateVid This is a result field used when this entry is hit. The
VID value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

380:369 newVidValue This is a result field used when this entry is hit. The
VID value to update to.

0x0

381 updateEType This is a result field used when this entry is hit. The
VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

264 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

383:382 newEthType This is a result field used when this entry is hit. Select
which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

384 cfiDeiPrio This is a result field used when this entry is hit. If
multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

385 pcpPrio This is a result field used when this entry is hit. If
multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

386 vidPrio This is a result field used when this entry is hit. If
multiple updateVid are set and this prio bit is set then
this updateVid will be selected.

0x0

387 ethPrio This is a result field used when this entry is hit. If
multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

388 forceColor This is a result field used when this entry is hit. If set,
the packet shall have a forced color.

0x0

390:389 color This is a result field used when this entry is hit. Initial
color of the packet if the forceColor field is set.

0x0

391 forceColorPrio This is a result field used when this entry is hit. If
multiple forceColor are set and this prio bit is set then
this forceVid value will be selected.

0x0

392 mmpValid This is a result field used when this entry is hit. If set,
this entry contains a valid MMP pointer

0x0

399:393 mmpPtr This is a result field used when this entry is hit. Ingress
MMP pointer.

0x0

401:400 mmpOrder This is a result field used when this entry is hit. Ingress
MMP pointer order.

0x0

402 forceQueue This is a result field used when this entry is hit. If set,
the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

405:403 eQueue This is a result field used when this entry is hit. The
egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

406 forceQueuePrio This is a result field used when this entry is hit. If
multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

407 forceVidValid This is a result field used when this entry is hit. Over-
ride the Ingress VID, see chapter VLAN Processing.

0x0

419:408 forceVid This is a result field used when this entry is hit. The
new Ingress VID.

0x0

420 forceVidPrio This is a result field used when this entry is hit. If
multiple forceVid are set and this prio bit is set then
this forceVid value will be selected.

0x0

32.10.52 Ingress Configurable ACL 1 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.

265 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 16
Number of Addresses per Entry : 32
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 268411 to 268922

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes

0x0

322:1 mask Which bits to compare in this entry. 2322 − 1
644:323 compareData The data which shall be compared in this entry. Observe

that this compare data must be AND:ed by software before
the entry is searched. The hardware does not do the AND
between mask and compareData (In order to save area).

0x0

32.10.53 Ingress Configurable ACL 1 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 1 TCAM.

Number of Entries : 16
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : Ingress Configurable ACL 1 TCAM hit index
Address Space : 96151 to 96214

Field Description

Bits
Field
Name

Description
Default
Value

0 macOp If set this packets MAC SA and DA can be changed. 0x0
9:1 macOpPtr Pointer to egress MAC action, defined in Egress

MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

10 macPrio If multiple mac operations are set and this prio bit is
set then this mac operation pointer will be selected.

0x0

11 sendToCpu If set, the packet shall be sent to the CPU port. 0x0
12 decTtl If set this packets L3 (IPv4,IPv6) TTL field will be

decremented. If the field is already zero then it will
be kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

13 dropEnable If set, the packet shall be dropped and the Ingress
Configurable ACL Drop counter is incremented.

0x0

14 sendToPort Send the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

20:15 destPort The port which the packet shall be sent to. 0x0

266 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

21 inputMirror If set, input mirroring is enabled for this rule. In addi-
tion to the normal processing of the packet a copy of
the unmodified input packet will be send to the des-
tination Input Mirror port and exit on that port. The
copy will be subject to the normal resource limitations
in the switch.

0x0

27:22 destInputMirror Destination physical port for input mirroring. 0x0
28 imPrio If multiple input mirror are set and this prio bit is set

then this input mirror will be selected.
0x0

29 noLearning If set this packets MAC SA will not be learned. 0x0
30 updateCounter When set the selected statistics counter will be up-

dated.
0x0

38:31 counter Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

39 updateCfiDei The CFI/DEI value of the packets outermost VLAN
should be updated.
0 = Do not update the value.
1 = Update the value.

0x0

40 newCfiDeiValue The value to update to. 0x0
41 updatePcp The PCP value of the packets outermost VLAN should

be updated.
0 = Do not update the value.
1 = Update the value.

0x0

44:42 newPcpValue The PCP value to update to. 0x0
45 updateVid The VID value of the packets outermost VLAN should

be updated.
0 = Do not update the value.
1 = Update the value.

0x0

57:46 newVidValue The VID value to update to. 0x0
58 updateEType The VLANs TPID type should be updated.

0 = Do not update the TPID.
1 = Update the TPID.

0x0

60:59 newEthType Select which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

61 cfiDeiPrio If multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

62 pcpPrio If multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

63 vidPrio If multiple updateVid are set and this prio bit is set
then this updateVid will be selected.

0x0

64 ethPrio If multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

65 forceColor If set, the packet shall have a forced color. 0x0
67:66 color Initial color of the packet if the forceColor field is set. 0x0
68 forceColorPrio If multiple forceColor are set and this prio bit is set

then this forceVid value will be selected.
0x0

69 mmpValid If set, this entry contains a valid MMP pointer 0x0
76:70 mmpPtr Ingress MMP pointer. 0x0
78:77 mmpOrder Ingress MMP pointer order. 0x0

267 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

79 forceQueue If set, the packet shall have a forced egress queue.
Please see Egress Queue Selection Diagram in Figure
19.1

0x0

82:80 eQueue The egress queue to be assigned if the forceQueue
field in this entry is set to 1.

0x0

83 forceQueuePrio If multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

84 forceVidValid Override the Ingress VID, see chapter VLAN Process-
ing.

0x0

96:85 forceVid The new Ingress VID. 0x0
97 forceVidPrio If multiple forceVid are set and this prio bit is set then

this forceVid value will be selected.
0x0

32.10.54 Ingress Configurable ACL 2 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.. If multiple buckets match then the result
from the highest entry is selected.

Number of Entries : 512
Number of Addresses per Entry : 16
Type of Operation : Read/Write

Addressing :
address[6:0] : hash of {compareData }
address[8:7] : bucket number

Address Space : 98263 to 106454

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

222:1 compareData The data which shall be compared in this entry. 0x0
223 macOp This is a result field used when this entry is hit. If set

this packets MAC SA and DA can be changed.
0x0

232:224 macOpPtr This is a result field used when this entry is hit.
Pointer to egress MAC action, defined in Egress
MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

233 macPrio This is a result field used when this entry is hit. If
multiple mac operations are set and this prio bit is set
then this mac operation pointer will be selected.

0x0

234 sendToCpu This is a result field used when this entry is hit. If set,
the packet shall be sent to the CPU port.

0x0

235 decTtl This is a result field used when this entry is hit. If set
this packets L3 (IPv4,IPv6) TTL field will be decre-
mented. If the field is already zero then it will be
kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

268 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

236 dropEnable This is a result field used when this entry is hit. If set,
the packet shall be dropped and the Ingress Config-
urable ACL Drop counter is incremented.

0x0

237 sendToPort This is a result field used when this entry is hit. Send
the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

243:238 destPort This is a result field used when this entry is hit. The
port which the packet shall be sent to.

0x0

244 inputMirror This is a result field used when this entry is hit. If set,
input mirroring is enabled for this rule. In addition to
the normal processing of the packet a copy of the un-
modified input packet will be send to the destination
Input Mirror port and exit on that port. The copy will
be subject to the normal resource limitations in the
switch.

0x0

250:245 destInputMirror This is a result field used when this entry is hit. Des-
tination physical port for input mirroring.

0x0

251 imPrio This is a result field used when this entry is hit. If
multiple input mirror are set and this prio bit is set
then this input mirror will be selected.

0x0

252 noLearning This is a result field used when this entry is hit. If set
this packets MAC SA will not be learned.

0x0

253 updateCounter This is a result field used when this entry is hit. When
set the selected statistics counter will be updated.

0x0

261:254 counter This is a result field used when this entry is hit.
Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

262 updateCfiDei This is a result field used when this entry is hit. The
CFI/DEI value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

263 newCfiDeiValue This is a result field used when this entry is hit. The
value to update to.

0x0

264 updatePcp This is a result field used when this entry is hit. The
PCP value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

267:265 newPcpValue This is a result field used when this entry is hit. The
PCP value to update to.

0x0

268 updateVid This is a result field used when this entry is hit. The
VID value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

280:269 newVidValue This is a result field used when this entry is hit. The
VID value to update to.

0x0

281 updateEType This is a result field used when this entry is hit. The
VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

269 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

283:282 newEthType This is a result field used when this entry is hit. Select
which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

284 cfiDeiPrio This is a result field used when this entry is hit. If
multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

285 pcpPrio This is a result field used when this entry is hit. If
multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

286 vidPrio This is a result field used when this entry is hit. If
multiple updateVid are set and this prio bit is set then
this updateVid will be selected.

0x0

287 ethPrio This is a result field used when this entry is hit. If
multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

288 forceColor This is a result field used when this entry is hit. If set,
the packet shall have a forced color.

0x0

290:289 color This is a result field used when this entry is hit. Initial
color of the packet if the forceColor field is set.

0x0

291 forceColorPrio This is a result field used when this entry is hit. If
multiple forceColor are set and this prio bit is set then
this forceVid value will be selected.

0x0

292 mmpValid This is a result field used when this entry is hit. If set,
this entry contains a valid MMP pointer

0x0

299:293 mmpPtr This is a result field used when this entry is hit. Ingress
MMP pointer.

0x0

301:300 mmpOrder This is a result field used when this entry is hit. Ingress
MMP pointer order.

0x0

302 forceQueue This is a result field used when this entry is hit. If set,
the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

305:303 eQueue This is a result field used when this entry is hit. The
egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

306 forceQueuePrio This is a result field used when this entry is hit. If
multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

307 forceVidValid This is a result field used when this entry is hit. Over-
ride the Ingress VID, see chapter VLAN Processing.

0x0

319:308 forceVid This is a result field used when this entry is hit. The
new Ingress VID.

0x0

320 forceVidPrio This is a result field used when this entry is hit. If
multiple forceVid are set and this prio bit is set then
this forceVid value will be selected.

0x0

32.10.55 Ingress Configurable ACL 2 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 2.
Setting the valid bit and a new rule will override the default rule pointer from the source port table.

270 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 2048
Type of Operation : Read/Write

Addressing :

Address bits [2:0] Value from preLookupAclBits.
Address bits [4:3] Number of VLANs in incoming Packet.
Address bits [5:5] L2 Type Of Packet.

0 = Others - Not listed in this list.
1 = IEEE 1722/AVTP

Address bits [7:6] L3 Type Of Packet.
0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4, IPv6 or MPLS

Address bits
[10:8]

L4 Type Of Packet.
0 = Not known.
1 = Is IPv4 or IPv6 but type is not any L4 type

in this list.
2 = UDP
3 = TCP
4 = IGMP
5 = ICMP
6 = ICMPv6
7 = MLD

Address Space : 96215 to 98262

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid. If not then use default port rule. 0x0
4:1 rulePtr If the valid is entry then this rule pointer will be used. 0x0

32.10.56 Ingress Configurable ACL 2 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number
of fields. The fieldSelectBitmask has one bit for each field. The first 6 fields (bits) which are set to one
are selected. It is not allowed to set more than 6 bit in the bitmask. The fields are described in ACL
Fields

Number of Entries : 16
Type of Operation : Read/Write
Addressing : ACL rule pointer
Address Space : 266677 to 266692

Field Description

Bits
Field
Name

Description
Default
Value

30:0 fieldSelectBitmask Bitmask of which fields to select. Set a bit to one
to select this specific field, set zero to not select
field. At Maximum 6 bits should be set.

0x0

271 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.57 Ingress Configurable ACL 2 Search Mask

Before the hashing and searching is done in the Ingress Configurable ACL 2 Large Table and Ingress
Configurable ACL 2 Small Table. The search data is AND:ed with this mask. If a bit in the mask is set
to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and
large tables.

Number of Entries : 1
Number of Addresses per Entry : 16
Type of Operation : Read/Write
Address Space : 268939

Field Description

Bits
Field
Name

Description
Default
Value

221:0 mask small Which bits to compare in the Ingress Configurable ACL
2 Small Table lookup. A bit set to 1 means the corre-
sponding bit in the search data is compared and 0 means
the bit is ignored.

2222 − 1

443:222 mask large Which bits to compare in the Ingress Configurable ACL
2 Large Table lookup. A bit set to 1 means the corre-
sponding bit in the search data is compared and 0 means
the bit is ignored.

2222 − 1

32.10.58 Ingress Configurable ACL 2 Selection

This register selects which result to use when there are multiple hits.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266387

Field Description

Bits
Field
Name

Description
Default
Value

0 selectTcamOrTable If set to zero then TCAM answer is selected. If set
to one then hash table answer is selected.

0x0

1 selectSmallOrLarge If set to zero then small hash table is selected. If
set to one then large hash table is selected.

0x0

32.10.59 Ingress Configurable ACL 2 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.. If multiple buckets match then the result
from the highest entry is selected.

272 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 64
Number of Addresses per Entry : 16
Type of Operation : Read/Write

Addressing :
address[3:0] : hash of {compareData }
address[5:4] : bucket number

Address Space : 106455 to 107478

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

222:1 compareData The data which shall be compared in this entry. 0x0
223 macOp This is a result field used when this entry is hit. If set

this packets MAC SA and DA can be changed.
0x0

232:224 macOpPtr This is a result field used when this entry is hit.
Pointer to egress MAC action, defined in Egress
MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

233 macPrio This is a result field used when this entry is hit. If
multiple mac operations are set and this prio bit is set
then this mac operation pointer will be selected.

0x0

234 sendToCpu This is a result field used when this entry is hit. If set,
the packet shall be sent to the CPU port.

0x0

235 decTtl This is a result field used when this entry is hit. If set
this packets L3 (IPv4,IPv6) TTL field will be decre-
mented. If the field is already zero then it will be
kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

236 dropEnable This is a result field used when this entry is hit. If set,
the packet shall be dropped and the Ingress Config-
urable ACL Drop counter is incremented.

0x0

237 sendToPort This is a result field used when this entry is hit. Send
the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

243:238 destPort This is a result field used when this entry is hit. The
port which the packet shall be sent to.

0x0

244 inputMirror This is a result field used when this entry is hit. If set,
input mirroring is enabled for this rule. In addition to
the normal processing of the packet a copy of the un-
modified input packet will be send to the destination
Input Mirror port and exit on that port. The copy will
be subject to the normal resource limitations in the
switch.

0x0

250:245 destInputMirror This is a result field used when this entry is hit. Des-
tination physical port for input mirroring.

0x0

251 imPrio This is a result field used when this entry is hit. If
multiple input mirror are set and this prio bit is set
then this input mirror will be selected.

0x0

252 noLearning This is a result field used when this entry is hit. If set
this packets MAC SA will not be learned.

0x0

273 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

253 updateCounter This is a result field used when this entry is hit. When
set the selected statistics counter will be updated.

0x0

261:254 counter This is a result field used when this entry is hit.
Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

262 updateCfiDei This is a result field used when this entry is hit. The
CFI/DEI value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

263 newCfiDeiValue This is a result field used when this entry is hit. The
value to update to.

0x0

264 updatePcp This is a result field used when this entry is hit. The
PCP value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

267:265 newPcpValue This is a result field used when this entry is hit. The
PCP value to update to.

0x0

268 updateVid This is a result field used when this entry is hit. The
VID value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

280:269 newVidValue This is a result field used when this entry is hit. The
VID value to update to.

0x0

281 updateEType This is a result field used when this entry is hit. The
VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

283:282 newEthType This is a result field used when this entry is hit. Select
which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

284 cfiDeiPrio This is a result field used when this entry is hit. If
multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

285 pcpPrio This is a result field used when this entry is hit. If
multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

286 vidPrio This is a result field used when this entry is hit. If
multiple updateVid are set and this prio bit is set then
this updateVid will be selected.

0x0

287 ethPrio This is a result field used when this entry is hit. If
multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

288 forceColor This is a result field used when this entry is hit. If set,
the packet shall have a forced color.

0x0

290:289 color This is a result field used when this entry is hit. Initial
color of the packet if the forceColor field is set.

0x0

274 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

291 forceColorPrio This is a result field used when this entry is hit. If
multiple forceColor are set and this prio bit is set then
this forceVid value will be selected.

0x0

292 mmpValid This is a result field used when this entry is hit. If set,
this entry contains a valid MMP pointer

0x0

299:293 mmpPtr This is a result field used when this entry is hit. Ingress
MMP pointer.

0x0

301:300 mmpOrder This is a result field used when this entry is hit. Ingress
MMP pointer order.

0x0

302 forceQueue This is a result field used when this entry is hit. If set,
the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

305:303 eQueue This is a result field used when this entry is hit. The
egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

306 forceQueuePrio This is a result field used when this entry is hit. If
multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

307 forceVidValid This is a result field used when this entry is hit. Over-
ride the Ingress VID, see chapter VLAN Processing.

0x0

319:308 forceVid This is a result field used when this entry is hit. The
new Ingress VID.

0x0

320 forceVidPrio This is a result field used when this entry is hit. If
multiple forceVid are set and this prio bit is set then
this forceVid value will be selected.

0x0

32.10.60 Ingress Configurable ACL 2 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.

Number of Entries : 16
Number of Addresses per Entry : 16
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 269227 to 269482

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes

0x0

222:1 mask Which bits to compare in this entry. 2222 − 1
444:223 compareData The data which shall be compared in this entry. Observe

that this compare data must be AND:ed by software before
the entry is searched. The hardware does not do the AND
between mask and compareData (In order to save area).

0x0

32.10.61 Ingress Configurable ACL 2 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 2 TCAM.

275 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 16
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : Ingress Configurable ACL 2 TCAM hit index
Address Space : 107479 to 107542

Field Description

Bits
Field
Name

Description
Default
Value

0 macOp If set this packets MAC SA and DA can be changed. 0x0
9:1 macOpPtr Pointer to egress MAC action, defined in Egress

MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

10 macPrio If multiple mac operations are set and this prio bit is
set then this mac operation pointer will be selected.

0x0

11 sendToCpu If set, the packet shall be sent to the CPU port. 0x0
12 decTtl If set this packets L3 (IPv4,IPv6) TTL field will be

decremented. If the field is already zero then it will
be kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

13 dropEnable If set, the packet shall be dropped and the Ingress
Configurable ACL Drop counter is incremented.

0x0

14 sendToPort Send the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

20:15 destPort The port which the packet shall be sent to. 0x0
21 inputMirror If set, input mirroring is enabled for this rule. In addi-

tion to the normal processing of the packet a copy of
the unmodified input packet will be send to the des-
tination Input Mirror port and exit on that port. The
copy will be subject to the normal resource limitations
in the switch.

0x0

27:22 destInputMirror Destination physical port for input mirroring. 0x0
28 imPrio If multiple input mirror are set and this prio bit is set

then this input mirror will be selected.
0x0

29 noLearning If set this packets MAC SA will not be learned. 0x0
30 updateCounter When set the selected statistics counter will be up-

dated.
0x0

38:31 counter Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

39 updateCfiDei The CFI/DEI value of the packets outermost VLAN
should be updated.
0 = Do not update the value.
1 = Update the value.

0x0

40 newCfiDeiValue The value to update to. 0x0
41 updatePcp The PCP value of the packets outermost VLAN should

be updated.
0 = Do not update the value.
1 = Update the value.

0x0

44:42 newPcpValue The PCP value to update to. 0x0

276 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

45 updateVid The VID value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

57:46 newVidValue The VID value to update to. 0x0
58 updateEType The VLANs TPID type should be updated.

0 = Do not update the TPID.
1 = Update the TPID.

0x0

60:59 newEthType Select which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

61 cfiDeiPrio If multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

62 pcpPrio If multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

63 vidPrio If multiple updateVid are set and this prio bit is set
then this updateVid will be selected.

0x0

64 ethPrio If multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

65 forceColor If set, the packet shall have a forced color. 0x0
67:66 color Initial color of the packet if the forceColor field is set. 0x0
68 forceColorPrio If multiple forceColor are set and this prio bit is set

then this forceVid value will be selected.
0x0

69 mmpValid If set, this entry contains a valid MMP pointer 0x0
76:70 mmpPtr Ingress MMP pointer. 0x0
78:77 mmpOrder Ingress MMP pointer order. 0x0
79 forceQueue If set, the packet shall have a forced egress queue.

Please see Egress Queue Selection Diagram in Figure
19.1

0x0

82:80 eQueue The egress queue to be assigned if the forceQueue
field in this entry is set to 1.

0x0

83 forceQueuePrio If multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

84 forceVidValid Override the Ingress VID, see chapter VLAN Process-
ing.

0x0

96:85 forceVid The new Ingress VID. 0x0
97 forceVidPrio If multiple forceVid are set and this prio bit is set then

this forceVid value will be selected.
0x0

32.10.62 Ingress Configurable ACL 3 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.. If multiple buckets match then the result
from the highest entry is selected.

Number of Entries : 256
Number of Addresses per Entry : 16
Type of Operation : Read/Write

Addressing :
address[5:0] : hash of {compareData }
address[7:6] : bucket number

Address Space : 109591 to 113686

277 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

222:1 compareData The data which shall be compared in this entry. 0x0
223 macOp This is a result field used when this entry is hit. If set

this packets MAC SA and DA can be changed.
0x0

232:224 macOpPtr This is a result field used when this entry is hit.
Pointer to egress MAC action, defined in Egress
MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

233 macPrio This is a result field used when this entry is hit. If
multiple mac operations are set and this prio bit is set
then this mac operation pointer will be selected.

0x0

234 sendToCpu This is a result field used when this entry is hit. If set,
the packet shall be sent to the CPU port.

0x0

235 decTtl This is a result field used when this entry is hit. If set
this packets L3 (IPv4,IPv6) TTL field will be decre-
mented. If the field is already zero then it will be
kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

236 dropEnable This is a result field used when this entry is hit. If set,
the packet shall be dropped and the Ingress Config-
urable ACL Drop counter is incremented.

0x0

237 sendToPort This is a result field used when this entry is hit. Send
the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

243:238 destPort This is a result field used when this entry is hit. The
port which the packet shall be sent to.

0x0

244 inputMirror This is a result field used when this entry is hit. If set,
input mirroring is enabled for this rule. In addition to
the normal processing of the packet a copy of the un-
modified input packet will be send to the destination
Input Mirror port and exit on that port. The copy will
be subject to the normal resource limitations in the
switch.

0x0

250:245 destInputMirror This is a result field used when this entry is hit. Des-
tination physical port for input mirroring.

0x0

251 imPrio This is a result field used when this entry is hit. If
multiple input mirror are set and this prio bit is set
then this input mirror will be selected.

0x0

252 noLearning This is a result field used when this entry is hit. If set
this packets MAC SA will not be learned.

0x0

253 updateCounter This is a result field used when this entry is hit. When
set the selected statistics counter will be updated.

0x0

261:254 counter This is a result field used when this entry is hit.
Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

278 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

262 updateCfiDei This is a result field used when this entry is hit. The
CFI/DEI value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

263 newCfiDeiValue This is a result field used when this entry is hit. The
value to update to.

0x0

264 updatePcp This is a result field used when this entry is hit. The
PCP value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

267:265 newPcpValue This is a result field used when this entry is hit. The
PCP value to update to.

0x0

268 updateVid This is a result field used when this entry is hit. The
VID value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

280:269 newVidValue This is a result field used when this entry is hit. The
VID value to update to.

0x0

281 updateEType This is a result field used when this entry is hit. The
VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

283:282 newEthType This is a result field used when this entry is hit. Select
which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

284 cfiDeiPrio This is a result field used when this entry is hit. If
multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

285 pcpPrio This is a result field used when this entry is hit. If
multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

286 vidPrio This is a result field used when this entry is hit. If
multiple updateVid are set and this prio bit is set then
this updateVid will be selected.

0x0

287 ethPrio This is a result field used when this entry is hit. If
multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

288 forceColor This is a result field used when this entry is hit. If set,
the packet shall have a forced color.

0x0

290:289 color This is a result field used when this entry is hit. Initial
color of the packet if the forceColor field is set.

0x0

291 forceColorPrio This is a result field used when this entry is hit. If
multiple forceColor are set and this prio bit is set then
this forceVid value will be selected.

0x0

292 mmpValid This is a result field used when this entry is hit. If set,
this entry contains a valid MMP pointer

0x0

299:293 mmpPtr This is a result field used when this entry is hit. Ingress
MMP pointer.

0x0

279 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

301:300 mmpOrder This is a result field used when this entry is hit. Ingress
MMP pointer order.

0x0

302 forceQueue This is a result field used when this entry is hit. If set,
the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

305:303 eQueue This is a result field used when this entry is hit. The
egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

306 forceQueuePrio This is a result field used when this entry is hit. If
multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

307 forceVidValid This is a result field used when this entry is hit. Over-
ride the Ingress VID, see chapter VLAN Processing.

0x0

319:308 forceVid This is a result field used when this entry is hit. The
new Ingress VID.

0x0

320 forceVidPrio This is a result field used when this entry is hit. If
multiple forceVid are set and this prio bit is set then
this forceVid value will be selected.

0x0

32.10.63 Ingress Configurable ACL 3 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 3.
Setting the valid bit and a new rule will override the default rule pointer from the source port table.

Number of Entries : 2048
Type of Operation : Read/Write

Addressing :

Address bits [2:0] Value from preLookupAclBits.
Address bits [4:3] Number of VLANs in incoming Packet.
Address bits [5:5] L2 Type Of Packet.

0 = Others - Not listed in this list.
1 = IEEE 1722/AVTP

Address bits [7:6] L3 Type Of Packet.
0 = IPv4
1 = IPv6
2 = MPLS
3 = Not IPv4, IPv6 or MPLS

Address bits
[10:8]

L4 Type Of Packet.
0 = Not known.
1 = Is IPv4 or IPv6 but type is not any L4 type

in this list.
2 = UDP
3 = TCP
4 = IGMP
5 = ICMP
6 = ICMPv6
7 = MLD

Address Space : 107543 to 109590

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid. If not then use default port rule. 0x0
4:1 rulePtr If the valid is entry then this rule pointer will be used. 0x0

280 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.64 Ingress Configurable ACL 3 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number
of fields. The fieldSelectBitmask has one bit for each field. The first 6 fields (bits) which are set to one
are selected. It is not allowed to set more than 6 bit in the bitmask. The fields are described in ACL
Fields

Number of Entries : 16
Type of Operation : Read/Write
Addressing : ACL rule pointer
Address Space : 266661 to 266676

Field Description

Bits
Field
Name

Description
Default
Value

30:0 fieldSelectBitmask Bitmask of which fields to select. Set a bit to one
to select this specific field, set zero to not select
field. At Maximum 6 bits should be set.

0x0

32.10.65 Ingress Configurable ACL 3 Search Mask

Before the hashing and searching is done in the Ingress Configurable ACL 3 Large Table and Ingress
Configurable ACL 3 Small Table. The search data is AND:ed with this mask. If a bit in the mask is set
to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and
large tables.

Number of Entries : 1
Number of Addresses per Entry : 16
Type of Operation : Read/Write
Address Space : 268955

Field Description

Bits
Field
Name

Description
Default
Value

221:0 mask small Which bits to compare in the Ingress Configurable ACL
3 Small Table lookup. A bit set to 1 means the corre-
sponding bit in the search data is compared and 0 means
the bit is ignored.

2222 − 1

443:222 mask large Which bits to compare in the Ingress Configurable ACL
3 Large Table lookup. A bit set to 1 means the corre-
sponding bit in the search data is compared and 0 means
the bit is ignored.

2222 − 1

32.10.66 Ingress Configurable ACL 3 Selection

This register selects which result to use when there are multiple hits.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266388

281 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 selectTcamOrTable If set to zero then TCAM answer is selected. If set
to one then hash table answer is selected.

0x0

1 selectSmallOrLarge If set to zero then small hash table is selected. If
set to one then large hash table is selected.

0x0

32.10.67 Ingress Configurable ACL 3 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.. If multiple buckets match then the result
from the highest entry is selected.

Number of Entries : 64
Number of Addresses per Entry : 16
Type of Operation : Read/Write

Addressing :
address[3:0] : hash of {compareData }
address[5:4] : bucket number

Address Space : 113687 to 114710

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes.

0x0

222:1 compareData The data which shall be compared in this entry. 0x0
223 macOp This is a result field used when this entry is hit. If set

this packets MAC SA and DA can be changed.
0x0

232:224 macOpPtr This is a result field used when this entry is hit.
Pointer to egress MAC action, defined in Egress
MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

233 macPrio This is a result field used when this entry is hit. If
multiple mac operations are set and this prio bit is set
then this mac operation pointer will be selected.

0x0

234 sendToCpu This is a result field used when this entry is hit. If set,
the packet shall be sent to the CPU port.

0x0

235 decTtl This is a result field used when this entry is hit. If set
this packets L3 (IPv4,IPv6) TTL field will be decre-
mented. If the field is already zero then it will be
kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

236 dropEnable This is a result field used when this entry is hit. If set,
the packet shall be dropped and the Ingress Config-
urable ACL Drop counter is incremented.

0x0

282 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

237 sendToPort This is a result field used when this entry is hit. Send
the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

243:238 destPort This is a result field used when this entry is hit. The
port which the packet shall be sent to.

0x0

244 inputMirror This is a result field used when this entry is hit. If set,
input mirroring is enabled for this rule. In addition to
the normal processing of the packet a copy of the un-
modified input packet will be send to the destination
Input Mirror port and exit on that port. The copy will
be subject to the normal resource limitations in the
switch.

0x0

250:245 destInputMirror This is a result field used when this entry is hit. Des-
tination physical port for input mirroring.

0x0

251 imPrio This is a result field used when this entry is hit. If
multiple input mirror are set and this prio bit is set
then this input mirror will be selected.

0x0

252 noLearning This is a result field used when this entry is hit. If set
this packets MAC SA will not be learned.

0x0

253 updateCounter This is a result field used when this entry is hit. When
set the selected statistics counter will be updated.

0x0

261:254 counter This is a result field used when this entry is hit.
Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

262 updateCfiDei This is a result field used when this entry is hit. The
CFI/DEI value of the packets outermost VLAN should
be updated.
0 = Do not update the value.
1 = Update the value.

0x0

263 newCfiDeiValue This is a result field used when this entry is hit. The
value to update to.

0x0

264 updatePcp This is a result field used when this entry is hit. The
PCP value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

267:265 newPcpValue This is a result field used when this entry is hit. The
PCP value to update to.

0x0

268 updateVid This is a result field used when this entry is hit. The
VID value of the packets outermost VLAN should be
updated.
0 = Do not update the value.
1 = Update the value.

0x0

280:269 newVidValue This is a result field used when this entry is hit. The
VID value to update to.

0x0

281 updateEType This is a result field used when this entry is hit. The
VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

283 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

283:282 newEthType This is a result field used when this entry is hit. Select
which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

284 cfiDeiPrio This is a result field used when this entry is hit. If
multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

285 pcpPrio This is a result field used when this entry is hit. If
multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

286 vidPrio This is a result field used when this entry is hit. If
multiple updateVid are set and this prio bit is set then
this updateVid will be selected.

0x0

287 ethPrio This is a result field used when this entry is hit. If
multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

288 forceColor This is a result field used when this entry is hit. If set,
the packet shall have a forced color.

0x0

290:289 color This is a result field used when this entry is hit. Initial
color of the packet if the forceColor field is set.

0x0

291 forceColorPrio This is a result field used when this entry is hit. If
multiple forceColor are set and this prio bit is set then
this forceVid value will be selected.

0x0

292 mmpValid This is a result field used when this entry is hit. If set,
this entry contains a valid MMP pointer

0x0

299:293 mmpPtr This is a result field used when this entry is hit. Ingress
MMP pointer.

0x0

301:300 mmpOrder This is a result field used when this entry is hit. Ingress
MMP pointer order.

0x0

302 forceQueue This is a result field used when this entry is hit. If set,
the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

305:303 eQueue This is a result field used when this entry is hit. The
egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

306 forceQueuePrio This is a result field used when this entry is hit. If
multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

307 forceVidValid This is a result field used when this entry is hit. Over-
ride the Ingress VID, see chapter VLAN Processing.

0x0

319:308 forceVid This is a result field used when this entry is hit. The
new Ingress VID.

0x0

320 forceVidPrio This is a result field used when this entry is hit. If
multiple forceVid are set and this prio bit is set then
this forceVid value will be selected.

0x0

32.10.68 Ingress Configurable ACL 3 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the
packet header. The hash is then used as index into this table.

284 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 16
Number of Addresses per Entry : 16
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 268971 to 269226

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Is this entry valid.
0 = No
1 = Yes

0x0

222:1 mask Which bits to compare in this entry. 2222 − 1
444:223 compareData The data which shall be compared in this entry. Observe

that this compare data must be AND:ed by software before
the entry is searched. The hardware does not do the AND
between mask and compareData (In order to save area).

0x0

32.10.69 Ingress Configurable ACL 3 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 3 TCAM.

Number of Entries : 16
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : Ingress Configurable ACL 3 TCAM hit index
Address Space : 114711 to 114774

Field Description

Bits
Field
Name

Description
Default
Value

0 macOp If set this packets MAC SA and DA can be changed. 0x0
9:1 macOpPtr Pointer to egress MAC action, defined in Egress

MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

10 macPrio If multiple mac operations are set and this prio bit is
set then this mac operation pointer will be selected.

0x0

11 sendToCpu If set, the packet shall be sent to the CPU port. 0x0
12 decTtl If set this packets L3 (IPv4,IPv6) TTL field will be

decremented. If the field is already zero then it will
be kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

13 dropEnable If set, the packet shall be dropped and the Ingress
Configurable ACL Drop counter is incremented.

0x0

14 sendToPort Send the packet to a specific port.
0 = Disabled.
1 = Send to port configured in destPort.

0x0

20:15 destPort The port which the packet shall be sent to. 0x0

285 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

21 inputMirror If set, input mirroring is enabled for this rule. In addi-
tion to the normal processing of the packet a copy of
the unmodified input packet will be send to the des-
tination Input Mirror port and exit on that port. The
copy will be subject to the normal resource limitations
in the switch.

0x0

27:22 destInputMirror Destination physical port for input mirroring. 0x0
28 imPrio If multiple input mirror are set and this prio bit is set

then this input mirror will be selected.
0x0

29 noLearning If set this packets MAC SA will not be learned. 0x0
30 updateCounter When set the selected statistics counter will be up-

dated.
0x0

38:31 counter Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

39 updateCfiDei The CFI/DEI value of the packets outermost VLAN
should be updated.
0 = Do not update the value.
1 = Update the value.

0x0

40 newCfiDeiValue The value to update to. 0x0
41 updatePcp The PCP value of the packets outermost VLAN should

be updated.
0 = Do not update the value.
1 = Update the value.

0x0

44:42 newPcpValue The PCP value to update to. 0x0
45 updateVid The VID value of the packets outermost VLAN should

be updated.
0 = Do not update the value.
1 = Update the value.

0x0

57:46 newVidValue The VID value to update to. 0x0
58 updateEType The VLANs TPID type should be updated.

0 = Do not update the TPID.
1 = Update the TPID.

0x0

60:59 newEthType Select which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

61 cfiDeiPrio If multiple updateCfiDei are set and this prio bit is set
then this updateCfiDei will be selected.

0x0

62 pcpPrio If multiple updatePcp are set and this prio bit is set
then this updatePcp will be selected.

0x0

63 vidPrio If multiple updateVid are set and this prio bit is set
then this updateVid will be selected.

0x0

64 ethPrio If multiple updateEType are set and this prio bit is set
then this updateEType will be selected.

0x0

65 forceColor If set, the packet shall have a forced color. 0x0
67:66 color Initial color of the packet if the forceColor field is set. 0x0
68 forceColorPrio If multiple forceColor are set and this prio bit is set

then this forceVid value will be selected.
0x0

69 mmpValid If set, this entry contains a valid MMP pointer 0x0
76:70 mmpPtr Ingress MMP pointer. 0x0
78:77 mmpOrder Ingress MMP pointer order. 0x0

286 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

79 forceQueue If set, the packet shall have a forced egress queue.
Please see Egress Queue Selection Diagram in Figure
19.1

0x0

82:80 eQueue The egress queue to be assigned if the forceQueue
field in this entry is set to 1.

0x0

83 forceQueuePrio If multiple forceQueue are set and this prio bit is set
then this forceQueue value will be selected.

0x0

84 forceVidValid Override the Ingress VID, see chapter VLAN Process-
ing.

0x0

96:85 forceVid The new Ingress VID. 0x0
97 forceVidPrio If multiple forceVid are set and this prio bit is set then

this forceVid value will be selected.
0x0

32.10.70 Ingress Drop Options

Options to enable or disable learning when the the L2 forwarding process drops the packet.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 269995

Field Description

Bits
Field
Name

Description
Default
Value

0 learnL2DestDrop Allow learning when L2 Destination Table drops
the packet.

0x0

1 learnL2FloodDrop Allow learning when the packet is dropped due
to unknown DA.

0x0

2 learnL2DestVlanMemberDrop Allow learning when the packt is dropped due to
destination VLAN membership check.

0x1

3 learnL2HairpinDrop Allow learning when the packet is dropped due
to hairpin configurations.

0x0

32.10.71 Ingress Egress Port Packet Type Filter

This sets up which packets are to be dropped or allowed to be transmitted on each of the egress ports. This
filtering is done after the source port tables VLAN operation and the VLAN tables VLAN operation. Notice
this filter applies to L2 L3 forwarding result only, any other special rules could bypass it (traffic to/from
CPU port, classifications, etc). Packets dropped due to this filter will be counted in Ingress-Egress Packet
Filtering Drop.

Number of Entries : 53
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 267059 to 267270

Field Description

287 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

0 dropCtaggedVlans Drop or allow customer VLAN tagged pack-
ets on this egress port. Will only drop pack-
ets that has exactly one VLAN tag. Must set
moreThanOneVlans when this is used. Note that
after a VLAN push operation the pushed VLAN
will be regarded as a C-VLAN.
0 = Allow C-VLANs.
1 = Drop C-VLANs.

0x0

1 dropStaggedVlans Drop or allow service VLAN tagged packets on
this egress port. Must set moreThanOneVlans
when this is used. Note that after a VLAN push
operation the pushed VLAN will be regarded as
a C-VLAN.
0 = Allow S-VLANs.
1 = Drop S-VLANs.

0x0

2 moreThanOneVlans When filtering with dropCtaggedVlans or drop-
StaggedVlans then this field must be set to 1.

0x0

3 dropSingleTaggedVlans Drop or Allow packets that are VLAN untagged
on this egress port.
0 = Allow untagged packets.
1 = Drop untagged packets.

0x0

4 dropUntaggedVlans Drop or Allow packets that are VLAN untagged
on this egress port.
0 = Allow untagged packets.
1 = Drop untagged packets.

0x0

5 dropIPv4Packets Drop or allow IPv4 packets on this egress port.
0 = Allow IPv4 packets.
1 = Drop IPv4 packets.

0x0

6 dropIPv6Packets Drop or allow IPv6 packets on this egress port.
0 = Allow IPv6 packets.
1 = Drop IPv6 packets.

0x0

7 dropMPLSPackets Drop or allow MPLS packets on this source port.
0 = Allow MPLS packets.
1 = Drop MPLS packets.

0x0

8 dropIPv4MulticastPackets Drop or allow IPv4 Multicast packets on this
egress port.
0 = Allow IPv4 MC packets.
1 = 1 = Drop IPv4 MC packets.

0x0

9 dropIPv6MulticastPackets Drop or allow IPv6 Multicast packets on this
egress port.
0 = Allow IPv6 MC packets.
1 = Drop IPv6 MC packets.

0x0

10 dropL2BroadcastFrames Drop or allow L2 broadcast packets on this
egress port.
0 = Allow L2 broadcast packets.
1 = Drop L2 broadcast packets.

0x0

11 dropL2FloodingFrames Drop or allow L2 flooding packets on this egress
port. Observe that this rule takes the un-
knownL2McFilterRule into account.
0 = Allow L2 flooding packets.
1 = Drop L2 flooding packets.

0x0

288 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

12 dropL2MulticastFrames Drop or allow L2 multicast packets on this egress
port. Observe that this L2 multicast bit takes
the register L2 Multicast Handling into ac-
count to determine if this packet is a L2 mul-
ticast packet or not.
0 = Allow L2 multicast packets
1 = Drop L2 multicast packets.

0x0

13 dropDualTaggedVlans Drop or allow packets with has more than one
VLAN tag on this egress port.
0 = Allow packets which has more than one

VLAN tag.
1 = Drop packets which has more than one

VLAN tag.

0x0

14 dropCStaggedVlans Drop or allow packets with has a C-VLAN fol-
lowed by a S-VLAN tagged on this egress port.
Note that after a VLAN push operation the
pushed VLAN will be regarded as a C-VLAN.
0 = Allow packets which has a C-VLAN tag fol-

lowed by a S-VLAN tag.
1 = Drop packets which has a C-VLAN tag fol-

lowed by a S-VLAN tag.

0x0

15 dropSCtaggedVlans Drop or allow packets with has a S-VLAN fol-
lowed by a C-VLAN tagged on this egress port.
Note that after a VLAN push operation the
pushed VLAN will be regarded as a C-VLAN.
0 = Allow packets which has a S-VLAN fol-

lowed by a C-VLAN tag.
1 = Drop packets which has a S-VLAN tag fol-

lowed by a C-VLAN tag.

0x0

16 dropCCtaggedVlans Drop or allow packets with has a C-VLAN fol-
lowed by a C-VLAN tagged on this egress port.
Note that after a VLAN push operation the
pushed VLAN will be regarded as a C-VLAN.
0 = Allow packets which has a C-VLAN tag fol-

lowed by a C-VLAN tag.
1 = Drop packets which has a C-VLAN tag fol-

lowed by a C-VLAN tag.

0x0

17 dropSStaggedVlans Drop or allow packets with has a S-VLAN fol-
lowed by a S-VLAN tagged on this egress port.
Note that after a VLAN push operation the
pushed VLAN will be regarded as a C-VLAN.
0 = Allow packets which has a S-VLAN tag fol-

lowed by a S-VLAN tag.
1 = Drop packets which has a S-VLAN tag fol-

lowed by a S-VLAN tag.

0x0

70:18 srcPortFilter Each egress port has an optional way of ensuring
that a specific source port does not send out
a packet on a specific egress port. By setting
a bit in this port mask, the packets originating
from that source port will be dropped and not
be allowed to reach this egress port.

0x0

289 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.72 Ingress Ethernet Type for VLAN tag

When decoding VLAN tags, if the Ethernet Type matches the typeValue it will be considered to be a
VLAN tag in addition to the standard values of 0x8100 and 0x88A8. The type field determines if the
VLAN should be regarded as a Service VLAN or Customer VLAN.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267319

Field Description

Bits
Field
Name

Description
Default
Value

15:0 typeValue Ethernet Type value. 0xffff
16 type User defined VLAN type.

0 = Customer VLAN.
1 = Service VLAN.

0x0

17 valid User defined VLAN is valid.
0 = Not Valid.
1 = Valid.

0x0

70:18 ignoreStag If set, type value 0x88A8 is not parsed as Service
VLAN type.

0x0

32.10.73 Ingress MMP Drop Mask

This register provides an option to let ingress MMP not drop packets on certain ports after metering.

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 267365

Field Description

Bits
Field
Name

Description
Default
Value

52:0 dropMask Each bit in this mask refers to if ingress MMP drop
is allowed on the corresponding egress port.

253 − 1

32.10.74 Ingress Multiple Spanning Tree State

Table of ingress Multiple Spanning Tree Protocol Instances. The field msptPtr in the VLAN Table is used
to address this table. Each entry contains the ingress spanning tree states for all ports in this MSTI.

Number of Entries : 64
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : msptPtr from VLAN Table
Address Space : 131383 to 131638

290 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

105:0 portSptState The ingress spanning tree state for this MSTI. Bit[1:0]
is the state for port #0, bit[3:2] is the state for port
#1, etc.
0 = Forwarding
1 = Discarding
2 = Learning

0x0

32.10.75 Ingress Port Packet Type Filter

This configures which packet types that are to be dropped or allowed on each source port. Each entry
corresponds to one ingress port. Packets dropped due to the filter are counted in Ingress Packet Filtering
Drop.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Ingress port
Address Space : 266725 to 266777

Field Description

Bits
Field
Name

Description
Default
Value

0 dropMacDaLocal If bit 47 in the DA MAC address is set to zero
then packet will be dropped. This is sometimes
referred to as the Local / Globally Administered
bit.

0x0

1 dropMacDaGlobal If bit 47 in the DA MAC is set to one then packet
will be dropped. This is sometimes referred to
as the Local / Globally Administered bit.

0x0

2 dropMacDaUnicast If bit 48 in the DAMAC is set to zero then packet
will be dropped. This is sometimes referred to
as the Multicast/Unicast bit, 0 being a unicast
DA Address.

0x0

3 dropMacSaLocal If bit 47 in the SA MAC address is set to zero
then packet will be dropped. This is sometimes
referred to as the Local / Globally Administered
bit.

0x0

4 dropMacSaGlobal If bit 47 in the SA MAC is set to one then packet
will be dropped. This is sometimes referred to
as the Local / Globally Administered bit.

0x0

5 dropMacSaNotSourceRouted If bit 48 in the SA MAC address is set to zero
then packet will be dropped. This is sometimes
referred to as the Routing Information Indicator
bit.

0x0

6 dropMacSaSourceRouted If bit 48 in the SA MAC is set to one then packet
will be dropped. This is sometimes referred to
as the Routing Information Indicator bit.

0x0

7 dropDaMac0 Drop or allow DA MAC 00:00:00:00:00:00.
0 = Allow
1 = Drop

0x0

291 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

8 dropCtaggedVlans Drop or allow customer VLAN tagged packet
on this ingress port. Will only drop packets
that has exactly one VLAN tag. Must set
moreThanOneVlans when this is used.
0 = Allow C-VLANs.
1 = Drop C-VLANs.

0x0

9 dropStaggedVlans Drop or allow service VLANs tagged packets
on this ingress port. Will only drop packets
that has exactly one VLAN tag. Must set
moreThanOneVlans when this is used.
0 = Allow S-VLANs.
1 = Drop S-VLANs.

0x0

10 moreThanOneVlans When filtering with dropCtaggedVlans or drop-
StaggedVlans then this field must be set to 1.

0x0

11 dropUntaggedVlans Drop or Allow packets that are VLAN untagged
on this ingress port.
0 = Allow untagged packets.
1 = Drop untagged packets.

0x0

12 dropSingleTaggedVlans Drop or Allow packets that are VLAN untagged
on this ingress port.
0 = Allow untagged packets.
1 = Drop untagged packets.

0x0

13 dropMacDaEqSa Drop or allow MAC packets which has a
DA==SA on this ingress port.
0 = Allow MAC DA == MAC SA packets.
1 = Drop MAC DA == MAC SA packets.

0x0

14 dropIPv4DaEqSa Drop or allow IPv4 packets which has a DA
IP==SA IP on this ingress port.
0 = Allow IPv4 DA == IPv4 SA packets.
1 = Drop IPv4 DA == IPv4 SA packets.

0x0

15 dropIPv6DaEqSa Drop or allow IPv6 packets which has a DA
IP==SA IP on this ingress port.
0 = Allow IPv6 DA == IPv6 SA packets.
1 = Drop IPv6 DA == IPv6 SA packets.

0x0

16 dropIPv4Packets Drop or allow IPv4 packets on this ingress port.
0 = Allow IPv4 packets.
1 = Drop IPv4 packets.

0x0

17 dropIPv6Packets Drop or allow IPv6 packets on this ingress port.
0 = Allow IPv6 packets.
1 = Drop IPv6 packets.

0x0

18 dropMPLSPackets Drop or allow MPLS packets on this ingress port.
0 = Allow MPLS packets.
1 = Drop MPLS packets.

0x0

19 dropIPv4MulticastPackets Drop or allow IPv4 multicast packets on this
ingress port.
0 = Allow IPv4 MC packets.
1 = Drop IPv4 MC packets.

0x0

20 dropIPv6MulticastPackets Drop or allow IPv6 multicast packets on this
ingress port.
0 = Allow IPv6 MC packets.
1 = Drop IPv6 MC packets.

0x0

292 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

21 dropL2BroadcastFrames Drop or allow L2 broadcast packets on this
ingress port.
0 = Drop L2 broadcast packets.
1 = Allow L2 broadcast packets.

0x0

22 dropL2MulticastFrames Drop or allow L2 multicast packets on this
ingress port. Observe that this L2 multicast bit
takes the register L2 Multicast Handling into
account to determine if this packet is a L2 mul-
ticast packet or not.
0 = Allow L2 multicast packets
1 = Drop L2 multicast packets.

0x0

23 dropDualTaggedVlans Drop or allow packets which has more than one
VLAN tag on this ingress port.
0 = Allow packets which has dual tags.
1 = Drop packets which has dual tags.

0x0

24 dropCStaggedVlans Drop or allow packets which has a C-VLAN fol-
lowed by a S-VLAN tagged on this ingress port.
0 = Allow packets which has a C-VLAN tag fol-

lowed by a S-VLAN tag.
1 = Drop packets which has a C-VLAN tag fol-

lowed by a S-VLAN tag.

0x0

25 dropSCtaggedVlans Drop or allow packets which has a S-VLAN fol-
lowed by a C-VLAN tagged on this ingress port.
0 = Allow packets which has a S-VLAN fol-

lowed by a C-VLAN tag.
1 = Drop packets which has a S-VLAN tag fol-

lowed by a C-VLAN tag.

0x0

26 dropCCtaggedVlans Drop or allow packets which has a C-VLAN fol-
lowed by a C-VLAN tagged on this ingress port.
0 = Allow packets which has a C-VLANs tag

followed by a C-VLAN tag.
1 = Drop packets which has a C-VLAN tag fol-

lowed by a C-VLAN tag.

0x0

27 dropSStaggedVlans Drop or allow packets which has a S-VLAN fol-
lowed by a S-VLAN tagged on this source port.
0 = Allow packets which has a S-VLAN tag fol-

lowed by a S-VLAN tag.
1 = Drop packets which has a S-VLAN tag fol-

lowed by a S-VLAN tag.

0x0

32.10.76 Ingress Ports With Timestamp

Determines which ports that have a timestamp of 8-bytes first in the incoming packet. The timestamp
bytes are removed in the normal L2/L3 decoding but are inserted in the To CPU Tag.

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 267355

Field Description

293 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

52:0 hasTimestamp Each bit set corresponds to an ingress port that have
a timestamp prepended to all packets. Bit 0 corre-
sponds to port 0.

0x0

32.10.77 Ingress VID Ethernet Type Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

Number of Entries : 4
Type of Operation : Read/Write
Addressing : Ingress VID Ethernet Type Range Search Data hit index
Address Space : 266657 to 266660

Field Description

Bits
Field
Name

Description
Default
Value

11:0 ingressVid Ingress VID. 0x0
13:12 order Order for this assignment. If the ingress VID can be as-

signed from other packet field ranges, the one with the
highest order wins.

0x0

32.10.78 Ingress VID Ethernet Type Range Search Data

This Ethernet type range can be used to assign the ingress VID. The search starts from entry 0 and returns
the first match to lookup in the Ingress VID Ethernet Type Range Assignment Answer table.

Number of Entries : 4
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 267271 to 267286

Field Description

Bits
Field
Name

Description
Default
Value

52:0 ports Ports that this range search is activated on. 0x0
68:53 start Start of Ethernet type range. 0x0
84:69 end End of Ethernet type range. 0x0

32.10.79 Ingress VID Inner VID Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

294 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 4
Type of Operation : Read/Write
Addressing : Ingress VID Inner VID Range Search Data hit index
Address Space : 114995 to 114998

Field Description

Bits
Field
Name

Description
Default
Value

11:0 ingressVid Ingress VID. 0x0
13:12 order Order for this assignment. If the ingress VID can be as-

signed from other packet field ranges, the one with the
highest order wins.

0x0

32.10.80 Ingress VID Inner VID Range Search Data

If a packet has an inner VLAN tag, this inner VID range can be used to assign the ingress VID. The
search starts from entry 0 and returns the first match to lookup in the Ingress VID Inner VID Range
Assignment Answer table.

Number of Entries : 4
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 267287 to 267302

Field Description

Bits
Field
Name

Description
Default
Value

52:0 ports Ports that this range search is activated on. 0x0
53 vtype Shall this entry match S-Type or C-Type VLAN.

0 = C-Type
1 = S-Type

0x0

65:54 start Start of VID range. 0x0
77:66 end End of VID range. 0x0

32.10.81 Ingress VID MAC Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

Number of Entries : 4
Type of Operation : Read/Write
Addressing : Ingress VID MAC Range Search Data hit index
Address Space : 114987 to 114990

Field Description

Bits
Field
Name

Description
Default
Value

11:0 ingressVid Ingress VID. 0x0

295 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

13:12 order Order for this assignment. If the ingress VID can be as-
signed from other packet field ranges, the one with the
highest order wins.

0x0

32.10.82 Ingress VID MAC Range Search Data

This MAC address range can be used to assign the ingress VID. The search starts from entry 0 and returns
the first match to lookup in the Ingress VID MAC Range Assignment Answer table.

Number of Entries : 4
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 268187 to 268218

Field Description

Bits
Field
Name

Description
Default
Value

52:0 ports Ports that this range search is activated on. 0x0
53 saOrDa Is this rule for source or destination MAC address.

0 = Source MAC
1 = Destination MAC

0x0

101:54 start Start of MAC address range. 0x0
149:102 end End of MAC address range. 0x0

32.10.83 Ingress VID Outer VID Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

Number of Entries : 4
Type of Operation : Read/Write
Addressing : Ingress VID Outer VID Range Search Data hit index
Address Space : 114991 to 114994

Field Description

Bits
Field
Name

Description
Default
Value

11:0 ingressVid Ingress VID. 0x0
13:12 order Order for this assignment. If the ingress VID can be as-

signed from other packet field ranges, the one with the
highest order wins.

0x0

296 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.84 Ingress VID Outer VID Range Search Data

If a packet has an outer VLAN tag, this outer VID range can be used to assign the ingress VID. The
search starts from entry 0 and returns the first match to lookup in the Ingress VID Outer VID Range
Assignment Answer table.

Number of Entries : 4
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 267303 to 267318

Field Description

Bits
Field
Name

Description
Default
Value

52:0 ports Ports that this range search is activated on. 0x0
53 vtype Shall this entry match S-Type or C-Type VLAN.

0 = C-Type
1 = S-Type

0x0

65:54 start Start of VID range. 0x0
77:66 end End of VID range. 0x0

32.10.85 L2 Action Table

The L2 action table can be used to limit what type of traffic shall be able to enter a port depending on which
port its coming from and going to. There are three table results which can be taken into consideration,
the l2 destination MAC lookup, the l2 source MAC lookup and finally the ingress ACL lookup. The L2
Action Table Egress Port State defines the highest bit in the address. This table is looked up for each
of the destiantion ports which the packet is going to. If a packet is dropped then it is recorded in the drop
counter L2 Action Table Drop.

Number of Entries : 128
Type of Operation : Read/Write

Addressing :

Address Bit 0: Source Port State Bit from Source Port Table
field l2ActionTablePortState.

Address Bit 1: L2 SA Table was a hit.
0 = Miss.
1 = Hit.

Address Bit 2: L2 SA Table - L2 Action Table Status bit. If this
table was a miss then this bit will be zero.

Address Bit 3: L2 DA Table - L2 Action Table Status bit. If
this table was a miss then this bit will be zero.

Address Bit [5:4]: L2 Packet Type.
0 = L2 Dest Table was a Unicast.
1 = L2 Dest Table was Multicast.
2 = L2 DA table was a miss and packet is being

flooded.
3 = Packet was a Broadcast packet and L2 Dest

Table did not hit. If both flooded and L2
Broadcast packet then this option will be
selected.

Address Bit 6: Destiantion Port State Bit comes from the L2
Action Table Egress Port State.

Address Space : 266127 to 266254

297 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 noLearningUc The packet shall not be learned. This is applied to L2
DA MAC unicast packets.

0x0

1 noLearningMc If the packet is a L2 Multicast then the packet shall
not be learned. If a packet is a L2 Multicast depends
on if the SA MAC MC bit is set.

0x0

2 dropAll The packet shall drop all instances and update counter
L2 Action Table Drop. However special packets
which are allowed will still be allowed into the switch
(using the field useSpecialAllow set to one and reg-
ister Allow Special Frame Check For L2 Action
Table)

0x0

3 drop The packet shall only drop on the ports which hits this
action.

0x0

4 dropPortMove The packet shall be dropped if the result from the
learning lookup is port-move.

0x0

5 sendToCpu The packet shall be send to the CPU. 0x0
6 noPortMove No port move is allowed for this packet. 0x0
7 useSpecialAllow Use the special frame checks on this port.

0 = No.
1 = Yes.

0x0

9:8 allowPtr Pointer to allow special packets defined in Allow Spe-
cial Frame Check For L2 Action Table.

0x0

10 mmpValid If set, this entry contains a valid MMP pointer 0x0
17:11 mmpPtr Ingress MMP pointer. 0x0
19:18 mmpOrder Ingress MMP pointer order. 0x0

32.10.86 L2 Action Table Egress Port State

The egress port state for the L2 Action Table Lookup.

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 267363

Field Description

Bits
Field
Name

Description
Default
Value

52:0 state What is the egress port status bits in the L2 Action Table for
the egress port. Bit [0] are used for port 0, Bits [1] are used for
port 1 and so on.

0x0

32.10.87 L2 Action Table Source Port

The L2 action table for source port is looked up at the same time as the L2 Action Table and its result
is merged with the lookup from the L2 Action Table table, this lookup is active when enabled in the
Source Port Table field enableL2ActionTable is set to one. The L2 Action Table is enabled for each
of the destination ports the packet is going to, this table is looked up based on the source port and even if

298 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

the packet is going to no destination ports this lookup is still carried out. Another difference between L2
Action Table and this table is that the highest address bit (bit 6) which uses the status from the L2 SA
Lookup and if the packet is going to do a port move then this address bit is high.

Number of Entries : 128
Type of Operation : Read/Write

Addressing :

Address Bit 0: Source Port State Bit from Source Port Table
field l2ActionTablePortState.

Address Bit 1: L2 SA Table was a hit.
0 = Miss.
1 = Hit.

Address Bit 2: L2 SA Table - L2 Action Table Status bit.
Address Bit 3: L2 DA Table - L2 Action Table Status bit. If

this table was a miss then this bit will be zero.
Address Bit [5:4]: L2 Packet Type.

0 = L2 Dest Table was a Unicast.
1 = L2 Dest Table was Multicast.
2 = L2 DA table was a miss and packet is being

flooded.
3 = Packet was a Broadcast packet and L2 Dest

Table did not hit. If both flooded and L2
Broadcast packet then this option will be
selected.

Address Bit [6]: Port Move. Result bit from L2 SA lookup if the
packet shall do a port move or not.

Address Space : 266255 to 266382

Field Description

Bits
Field
Name

Description
Default
Value

0 noLearningUc The packet shall not be learned. This is applied to L2
DA MAC unicast packets.

0x0

1 noLearningMc If the packet is a L2 Multicast then the packet shall
not be learned. If a packet is a L2 Multicast depends
on if the SA MAC MC bit is set.

0x0

2 dropAll The packet shall drop all instances and update counter
L2 Action Table Drop. However special packets
which are allowed will still be allowed into the switch
(using the field useSpecialAllow set to one and reg-
ister Allow Special Frame Check For L2 Action
Table)

0x0

3 drop The packet shall only drop on the ports which hits this
action.

0x0

4 dropPortMove The packet shall be dropped if the result from the
learning lookup is port-move.

0x0

5 sendToCpu The packet shall be send to the CPU. 0x0
6 noPortMove No port move is allowed for this packet. 0x0
7 useSpecialAllow Use the special frame checks on this port.

0 = No.
1 = Yes.

0x0

9:8 allowPtr Pointer to allow special packets defined in Allow Spe-
cial Frame Check For L2 Action Table.

0x0

10 mmpValid If set, this entry contains a valid MMP pointer 0x0
17:11 mmpPtr Ingress MMP pointer. 0x0
19:18 mmpOrder Ingress MMP pointer order. 0x0

299 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.88 L2 Aging Collision Shadow Table

This table traces the valid field of the L2 Aging Collision Table and is used by L2 forwarding to check
if a hit in the L2 Lookup Collision Table is valid. Any software write to this table shall be updated to
the valid field of the L2 Aging Collision Table.

Number of Entries : 64
Type of Operation : Read/Write
Addressing : L2 Lookup Collision Table hit index
Address Space : 266561 to 266624

Field Description

Bits
Field
Name

Description
Default
Value

0 valid If this is set, then the corresponding L2 Lookup Collision Ta-
ble entry is valid.

0x0

32.10.89 L2 Aging Collision Table

This table holds the status of the entries in the L2 Lookup Collision Table. Any software write to the
valid field in this table shall be done in the L2 Aging Collision Shadow Table.

Number of Entries : 64
Type of Operation : Read/Write
Addressing : L2 Lookup Collision Table hit index
Address Space : 1012 to 1075

Field Description

Bits
Field
Name

Description
Default
Value

0 valid If this is set, then the corresponding L2 Lookup Collision Ta-
ble entry is valid.

0x0

1 stat If this is set, then the corresponding L2 Lookup Collision Ta-
ble entry will not be aged out.

0x0

2 hit If this is set, then the corresponding L2 Lookup Collision Ta-
ble entry has a L2 SA/DA search hit since the last aging scan.

0x0

32.10.90 L2 Aging Status Shadow Table

This table traces the valid field of the L2 Aging Table and is used by L2 forwarding to check if a hit in
the L2 DA Hash Lookup Table is valid. Any software write to this table shall be updated to the valid
field of the L2 Aging Table.

Number of Entries : 32768
Type of Operation : Read/Write

Addressing :
address[0:11] : hash of {GID, destination MAC}
address[12:14] : bucket number

Address Space : 132687 to 165454

300 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 valid If this is set, then the corresponding hash table entry is valid. 0x0

32.10.91 L2 Aging Table

This table uses the same addressing as the L2 DA Hash Lookup Table to show the status of each entries
in that table. Any software write to any valid field in this table shall be done in the L2 Aging Status
Shadow Table.

Number of Entries : 32768
Type of Operation : Read/Write

Addressing :
address[0:11] : hash of {GID, destination MAC}
address[12:14] : bucket number

Address Space : 1129 to 33896

Field Description

Bits
Field
Name

Description
Default
Value

0 valid If set, then the corresponding hash table entry is valid. 0x0
1 stat If set, then the corresponding hash table entry will not be aged

out.
0x0

2 hit If set, then the corresponding hash table entry has a L2 DA
search hit since the last aging scan.

0x0

32.10.92 L2 DA Hash Lookup Table

The L2 table is used for hash search based on the destination MAC address and a GID from the VLAN
Table. When performing a L2 destination port lookup, {GID, destination MAC} is used as key for a hash
calculation (see Section MAC Table Hashing). The hash is then used as index into this table to read out
the 8 buckets. The incoming {GID, destination MAC} are compared to all the buckets. If any of the
buckets match then address was known. The result of the lookup will be read from the L2 Destination
Table at the same address as the matching hash index and bucket. .

Number of Entries : 32768
Number of Addresses per Entry : 2
Type of Operation : Read/Write

Addressing :
address[0:11] : hash of {GID, destination MAC}
address[12:14] : bucket number

Address Space : 165455 to 230990

Field Description

Bits
Field
Name

Description
Default
Value

47:0 macAddr MAC address. 0x0
59:48 gid Global identifier from the VLAN Table. 0x0

301 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.93 L2 Destination Table

This table contains either a destination port or a pointer to the L2 multicast table..

Number of Entries : 32832
Type of Operation : Read/Write

Addressing :

address 0 to 32767
:

L2 DA Hash Lookup Table address

address 32768 to
32831 :

L2 Lookup Collision Table address

Address Space : 230991 to 263822

Field Description

Bits
Field
Name

Description
Default
Value

0 uc Unicast if set; multicast if cleared. Multicast
means that a lookup to the L2 Multicast Ta-
ble will occur and determine a list of destination
ports.

0x0

10:1 destPort or mcAddr Destination port number or pointer into the L2
Multicast Table.

0x0

11 pktDrop If set, the packet will be dropped and the L2
Lookup Drop incremented.

0x0

12 pktDropSa If set, the packet will be dropped if this packet was
hit with the SA search and the L2 Destination
Table SA Lookup Drop incremented.

0x0

13 l2ActionTableDaStatus The status DA bit to be used in the addressing for
the table L2 Action Table Lookup.

0x0

14 l2ActionTableSaStatus The status SA bit to be used in the addressing for
the table L2 Action Table Lookup.

0x0

32.10.94 L2 Lookup Collision Table

Collision table for the L2 DA Hash Lookup Table. If there is a hash collision and all the buckets for that
hash index are occupied then additional entries can be stored in the collision table. When searching this
table, all entries are compared in parallel and the matching entry with the lowest address will be used as a
match result. Chapter Learning and Aging describes how to search and write to this table.

Number of Entries : 64
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 268003 to 268130

Field Description

Bits
Field
Name

Description
Default
Value

47:0 macAddr MAC address 0x0
59:48 gid Global identifier for learning 0x0

302 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.95 L2 Lookup Collision Table Masks

Masks for collision memory for the MAC address and the global identifier. Only the first 8entries has masks
on them.

Number of Entries : 8
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 267987 to 268002

Field Description

Bits
Field
Name

Description
Default
Value

47:0 macAddr MAC address mask 248 − 1
59:48 gid Global identifier for learning mask 0xfff

32.10.96 L2 Multicast Handling

Exceptions for L2 multicast flag handling, only valid for the Multicast Broadcast Storm Control and
the Ingress Egress Port Packet Type Filter. The switch sets by default a L2 multicast flag when DA
is an Ethernet multicast address (i.e. DA with the least-significant bit of the first octet equals 1 (e.g.
01:80:c2:00:00:00) but not equal to ff:ff:ff:ff:ff:ff).

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266396

Field Description

Bits
Field
Name

Description
Default
Value

0 exclIPv4Mc If set, IPv4 packets with IPv4 multicast MAC ad-
dress will NOT have a L2 multicast flag.

0x0

1 exclIPv6Mc If set, IPv6 packets with IPv6 multicast MAC ad-
dress will NOT have a L2 multicast flag.

0x0

2 inclL2McLut If set, packets that are forwarded by L2 Multicast
Table will internally be treated as the L2 multicast
bit in the L2 DA address would have been set to
one.

0x1

3 inclMultiPorts If set, packets that end up in more than one des-
tination port but not due to broadcast or flooding
will have a L2 multicast flag. Observe that mirror-
ing is not a valid multiport destination.

0x0

4 unknownL2McFilterRule Select the filtering rules for unknown L2 multi-
cast MAC DA in the Ingress Egress Port Packet
Type Filter.
0 = dropL2FloodingFrames
1 = dropL2MulticastFrames

0x0

303 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.97 L2 Multicast Table

L2 multicast table.

Number of Entries : 1024
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : mcAddr field from L2 Destination Table
Address Space : 263823 to 265870

Field Description

Bits
Field
Name

Description
Default
Value

52:0 mcPortMask L2 portmask entry members. If set, the port is
part of multicast group and shall be transmitted
to.

253 − 1

32.10.98 L2 Reserved Multicast Address Action

If the higher bits of the incoming packets MAC DA address matches the L2 Reserved Multicast Address
Base then the lower bits are used as index into this table. The action can be to drop the packet, send the
packet to the CPU or just process the packet in the normal L2 pipeline.

Number of Entries : 256
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Addressing : MAC DA[7:0]
Address Space : 34071 to 36118

Field Description

Bits
Field
Name

Description
Default
Value

52:0 dropMask Determines which source ports that are not allowed
to receive this multicast address. Each bit set to 1
will result in dropping this multicast address on that
source port. Bit 0 is port 0, bit 1 is port 1 etc. Each
drop will be counted in L2 Reserved Multicast Ad-
dress Drop.

0x0

105:53 sendToCpuMask Received packets on these source ports will be sent to
the CPU. Bit 0 represents port 0, bit 1 represents port
1 etc. LLDP frames sent to the CPU takes priority
over this.

0x0

158:106 sendToPortMask Send the packet to a specific port.
0 = Do not sent to a port.
1 = Send to port.

0x0

164:159 destPort The port which the packet shall be sent to. 0x0

32.10.99 L2 Reserved Multicast Address Base

Certain L2 Destination MAC addresses shall be treated special when entering the switch. If the first 40
bits of the Destination MAC address matches the macBase field then the lowest 8 bits are used as index
into the L2 Reserved Multicast Address Action table.

304 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 267357

Field Description

Bits
Field
Name

Description
Default
Value

39:0 macBase The first 40 bits of the reserved MAC address, and
the lower 16 bits of it can be masked. The default is
01:80:c2:00:00

0x180c20000

55:40 mask Bit comparison mask for the lower 2 bytes in macBase
(marked with XX as in 01:80:c2:XX:XX). If a bit is
set in the mask then the corresponding bit will be
compared. Otherwise the bits are dont care.

0xffff

32.10.100 LACP Packet Decoder Options

This is the MAC address used to determine that a packet is a LACP packet. If both the send to cpu option
and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Address Space : 268155

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

48:1 mac The value to be used to find this packet type. 0x180c2000002
101:49 drop If a packet comes in on this source port then drop

the packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop

counter.

0x0

154:102 toCpu If a packet comes in on this source port then send
the packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of

packet.
1 = Send to CPU , bypass normal packet process-

ing.

0x0

32.10.101 LLDP Configuration

A LLDP packet is identified as a LLDP frame if the packets MAC DA matches one of the mac1-mac3 fields
and the packets EtherType matches eth. The portmask field determines if an identified LLDP packet will
bypass the normal packet processing and instead be sent to the CPU or if the packet should pass through
normal packet processing.

305 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 1
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Address Space : 268139

Field Description

Bits
Field
Name

Description
Default
Value

47:0 mac1 DA MAC address to match for LLDP packet. 0x180c200000e
95:48 mac2 DA MAC address to match for LLDP packet. 0x180c2000003
143:96 mac3 DA MAC address to match for LLDP packet. 0x180c2000000
159:144 eth The Ethernet Type for a LLDP 0x88cc
160 bpduOption If both LLDP and BPDU are valid, because the

BPDU has same MAC address as LLDP, then
this option allows the BPDU identification to be
turned off
0 = Don’t do anything. Both LLDP and BPDU

can be valid at same time.
1 = Remove BPDU valid causing that the

packet will only be seen as a LLDP packet
and not a BPDU frame and the new frame
will not be sent to the CPU because the
switch will no longer consider it a BPDU
frame, this includes Rapid Spanning Tree
BPDUs also.

0x0

213:161 portmask One bit per source port, bit 0 for port 0, bit 1
for port 1 etc.
0 = Do not sent a matched LLDP packet to

the CPU from this port. Packet will pass
through normal packet processing.

1 = Send a matched LLDP packet to CPU from
this source port and hence bypassing normal
processing.

252 − 1

32.10.102 Learning And Aging Enable

Enable/Disable the learning and aging function. If software needs to take fully control over learning and
aging tables by writting to the FIB directly, the learning and aging units should be completely turned off,
which means all fields in this register have to be cleared to 0, partly reset is not allowed.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 956

Field Description

Bits
Field
Name

Description
Default
Value

0 learningEnable If set, the learning unit will be activated. 0x1
1 agingEnable If set, the aging unit will be activated. 0x1
2 daHitEnable If set, MAC DA hit in the forwarding information base

will update the hit bit for non-static entries.
0x1

306 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

3 lru If set, the learning unit will try to overwrite a least
recently used non-static entry in either the hash table
or the collision table when there is no free entry to
use. Otherwise the learning unit will try to overwrite
a non-static entry in the collision table.

0x0

32.10.103 Learning Conflict

Status register for the failed port move operation. A valid status means the L2 Forwarding Information
Base cannot bind the existing GID, MAC to a new port. Once the status register is updated from the
hardware, no more fails can be updated untill the software clears the valid field.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 948

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Indicates hardware has written a learning conflict to this
status register. Write 0 to clear.

0x0

48:1 macAddr MAC address. 0x0
60:49 gid Global identifier from the VLAN Table. 0x0
66:61 port Port number. 0x0

32.10.104 Learning Overflow

Status register for the failed hardware learning operation. A valid status means the L2 Forwarding Infor-
mation Base cannot find an available slot for the unknown GID, MAC. Once the status register is updated
from the hardware, no more fails can be updated untill the software clears the valid field.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 952

Field Description

Bits
Field
Name

Description
Default
Value

0 valid Indicates hardware has written a learning overflow to this
status register, Write 0 to clear.

0x0

48:1 macAddr MAC address. 0x0
60:49 gid Global identifier from the VLAN Table. 0x0
66:61 port Port number. 0x0

307 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.10.105 Link Aggregate Weight

The link aggregate hash will index into this table to determine which physical port within the aggregate
that a packet should be output to. The number of bits set for a port will determine the ratio of packets
that will go out on that port. For each hash index only one of the ports that belong to the same link
aggregate must be set. The number of bits set divided by number of hash values determines the ratio of
traffic going to that port. All link aggregates share this table since each physical port can only belong to
one link aggregate. When a link aggregate only has one port then all bits for that port must be set.

Number of Entries : 256
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : The link aggregate hash.
Address Space : 267475 to 267986

Field Description

Bits
Field
Name

Description
Default
Value

52:0 ports One bit per physical port. 0x0

32.10.106 Link Aggregation Ctrl

This register controls whether link aggregation is enabled and which packet header fields that will be used
to calculate the link aggregate hash value.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 266383

Field Description

Bits
Field
Name

Description
Default
Value

0 enable Is Link aggregation enabled or not.
0 = Link Aggregation is disabled
1 = Link Aggregation is enabled

0x0

1 useSaMacInHash The packets source MAC address shall be part of the
hash key when calculating the link aggregate hash
value

0x0

2 useDaMacInHash The packets destination MAC addresses shall be part
of the hash key when calculating the link aggregate
hash value

0x0

3 useIpInHash The packets IP source and destination addresses shall
be part of the hash key when calculating the link ag-
gregate hash value

0x0

4 useL4InHash The packets L4 SP / DP and L4 protocol byte shall
be part of the hash key when calculating the link ag-
gregate hash value

0x0

5 useTosInHash The incoming packets TOS byte shall be part of the
hash key when calculating the link aggregate hash
value

0x0

308 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

6 useVlanIdInHash The packets VLAN Identifier tag shall be part of the
hash key when calculating the link aggregate hash
value.

0x0

32.10.107 Link Aggregation Membership

This register is used to determine which link aggregation a specific source port is membership of. If link
aggregation is enabled then this port number is used for all source lookups instead of the port where the
packet enterned the switch.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Ingress port
Address Space : 266794 to 266846

Field Description

Bits
Field
Name

Description
Default
Value

5:0 la The Link aggregation which this port is a member of 0x0

32.10.108 Link Aggregation To Physical Ports Members

This link aggregate portmasks are setup to determine which physical ports are members of each link
aggregate.

Number of Entries : 53
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Addressing : The link aggregate number.
Address Space : 267369 to 267474

Field Description

Bits
Field
Name

Description
Default
Value

52:0 members Physical ports that are members of this link aggregate.
One bit per port.

0x0

32.10.109 MPLS EXP Field To Egress Queue Mapping Table

Mapping table from MPLS EXP priority fields to egress queues.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : Incoming packets MPLS EXP priority bits
Address Space : 266625 to 266632

309 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

2:0 pQueue Egress queue 0x1

32.10.110 MPLS EXP Field To Packet Color Mapping Table

Mapping table from MPLS EXP priority fields to packet initial color.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : Incoming packets MPLS EXP priority bits
Address Space : 132679 to 132686

Field Description

Bits
Field
Name

Description
Default
Value

1:0 color Packet initial color 0x0

32.10.111 Mask MAC Table Lookup

Which bits shall be used in the hash function and which bits shall be compared in the L2 lookup.

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 267359

Field Description

Bits
Field
Name

Description
Default
Value

47:0 macAddrMask MAC address mask. 0 = Bit will not be used,
1= bit will be used.

248 − 1

59:48 gidMask Global identifier mask. 0 = Bit will not be used,
1= bit will be used.

0xfff

32.10.112 Port Move Options

Determine if port move is allowed on static entries.

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 267361

310 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

52:0 allowPortMoveOnStatic This field configures which source ports
that are allowed to change their static
GID and MAC to other ports. One bit for
each port where bit 0 corresponds to port
0. When the L2 forwarding information
base identifies a GID, MAC SA and source
port combination that conflicts with a ex-
isting static entry, if the previous binded
port has a coressponding bit set to 1 in
this field, it allows the learning engine to
update the GID and MAC to the current
source port.

253 − 1

32.10.113 RARP Packet Decoder Options

The Ethernet type used to determine if a packet is a RARP packet.. If both the send to cpu option and
drop packet option is selected on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267327

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

16:1 eth The value to be used to find this packet type. 0x8035
69:17 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

122:70 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.114 Reserved Destination MAC Address Range

The mac addresses ranges that the packets destination MAC address are compared with and the corre-
sponding actions. A range is matched if the packets MAC address is ≥ startAddr and the address is ≤
stopAddr. The table is searched starting from entry 0. When a range is matched the corresponding actions
(drop, send to cpu, force egress queue) will be activated. If multiple ranges are matched, any matching
range that sets drop will cause a drop. Any match that sets sendToCpu will cause send to CPU (this
has priority over drop). When multiple ranges that match has set the forceQueue field then the highest
numbered entry will determine the value.

311 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 8
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 268283 to 268346

Field Description

Bits
Field
Name

Description
Default
Value

47:0 startAddr The start MAC address of the range. A packets destination
MAC address must be equal or greater than this value to
match the range.

0x0

95:48 stopAddr The end MAC address of the range. A packets destination
MAC address must be equal or less than this value to match
the range.

0x0

96 dropEnable If the MAC address was within the range the packet shall
be dropped and the Reserved MAC DA Drop counter
incremented.

0x0

97 sendToCpu If the MAC address was within the range the packet shall
be sent to the CPU.

0x0

98 forceQueue If set, the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

101:99 eQueue The egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

103:102 color Inital color of the packet. 0x0
104 forceColor If set, the packet shall have a forced color. 0x0
105 mmpValid If set, this entry contains a valid MMP pointer 0x0
112:106 mmpPtr Ingress MMP pointer. 0x0
114:113 mmpOrder Ingress MMP pointer order. 0x0
167:115 enable Enable the reserved MAC DA check per source port. One

bit for each port where bit 0 corresponds to port 0. If a
bit is set to one, the reserved MAC DA range is activated
for that source port.

0x0

32.10.115 Reserved Source MAC Address Range

The mac addresses ranges that the packets source MAC address are compared with and the corresponding
actions. A range is matched if the packets MAC address is ≥ startAddr and the address is ≤ stopAddr.
The table is searched starting from entry 0. When a range is matched the corresponding actions (drop,
send to cpu, force egress queue) will be activated. If multiple ranges are matched, any matching range
that sets drop will cause a drop. Any match that sets sendToCpu will cause send to CPU (this has priority
over drop). When multiple ranges that match has set the forceQueue then the highest numbered entry
will determine the value.

Number of Entries : 8
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 268219 to 268282

Field Description

312 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

47:0 startAddr The start MAC address of the range. A packets source
MAC address must be equal or greater than this value to
match the range.

0x0

95:48 stopAddr The end MAC address of the range. A packets source MAC
address must be equal or less than this value to match the
range.

0x0

96 dropEnable If the MAC address was within the range the packet shall
be dropped and the Reserved MAC SA Drop counter
incremented.

0x0

97 sendToCpu If the MAC address was within the range the packet shall
be sent to the CPU.

0x0

98 forceQueue If set, the packet shall have a forced egress queue. Please
see Egress Queue Selection Diagram in Figure 19.1

0x0

101:99 eQueue The egress queue to be assigned if the forceQueue field in
this entry is set to 1.

0x0

103:102 color Inital color of the packet. 0x0
104 forceColor If set, the packet shall have a forced color. 0x0
105 mmpValid If set, this entry contains a valid MMP pointer 0x0
112:106 mmpPtr Ingress MMP pointer. 0x0
114:113 mmpOrder Ingress MMP pointer order. 0x0
167:115 enable Enable the reserved source MAC check per source port.

One bit for each port where bit 0 corresponds to port 0.
If a bit is set to one, the reserved source MAC range is
activated for that source port.

0x0

32.10.116 SCTP Packet Decoder Options

The L4 protocol number which is used to detemine if the packet has a SCTP header. If both the send to
cpu option and drop packet option is selected on same source port then the packet will be dropped.

Number of Entries : 1
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Address Space : 267339

Field Description

Bits
Field
Name

Description
Default
Value

0 enabled Is this decoding enabled.
0 = No
1 = Yes

0x1

8:1 l4Proto The value to be used to find this packet type. 0x84
61:9 drop If a packet comes in on this source port then drop the

packet.
0 = Do not drop this packet.
1 = Drop this packet and update the drop counter.

0x0

313 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

114:62 toCpu If a packet comes in on this source port then send the
packet to the CPU port.
0 = Do not sent to CPU. Normal Processing of packet.
1 = Send to CPU , bypass normal packet processing.

0x0

32.10.117 SMON Set Search

If both source port and VLAN ID match one of the entries, the corresponding SMON counter will be
updated.

Number of Entries : 16
Type of Operation : Read/Write
Addressing : SMON set number
Address Space : 266778 to 266793

Field Description

Bits
Field
Name

Description
Default
Value

5:0 srcPort Source port 0x0
17:6 vid VLAN ID 0x0

32.10.118 Send to CPU

Configuration of MAC addresses used to redirect packets to CPU.

Number of Entries : 1
Number of Addresses per Entry : 8
Type of Operation : Read/Write
Address Space : 268131

Field Description

Bits
Field
Name

Description
Default
Value

52:0 allowBpdu Send to CPU portmask, bit 0 port 0, bit 1 port
1 etc. If source port bit is set then packets
that have the destination MAC address equal to
01:80:C2:00:00:00 are sent to the CPU port.

253 − 1

105:53 allowRstBpdu Send to CPU portmask, bit 0 port 0, bit 1 port
1 etc. If the source port bit is set then packets
that have the destination MAC address equal to
01:00:0C:CC:CC:CD are sent to the CPU port.

253 − 1

158:106 uniqueCpuMac If set then unicast packets can not be switched
or routed to the CPU port. Other mechanism for
sending to the CPU port are not affected (e.g.
ACL’s). This also enables detection of a specific
MAC address, cpuMacAddr, that will be sent
to the CPU.

0x0

314 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

206:159 cpuMacAddr Packets with this destination MAC address
will be sent to the CPU. Only valid if
uniqueCpuMac on the source port is set.

0x0

32.10.119 Source Port Default ACL Action

The default ACL action which will be taken on a source port if the enableDefaultPortAcl is set and the
ACL lookup misses. The action will also be taken if the forcePortAclAction is set and then it will override
the result from the ACL even if the ACL was hit or not.

Number of Entries : 53
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : Source Port
Address Space : 114775 to 114986

Field Description

Bits
Field
Name

Description
Default
Value

0 inputMirror If set, input mirroring is enabled for this rule. In addi-
tion to the normal processing of the packet a copy of
the unmodified input packet will be send to the des-
tination Input Mirror port and exit on that port. The
copy will be subject to the normal resource limitations
in the switch.

0x0

6:1 destInputMirror Destination physical port for input mirroring. 0x0
7 noLearning If set this packets MAC SA will not be learned. 0x0
8 updateCounter When set the selected statistics counter will be up-

dated.
0x0

16:9 counter Which counter in Ingress Configurable ACL Match
Counter to update.

0x0

17 forceVidValid Override the Ingress VID, see chapter VLAN Process-
ing.

0x0

29:18 forceVid The new Ingress VID. 0x0
30 updateCfiDei The CFI/DEI value of the packets outermost VLAN

should be updated.
0 = Do not update the value.
1 = Update the value.

0x0

31 newCfiDeiValue The value to update to. 0x0
32 updatePcp The PCP value of the packets outermost VLAN should

be updated.
0 = Do not update the value.
1 = Update the value.

0x0

35:33 newPcpValue The PCP value to update to. 0x0
36 updateVid The VID value of the packets outermost VLAN should

be updated.
0 = Do not update the value.
1 = Update the value.

0x0

48:37 newVidValue The VID value to update to. 0x0

315 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

49 updateEType The VLANs TPID type should be updated.
0 = Do not update the TPID.
1 = Update the TPID.

0x0

51:50 newEthType Select which TPID to use in the outer VLAN header.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register Egress

Ethernet Type for VLAN tag.

0x0

52 dropEnable If set, the packet shall be dropped and the Ingress
Configurable ACL Drop counter is incremented.

0x0

53 sendToCpu If set, the packet shall be sent to the CPU port. 0x0
54 sendToPort Send the packet to a specific port.

0 = Disabled.
1 = Send to port configured in destPort.

0x0

60:55 destPort The port which the packet shall be sent to. 0x0
61 forceColor If set, the packet shall have a forced color. 0x0
63:62 color Initial color of the packet if the forceColor field is set. 0x0
64 mmpValid If set, this entry contains a valid MMP pointer 0x0
71:65 mmpPtr Ingress MMP pointer. 0x0
73:72 mmpOrder Ingress MMP pointer order. 0x0
74 forceQueue If set, the packet shall have a forced egress queue.

Please see Egress Queue Selection Diagram in Figure
19.1

0x0

77:75 eQueue The egress queue to be assigned if the forceQueue
field in this entry is set to 1.

0x0

78 decTtl If set this packets L3 (IPv4,IPv6) TTL field will be
decremented. If the field is already zero then it will
be kept at zero. If this action leads to TTL=0 then the
packet is dropped or sent to the CPU port according
to Expired TTL to CPU

0x0

79 macOp If set this packets MAC SA and DA can be changed. 0x0
88:80 macOpPtr Pointer to egress MAC action, defined in Egress

MAC Operations on what changes shall be done to
MAC addresses of the packet.

0x0

32.10.120 Source Port Table

This table configures various functions that are dependent on which port the packet enters the switch.
A VLAN operation (e.g. push, pop, swap) to be performed can be selected by the vlanSingleOp field
in Source Port Table. For the push and swap operations the information used to create the new VLAN
header is controlled by the fields vidSel, cfiDeiSel, pcpSel and typeSel. Other configurations are VLAN
LUT index, input mirroring, spanning tree state, Ingress VID offset, special VID treatment, multicast
learning, min/max number of VLANs and L3 priority selection.

Number of Entries : 53
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : Ingress port
Address Space : 266847 to 267058

Field Description

316 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

0 learningEn If hardware learning is turned on and this is set
to one, the unknown source MAC address from
this port will be learned.

0x1

1 dropUnknownDa If set to one packets with unknown destination
MAC address from this port will be dropped.

0x0

2 prioFromL3 If the packet is IP/MPLS and this is set the
egress queue will be selected from Layer 3 de-
coding described in Determine Egress Queue.

0x0

3 colorFromL3 If the packet is IP/MPLS and this bit is set the
packet initial color will be selected from Layer 3
decoding.

0x0

4 useAcl0 Use ACL on this source port.
0 = No. No ACL lookup is done
1 = Yes. The aclRule0 pointer selects which

fields that are part of the lookup.

0x0

8:5 aclRule0 Pointer into the Ingress Configurable ACL 0
Rules Setup table selecting which ACL fields to
select to do the ACL lookup with.

0x0

9 useAcl1 Use ACL on this source port.
0 = No. No ACL lookup is done
1 = Yes. The aclRule1 pointer selects which

fields that are part of the lookup.

0x0

13:10 aclRule1 Pointer into the Ingress Configurable ACL 1
Rules Setup table selecting which ACL fields to
select to do the ACL lookup with.

0x0

14 useAcl2 Use ACL on this source port.
0 = No. No ACL lookup is done
1 = Yes. The aclRule2 pointer selects which

fields that are part of the lookup.

0x0

18:15 aclRule2 Pointer into the Ingress Configurable ACL 2
Rules Setup table selecting which ACL fields to
select to do the ACL lookup with.

0x0

19 useAcl3 Use ACL on this source port.
0 = No. No ACL lookup is done
1 = Yes. The aclRule3 pointer selects which

fields that are part of the lookup.

0x0

23:20 aclRule3 Pointer into the Ingress Configurable ACL 3
Rules Setup table selecting which ACL fields to
select to do the ACL lookup with.

0x0

26:24 vlanSingleOp The source port VLAN operation to perform on
the packet.
0 = No operation.
1 = Swap.
2 = Push.
3 = Pop.
4 = Penultimate pop(remove all VLAN head-

ers).

0x0

317 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

28:27 vidSel Selects which VID to use when building a new
VLAN header in a source port push or swap oper-
ation. If the selected VLAN header doesn’t exist
in the packet then this table entry’s defaultVid
will be used.
0 = From outermost VLAN in the original

packet (if any).
1 = From this table entry’s defaultVid.
2 = From the second VLAN in the original

packet (if any).

0x0

30:29 cfiDeiSel Selects which CFI/DEI to use when building a
new VLAN header in a source port push or swap
operation. If the selected VLAN header doesn’t
exist in the packet then this table entry’s de-
faultCfiDei will be used.
0 = From outermost VLAN in the original

packet (if any).
1 = From this table entry’s defaultCfiDei.
2 = From the second VLAN in the original

packet (if any).

0x0

32:31 pcpSel Selects which PCP to use when building a new
VLAN header in a source port push or swap op-
eration. If the selected VLAN header doesn’t
exist in the packet then this table entry’s de-
faultPcp will be used.
0 = From outermost VLAN in the original

packet. (if any)
1 = From this table entry’s defaultPcp.
2 = From the second VLAN in the original

packet (if any).

0x0

34:33 typeSel Selects which TPID to use when building a new
VLAN header in a source port push or swap op-
eration.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register

Egress Ethernet Type for VLAN tag.

0x0

36:35 vlanAssignment Controls how a packets Ingress VID is assigned.
If the selected source is from a VLAN header in
the incoming packet and the packet doesn’t have
that header, then this table entry’s defaultVid
will be used.
0 = packet based - the Ingress VID is as-

signed from the incoming packets outer-
most VLAN header.

1 = port-based - the packets Ingress VID is as-
signed from this table entry’s defaultVid

2 = mixed - if there are two VLANs in the
incoming packet, the inner VLAN is cho-
sen. If the incoming packet has only 0 or 1
VLAN, then it will select this table entry’s
defaultVid

0x0

48:37 defaultVid The default VID. This is used in source port
VLAN operations (see vidSel). It is used to as-
sign Ingress VID (see vlanAssignment). It is
used when creating an internal VLAN header for
incoming packets that has no VLAN header.

0x0

318 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

49 defaultCfiDei The default CFI / DEI bit. This is used in
source port VLAN operations (see cfiDeiSel). It
is used when creating an internal VLAN header
for incoming packets that has no VLAN header.

0x0

52:50 defaultPcp The default PCP bits. This is used in source
port VLAN operations (see .pcpSel). It is used
when creating an internal VLAN header for in-
coming packets that has no VLAN header.

0x0

54:53 defaultVidOrder When a new hit is done in the result in the
L2,L3,L4 VID range checks the ingress VID will
only be changed if the result has a higher order
value.

0x0

56:55 minAllowedVlans The minimum number of VLAN headers a
packet must have to be allowed on this port.
Otherwise the packet will be dropped and the
Minimum Allowed VLAN Drop will be incre-
mented.
0 = All packets are accepted.
1 = 1 or more tags are accepted.
2 = 2 or more tags are accepted.
3 = No packets are accepted.

0x0

58:57 maxAllowedVlans The maximum number of VLAN headers a
packet is allowed to have to enter on this port.
Otherwise the packet will be dropped and the
Maximum Allowed VLAN Drop will be incre-
mented.
0 = Only untagged packets are accepted.
1 = 0 to 1 tags are accepted.
2 = Any number of VLANs are accepted.
3 = Any number of VLANs are accepted.

0x2

59 ignoreVlanMembership By default packets on non-VLAN member source
port are dropped before entering the L2 lookup
process. Set this field to one to ignore the VLAN
membership check on the source port. However
L2 lookup can never forward packets to non-
VLAN member destinations.

0x0

60 learnMulticastSaMac If set, the learning engine allows Ethernet mul-
ticast source MAC addresses to be learned.

0x0

61 learnMacDaEqSa Set to zero to ignore the hardware learning re-
quest when MAC DA equals SA.

0x1

62 inputMirrorEnabled If set, input mirroring is enabled on this port. In
addition to the normal processing of the packet
a copy of the unmodified input packet will be
send to the destInputMirror port and exit on
that port. The copy will be subject to the normal
resource limitations in the switch.

0x0

63 imUnderVlanMembership If set, input mirroring to a destination that not
a member of the VLAN will be ignored.

0x0

64 imUnderPortIsolation If set, input mirroring to a destination that iso-
lated the source port in the srcPortFilter will
be ignored.

0x0

70:65 destInputMirror Destination physical port for input mirroring.
Only valid if inputMirrorEnabled is set.

0x0

319 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

73:71 spt The spanning tree state for this ingress port.
The state Disabled implies that spanning tree
protocol is not enabled and hence frames will be
forwarded on this egress port.
0 = Disabled.
1 = Blocking.
2 = Listening.
3 = Learning.
4 = Forwarding.

0x0

74 enablePriorityTag An outer VLAN tag with VID matching priori-
tyVid will have PCP bits extracted and used to
determine output queue but in remaining VLAN
processing this tag will not be treated as a VLAN
tag. If the packet has an inner VLAN tag this
will be treated as an outer VLAN tag in the fol-
lowing VLAN processing. The VID will only be
matched in a VLAN header located immediately
after DA and SA MAC, i.e. no custom tags al-
lowed. In egress processing the outer VLAN tag
will be removed.
0 = Disable comparison.
1 = Enable comparison.

0x0

86:75 priorityVid The VID used in the outer VLAN tag compari-
son, see enablePriorityTag.

0x0

87 enableL2ActionTable On packets coming in on this port should be
checked with the L2 Action Table and L2 Ac-
tion Table Source Port.
0 = No, Do not lookup on the L2 Action Table

and L2 Action Table Source Port.
1 = Yes. Do Lookup in the L2 Action Table

and L2 Action Table Source Port

0x0

88 l2ActionTablePortState What is the source port status bit. Used in table
L2 Action Table and L2 Action Table Source
Port.

0x0

89 enableDefaultPortAcl If enabled then the default acl for this port will
be done if the ACL misses in its lookup.
0 = Disabled. No default action taken.
1 = Enabled. If ACL lookup misses then this

ACL actil will be carried out instead.

0x0

90 forcePortAclAction If enabled then the default acl for this port will
always be done, if the ACL is hit then the port
ACL will overwrite the ACL result.
0 = Disabled. Not action forced.
1 = Enabled. The port ACL overwrites and re-

sult from the ingress ACL.

0x0

93:91 preLookupAclBits Pre lookup bits which is used by this port in
the pre-lookup tables in the ingress ACLS. Same
value is used for all pre ACL lookups which has
the source port bits in it.

0x0

32.10.121 TCP/UDP Flag Rules

IPv4/IPv6 TCP/UDP packets will be compared to all entries in this table. The TCP/UDP flags values can
be compared by enabling some of the comparisons. The packets flags will be compared with the values
in the entries for all flags that have comparison enabled. If comparison is disabled the flags values will be

320 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

ignored. In addition the packets IP source and destination addresses are compared and if they are equal
this status can also be used in the rules. The TCP source and destination ports are also compared if equal
and this status can also be used in the rules. If a packet matches any of these rules the packet will be
dropped and the Attack Prevention Drop will be incremented.

Number of Entries : 16
Type of Operation : Read/Write
Addressing : All entries are read out in parallel
Address Space : 266641 to 266656

Field Description

Bits
Field
Name

Description
Default
Value

0 urg TCP flag URG compare value. 0x0
1 ack TCP flag ACK compare value. 0x0
2 psh TCP flag PSH compare value. 0x0
3 rst TCP flag RST compare value. 0x0
4 syn TCP flag SYN compare value. 0x0
5 fin TCP flag FIN compare value. 0x0
6 DaSa Value of IP address comparison. 0x0
7 SpDpTcp Value of TCP port comparison. 0x0
8 SpDpUdp Value of UDP port comparison. 0x0
9 cmpUrg Enable comparison of URG. 0x0
10 cmpAck Enable comparison of ACK. 0x0
11 cmpPsh Enable comparison of PSH. 0x0
12 cmpRst Enable comparison of RST. 0x0
13 cmpSyn Enable comparison of SYN. 0x0
14 cmpFin Enable comparison of FIN. 0x0
15 cmpDaSa Enable comparison of IP DA equal to SA. 0x0
16 cmpSpDpTcp Enable comparison of TCP source port equal to destination

port.
0x0

17 cmpSpDpUdp Enable comparison of UDP source port equal to destination
port.

0x0

18 enable Enable this rule. 0x0

32.10.122 Time to Age

Interval period after which FIB entries are aged out.

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 1010

Field Description

Bits
Field
Name

Description
Default
Value

31:0 tickCnt Number of ticks (see Chapter Tick) between starts of
the aging process.

232 − 1

321 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

34:32 tick Select one of the 6 available ticks. The tick frequen-
cies are configured globaly in the Core Tick Config-
uration register.

0x0

32.10.123 VLAN PCP And DEI To Color Mapping Table

Mapping table from VLAN PCP and DEI field to packet initial color.

Number of Entries : 16
Type of Operation : Read/Write

Addressing :
address[0:2] : PCP
address[3] : DEI

Address Space : 132151 to 132166

Field Description

Bits
Field
Name

Description
Default
Value

1:0 color Packet initial color. 0x0

32.10.124 VLAN PCP To Queue Mapping Table

Mapping table from VLAN PCP priority bits to ingress/egress queues.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : Incoming packets VLAN priority bits
Address Space : 266633 to 266640

Field Description

Bits
Field
Name

Description
Default
Value

2:0 pQueue Egress queue. 0x1

32.10.125 VLAN Table

Defines the VLAN port membership, which GID to use in L2 lookups, the MSPT to use, if routing is
allowed and a VLAN operation (e.g. push, pop, swap) to be performed.
The VLAN operation is selected by the vlanSingleOp field. For the push and swap operations the in-
formation used to create the new VLAN header is controlled by the fields vidSel, cfiDeiSel, pcpSel and
typeSel.

Number of Entries : 4096
Number of Addresses per Entry : 4
Type of Operation : Read/Write
Addressing : The packet’s Ingress VID plus offset as defined in Source Port Table.
Address Space : 114999 to 131382

322 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

52:0 vlanPortMask VLAN membership portmask. The packets
source port must be a member of the VLAN,
otherwise the packet will be dropped and the
VLAN Member Drop will be incremented. The
membership mask will also limit the destination
ports for L2 unicast, multicast, broadcast and
flooding. If this results in an empty destination
port mask then the packet is dropped and the
Empty Mask Drop will be incremented.

253 − 1

64:53 gid The packet will be assigned a global identifier
that is used during L2 lookup to allow multiple
VLANs to share the same L2 tables.

0x0

65 mmpValid If set, this entry contains a valid MMP pointer 0x0
72:66 mmpPtr Ingress MMP pointer. 0x0
74:73 mmpOrder Ingress MMP pointer order. 0x0
80:75 msptPtr The multiple spanning tree to be used by packets

on this VLAN. Points to entries in the Ingress
Multiple Spanning Tree State and Egress
Multiple Spanning Tree State tables

0x0

83:81 vlanSingleOp The ingress VLAN operation to perform on the
packet.
0 = No operation.
1 = Swap.
2 = Push.
3 = Pop.
4 = Penultimate Pop(remove all VLANS).

0x0

85:84 vidSel Selects which VID to use when building a new
VLAN header in a push or swap operation. If
the selected VLAN header doesn’t exist in the
packet then this table entry’s vid will be used.
0 = From the outermost VLAN in the original

packet (if any).
1 = From this table entry’s vid.
2 = From the second VLAN in the original

packet (if any).

0x0

87:86 cfiDeiSel Selects which CFI/DEI to use when building a
new VLAN header in a push or swap operation.
If the selected VLAN header doesn’t exist in the
packet then this table entry’s cfiDei will be used.
0 = From outermost VLAN in the original

packet (if any).
1 = From this table entry’s cfiDei.
2 = From the second VLAN in the original

packet (if any).

0x0

323 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

89:88 pcpSel Selects which PCP to use when building a new
VLAN header in a push or swap operation. If
the selected VLAN header doesn’t exist in the
packet then this table entry’s pcp will be used.
0 = From outermost VLAN in the original

packet. (if any)
1 = From this table entry’s pcp.
2 = From the second VLAN in the original

packet (if any).

0x0

101:90 vid The VID used in VLAN push or swap operation
if selected by vidSel.

0x0

104:102 pcp The PCP used in VLAN push or swap operation
if selected by pcpSel.

0x0

105 cfiDei The CFI/DEI used in VLAN push or swap oper-
ation if selected by cfiDeiSel

0x0

107:106 typeSel Selects which TPID to use when building a new
VLAN header in a push or swap operation.
0 = C-VLAN - 0x8100.
1 = S-VLAN - 0x88A8.
2 = User defined VLAN type from register

Egress Ethernet Type for VLAN tag field
typeValue.

0x0

32.11 MBSC

32.11.1 L2 Broadcast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Broadcast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 357 to 409

Field Description

Bits
Field
Name

Description
Default
Value

15:0 bucketCapacity Capacity of the token bucket 0x5c8

32.11.2 L2 Broadcast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Broadcast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 410 to 462

Field Description

324 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

15:0 threshold Minimum number of tokens in bucket for the status to be
set to accept.

0x2e4

32.11.3 L2 Broadcast Storm Control Enable

Bitmask to turn L2 Broadcast Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 463

Field Description

Bits
Field
Name

Description
Default
Value

52:0 enable Bitmask where the index is the Egress Ports 0x0

32.11.4 L2 Broadcast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Broadcast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 304 to 356

Field Description

Bits
Field
Name

Description
Default
Value

0 packetsNotBytes If set the bucket will count packets, if cleared bytes 0x1
12:1 tokens The number of tokens added each tick 0x4a

15:13 tick Select one of the six available core ticks. The tick
frequencies are configured globaly in the core Tick
Configuration register.

Index Value
0-47 0x3
48-52 0x2

23:16 ifgCorrection Extra bytes per packet to correct for IFG in byte mode.
Default is 4 byte FCS plus 20 byte IFG.

0x18

32.11.5 L2 Multicast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Multicast Storm Control

325 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 518 to 570

Field Description

Bits
Field
Name

Description
Default
Value

15:0 bucketCapacity Capacity of the token bucket 0x5c8

32.11.6 L2 Multicast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Multicast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 571 to 623

Field Description

Bits
Field
Name

Description
Default
Value

15:0 threshold Minimum number of tokens in bucket for the status to be
set to accept.

0x2e4

32.11.7 L2 Multicast Storm Control Enable

Bitmask to turn L2 Multicast Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 624

Field Description

Bits
Field
Name

Description
Default
Value

52:0 enable Bitmask where the index is the Egress Ports 0x0

32.11.8 L2 Multicast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Multicast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 465 to 517

326 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 packetsNotBytes If set the bucket will count packets, if cleared bytes 0x1
12:1 tokens The number of tokens added each tick 0x4a

15:13 tick Select one of the six available core ticks. The tick
frequencies are configured globaly in the core Tick
Configuration register.

Index Value
0-47 0x3
48-52 0x2

23:16 ifgCorrection Extra bytes per packet to correct for IFG in byte mode.
Default is 4 byte FCS plus 20 byte IFG.

0x18

32.11.9 L2 Unknown Multicast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Unknown Multicast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 840 to 892

Field Description

Bits
Field
Name

Description
Default
Value

15:0 bucketCapacity Capacity of the token bucket 0x5c8

32.11.10 L2 Unknown Multicast Storm Control Bucket Threshold Configura-
tion

Token Bucket Threshold Configuration for L2 Unknown Multicast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 893 to 945

Field Description

Bits
Field
Name

Description
Default
Value

15:0 threshold Minimum number of tokens in bucket for the status to be
set to accept.

0x2e4

327 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.11.11 L2 Unknown Multicast Storm Control Enable

Bitmask to turn L2 Unknown Multicast Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 946

Field Description

Bits
Field
Name

Description
Default
Value

52:0 enable Bitmask where the index is the Egress Ports 0x0

32.11.12 L2 Unknown Multicast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Unknown Multicast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 787 to 839

Field Description

Bits
Field
Name

Description
Default
Value

0 packetsNotBytes If set the bucket will count packets, if cleared bytes 0x1
12:1 tokens The number of tokens added each tick 0x4a

15:13 tick Select one of the six available core ticks. The tick
frequencies are configured globaly in the core Tick
Configuration register.

Index Value
0-47 0x3
48-52 0x2

23:16 ifgCorrection Extra bytes per packet to correct for IFG in byte mode.
Default is 4 byte FCS plus 20 byte IFG.

0x18

32.11.13 L2 Unknown Unicast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Unknown Unicast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 679 to 731

Field Description

328 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

15:0 bucketCapacity Capacity of the token bucket 0x5c8

32.11.14 L2 Unknown Unicast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Unknown Unicast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 732 to 784

Field Description

Bits
Field
Name

Description
Default
Value

15:0 threshold Minimum number of tokens in bucket for the status to be
set to accept.

0x2e4

32.11.15 L2 Unknown Unicast Storm Control Enable

Bitmask to turn L2 Unknown Unicast Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 785

Field Description

Bits
Field
Name

Description
Default
Value

52:0 enable Bitmask where the index is the Egress Ports 0x0

32.11.16 L2 Unknown Unicast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Unknown Unicast Storm Control

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 626 to 678

Field Description

329 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

0 packetsNotBytes If set the bucket will count packets, if cleared bytes 0x1
12:1 tokens The number of tokens added each tick 0x4a

15:13 tick Select one of the six available core ticks. The tick
frequencies are configured globaly in the core Tick
Configuration register.

Index Value
0-47 0x3
48-52 0x2

23:16 ifgCorrection Extra bytes per packet to correct for IFG in byte mode.
Default is 4 byte FCS plus 20 byte IFG.

0x18

32.12 Scheduling

32.12.1 DWRR Bucket Capacity Configuration

Token Bucket Capacity Configuration for DWRR

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 273023 to 273075

Field Description

Bits
Field
Name

Description
Default
Value

17:0 bucketCapacity Capacity of the byte bucket 218 − 1

32.12.2 DWRR Bucket Misc Configuration

Bucket Configurations for DWRR

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Ports
Address Space : 273076 to 273128

Field Description

Bits
Field
Name

Description
Default
Value

4:0 threshold When the number of bytes in any bucket goes below
2**thr, all buckets mapped to the same prio will be
replenished.

0xe

5 packetsNotBytes If set the bucket will count packets, if cleared bytes 0x0
13:6 ifgCorrection Extra bytes per packet to correct for IFG in byte mode. 0x14

330 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.12.3 DWRR Weight Configuration

Weight Configuration for DWRR

Number of Entries : 424
Type of Operation : Read/Write
Addressing : Egress port * 8 + queue
Address Space : 273129 to 273552

Field Description

Bits
Field
Name

Description
Default
Value

7:0 weight The relative weight of the queue. A queue with weight 0 is not
part of the round robin scheduling but will always be selected
last.

0x1

32.12.4 Map Queue to Priority

Map from egress queue to egress priority. Note that this setting must not be changed for any queue with
packets queued.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 272063 to 272115

Field Description

Bits
Field
Name

Description
Default
Value

2:0 prio0 The priority for queue 0 0x0
5:3 prio1 The priority for queue 1 0x1
8:6 prio2 The priority for queue 2 0x2
11:9 prio3 The priority for queue 3 0x3
14:12 prio4 The priority for queue 4 0x4
17:15 prio5 The priority for queue 5 0x5
20:18 prio6 The priority for queue 6 0x6
23:21 prio7 The priority for queue 7 0x7

32.12.5 Output Disable

Bitmask for disabling the egress queues on egress ports.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 272970 to 273022

331 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

0 egressQueue0Disabled If set, stop scheduling new packets for output from
queue 0 on this egress port.

0x0

1 egressQueue1Disabled If set, stop scheduling new packets for output from
queue 1 on this egress port.

0x0

2 egressQueue2Disabled If set, stop scheduling new packets for output from
queue 2 on this egress port.

0x0

3 egressQueue3Disabled If set, stop scheduling new packets for output from
queue 3 on this egress port.

0x0

4 egressQueue4Disabled If set, stop scheduling new packets for output from
queue 4 on this egress port.

0x0

5 egressQueue5Disabled If set, stop scheduling new packets for output from
queue 5 on this egress port.

0x0

6 egressQueue6Disabled If set, stop scheduling new packets for output from
queue 6 on this egress port.

0x0

7 egressQueue7Disabled If set, stop scheduling new packets for output from
queue 7 on this egress port.

0x0

32.13 Shapers

32.13.1 Port Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Port Shaper

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port
Address Space : 276182 to 276234

Field Description

Bits
Field
Name

Description
Default
Value

15:0 bucketCapacity Capacity of the token bucket
Index Value
0-47 0xea6
48-52 0x927c

32.13.2 Port Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Port Shaper

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port
Address Space : 276235 to 276287

332 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

15:0 threshold Minimum number of tokens in bucket for the status to be set
to accept.

Index Value
0-47 0x4e2
48-52 0x30d4

32.13.3 Port Shaper Enable

Bitmask to turn Port Shaper ON/OFF (1/0) for Egress Port

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read/Write
Address Space : 276288

Field Description

Bits
Field
Name

Description
Default
Value

52:0 enable Bitmask where the index is the Egress Port 0x0

32.13.4 Port Shaper Rate Configuration

Token Bucket rate Configuration for Port Shaper

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port
Address Space : 276129 to 276181

Field Description

Bits
Field
Name

Description
Default
Value

0 packetsNotBytes If set the bucket will count packets, if cleared bytes 0x0

12:1 tokens The number of tokens added each tick
Index Value
0-47 0x7d
48-52 0x4e2

15:13 tick Select one of the six available core ticks. The tick
frequencies are configured globaly in the core Tick
Configuration register.

0x0

23:16 ifgCorrection Extra bytes per packet to correct for IFG in byte mode.
Default is 4 byte FCS plus 20 byte IFG.

0x18

333 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.13.5 Prio Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Prio Shaper

Number of Entries : 424
Type of Operation : Read/Write
Addressing : Egress Port * 8 + Egress Prio
Address Space : 275265 to 275688

Field Description

Bits
Field
Name

Description
Default
Value

15:0 bucketCapacity Capacity of the token bucket
Index Value
0-383 0xea6
384-423 0x927c

32.13.6 Prio Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Prio Shaper

Number of Entries : 424
Type of Operation : Read/Write
Addressing : Egress Port * 8 + Egress Prio
Address Space : 275689 to 276112

Field Description

Bits
Field
Name

Description
Default
Value

15:0 threshold Minimum number of tokens in bucket for the status to be set
to accept.

Index Value
0-383 0x4e2
384-423 0x30d4

32.13.7 Prio Shaper Enable

Bitmask to turn Prio Shaper ON/OFF (1/0) for Egress Port * 8 + Egress Prio

Number of Entries : 1
Number of Addresses per Entry : 16
Type of Operation : Read/Write
Address Space : 276113

Field Description

Bits
Field
Name

Description
Default
Value

423:0 enable Bitmask where the index is the Egress Port * 8 + Egress Prio 0x0

334 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.13.8 Prio Shaper Rate Configuration

Token Bucket rate Configuration for Prio Shaper

Number of Entries : 424
Type of Operation : Read/Write
Addressing : Egress Port * 8 + Egress Prio
Address Space : 274841 to 275264

Field Description

Bits
Field
Name

Description
Default
Value

0 packetsNotBytes If set the bucket will count packets, if cleared bytes 0x0

12:1 tokens The number of tokens added each tick
Index Value
0-383 0x7d
384-423 0x4e2

15:13 tick Select one of the six available core ticks. The tick
frequencies are configured globaly in the core Tick
Configuration register.

0x0

23:16 ifgCorrection Extra bytes per packet to correct for IFG in byte mode.
Default is 4 byte FCS plus 20 byte IFG.

0x18

32.13.9 Queue Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Queue Shaper

Number of Entries : 424
Type of Operation : Read/Write
Addressing : Egress Port * 8 + Egress Queue
Address Space : 273977 to 274400

Field Description

Bits
Field
Name

Description
Default
Value

15:0 bucketCapacity Capacity of the token bucket
Index Value
0-383 0xea6
384-423 0x927c

32.13.10 Queue Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Queue Shaper

Number of Entries : 424
Type of Operation : Read/Write
Addressing : Egress Port * 8 + Egress Queue
Address Space : 274401 to 274824

335 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

15:0 threshold Minimum number of tokens in bucket for the status to be set
to accept.

Index Value
0-383 0x4e2
384-423 0x30d4

32.13.11 Queue Shaper Enable

Bitmask to turn Queue Shaper ON/OFF (1/0) for Egress Port * 8 + Egress Queue

Number of Entries : 1
Number of Addresses per Entry : 16
Type of Operation : Read/Write
Address Space : 274825

Field Description

Bits
Field
Name

Description
Default
Value

423:0 enable Bitmask where the index is the Egress Port * 8 + Egress Queue 0x0

32.13.12 Queue Shaper Rate Configuration

Token Bucket rate Configuration for Queue Shaper

Number of Entries : 424
Type of Operation : Read/Write
Addressing : Egress Port * 8 + Egress Queue
Address Space : 273553 to 273976

Field Description

Bits
Field
Name

Description
Default
Value

0 packetsNotBytes If set the bucket will count packets, if cleared bytes 0x0

12:1 tokens The number of tokens added each tick
Index Value
0-383 0x7d
384-423 0x4e2

15:13 tick Select one of the six available core ticks. The tick
frequencies are configured globaly in the core Tick
Configuration register.

0x0

23:16 ifgCorrection Extra bytes per packet to correct for IFG in byte mode.
Default is 4 byte FCS plus 20 byte IFG.

0x18

336 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.14 Shared Buffer Memory

32.14.1 Buffer Free

The number of cells available in the buffer memory for incoming packets.

Number of Entries : 1
Type of Operation : Read Only
Address Space : 1

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Number of free cells. 0x349a

32.14.2 Egress Port Depth

Number of packets available in the buffer memory for each egress port.

Number of Entries : 53
Type of Operation : Read Only
Addressing : Egress Port
Address Space : 272492 to 272544

Field Description

Bits
Field
Name

Description
Default
Value

13:0 packets Number of packet currently queued. 0x0

32.14.3 Egress Queue Depth

Number of packets available in the buffer memory for each egress queue.

Number of Entries : 424
Type of Operation : Read Only
Addressing : Global queue number
Address Space : 272545 to 272968

Field Description

Bits
Field
Name

Description
Default
Value

13:0 packets Number of packets currently queued. 0x0

337 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.14.4 Minimum Buffer Free

Minimum number of cells available in the buffer memory

Number of Entries : 1
Type of Operation : Read Only
Address Space : 272969

Field Description

Bits
Field
Name

Description
Default
Value

13:0 cells Number of cells. 0x349a

32.14.5 Packet Buffer Status

Queue status of the packet buffer

Number of Entries : 1
Number of Addresses per Entry : 2
Type of Operation : Read Only
Address Space : 272059

Field Description

Bits
Field
Name

Description
Default
Value

52:0 empty Empty flags for the egress ports 253 − 1

32.15 Statistics: ACL

32.15.1 Ingress Configurable ACL Match Counter

Number of packets hit in entries from Ingress configurable ACL lookup.

Number of Entries : 256
Type of Operation : Read/Write
Addressing : Index from result of Ingress configurable ACL.
Address Space : 270252 to 270507

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

338 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.16 Statistics: Debug

32.16.1 EPP PM Drop

Number of drops due to FIFO overflows in EPP PM.
In Figure 27.1, epmOverflow with process sequence 22 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 276552

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.16.2 IPP PM Drop

Number of drops due to FIFO overflows in IPP PM.
In Figure 27.1, ipmOverflow with process sequence 12 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34032

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.16.3 PS Error Counter

Number of errors occured in the PS-converter.
In Figure 27.1, psError with process sequence 25 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 280594 to 280646

Field Description

Bits
Field
Name

Description
Default
Value

7:0 underrun Number of packets which have empty cycles caused by
the internal PS-converter but not the external halt during
packet transmissions.

0x0

339 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Bits
Field
Name

Description
Default
Value

15:8 overflow Number of FIFO overflows in the PS-converter. This error
will cause packet corruptions.

0x0

32.16.4 SP Overflow Drop

Number of packets dropped due to: FIFO overflow in the SP-converter.
In Figure 27.1, spOverflow with process sequence 5 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read Only
Addressing : Ingress port
Address Space : 33936 to 33988

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets on this ingress port. 0x0

32.17 Statistics: EPP Egress Port Drop

32.17.1 Egress Port Disabled Drop

Number of packets dropped due to egress port disabled.
In Figure 27.1, epppDrop with process sequence 19 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 276446 to 276498

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.17.2 Egress Port Filtering Drop

Number of packets dropped due to egress port filtering.
In Figure 27.1, epppDrop with process sequence 19 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 276499 to 276551

340 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.17.3 Unknown Egress Drop

Number of packets dropped during egress packet processing due to unknown reasons. Internal error caused
by packet drop with an invalid Drop ID.
In Figure 27.1, epppDrop with process sequence 19 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 276393 to 276445

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.18 Statistics: IPP Egress Port Drop

32.18.1 Egress Spanning Tree Drop

Number of packets dropped due to egress spanning tree check configured in Egress Spanning Tree State
and Egress Multiple Spanning Tree State
In Figure 27.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port (not aggregated)
Address Space : 270561 to 270613

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.18.2 Ingress-Egress Packet Filtering Drop

Number of packets dropped due to ingress-egress packet filtering configured in Ingress Egress Port Packet
Type Filter.
In Figure 27.1, preEppDrop with process sequence 11 represents the internal location of this counter.

341 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port (not aggregated)
Address Space : 270667 to 270719

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.18.3 L2 Action Table Per Port Drop

Number of packets dropped due to L2 Action Table per egress port drop configured in L2 Action Table
Drop.
In Figure 27.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port (not aggregated)
Address Space : 270720 to 270772

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.18.4 MBSC Drop

Number of packets dropped due to MBSC. When the egress port exceeds the multicast/broadcast traffic
limits any multicast/broadcast packets will be dropped.
In Figure 27.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port (not aggregated)
Address Space : 270614 to 270666

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

342 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.18.5 Queue Off Drop

Number of packets dropped due to the queue being turned off.
In Figure 27.1, preEppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port (not aggregated)
Address Space : 270508 to 270560

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19 Statistics: IPP Ingress Port Drop

32.19.1 AH Decoder Drop

Number of packets dropped due to setting in register AH Header Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34058

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.2 ARP Decoder Drop

Number of packets dropped due to setting in register ARP Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34051

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

343 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.3 Attack Prevention Drop

Number of packets dropped due to matching TCP/UDP flag rule.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34050

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.4 BOOTP and DHCP Decoder Drop

Number of packets dropped due to setting in register BOOTP and DHCP Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34061

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.5 CAPWAP Decoder Drop

Number of packets dropped due to setting in register CAPWAP Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34062

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

344 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.6 DNS Decoder Drop

Number of packets dropped due to setting in register DNS Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34060

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.7 ESP Decoder Drop

Number of packets dropped due to setting in register ESP Header Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34059

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.8 Empty Mask Drop

Number of packets dropped due to an empty destination port mask.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34035

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

345 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.9 Expired TTL Drop

Number of packets dropped due to expired TTL.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34046

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.10 GRE Decoder Drop

Number of packets dropped due to setting in register GRE Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34063

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.11 IEEE 802.1X and EAPOL Decoder Drop

Number of packets dropped due to setting in register IEEE 802.1X and EAPOL Packet Decoder
Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34055

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

346 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.12 IP Checksum Drop

Number of packets dropped due to incorrect IP checksum.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34047

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.13 Ingress Configurable ACL Drop

Number of packets dropped due to matching an Ingress Configurable ACL with drop.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34049

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.14 Ingress Packet Filtering Drop

Number of packets dropped due to ingress port packet type filtering as configured in Ingress Port Packet
Type Filter.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34040

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

347 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.15 Ingress Spanning Tree Drop: Blocking

Number of packets dropped due to that a ports’s ingress spanning tree protocol state was Blocking or
that port and packet VLAN’s ingress multiple spanning tree instance state was Discarding.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34038

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.16 Ingress Spanning Tree Drop: Learning

Number of packets dropped due to that a port’s ingress spanning tree protocol state was Learning or that
port and packet VLAN’s ingress multiple spanning tree instance state was Learning.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34037

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.17 Ingress Spanning Tree Drop: Listen

Number of packets dropped due to that a port’s ingress spanning tree protocol state was Listening.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34036

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

348 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.18 L2 Action Table Drop

Number of packets dropped due to the L2 Action Table says drop all instances.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34065

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.19 L2 Action Table Port Move Drop

Number of packets dropped due to the L2 Action Table says drop due to port move packet.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34066

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.20 L2 Action Table Special Packet Type Drop

Number of packets dropped due to the Allow Special Frame Check For L2 Action Table dit not allow
a certain packet/frame type.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34064

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

349 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.21 L2 Destination Table SA Lookup Drop

Number of packets dropped due to the table L2 Destination Table field

ieldL2 Destination TablepktDropSa says drop.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34067

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.22 L2 IEEE 1588 Decoder Drop

Number of packets dropped due to setting in register IEEE 1588 L4 Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34053

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.23 L2 Lookup Drop

Number of packets dropped in the L2 destination port lookup process. Either due to a drop flag in an
L2 Destination Table entry, or due to destination port not being member of the VLAN or due to not
allowing destination port being the same as the source port.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34039

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

350 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.24 L2 Reserved Multicast Address Drop

Number of packets dropped due to the L2 Reserved Multicast Addresses on counter 0
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34048

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.25 L4 IEEE 1588 Decoder Drop

Number of packets dropped due to setting in register IEEE 1588 L4 Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34054

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.26 LACP Decoder Drop

Number of packets dropped due to setting in register LACP Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34057

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

351 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.27 Maximum Allowed VLAN Drop

Number of packets dropped due to too many VLAN tags. Packets are dropped if number of VLANS is
above the limit setup in the Source Port Table.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34045

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.28 Minimum Allowed VLAN Drop

Number of packets dropped due to insufficient VLAN tags. Packets are dropped if number of VLANS is
below the limit setup in the Source Port Table.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34044

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.29 RARP Decoder Drop

Number of packets dropped due to setting in register RARP Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34052

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

352 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.30 Reserved MAC DA Drop

Number of packets dropped due to the packets destination MAC address match a Reserved Destination
MAC Address Range that is configured to be dropped.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34041

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.31 Reserved MAC SA Drop

Number of packets dropped due to the packets source MAC address match a Reserved Source MAC
Address Range that is configured to be dropped.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34042

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.32 SCTP Decoder Drop

Number of packets dropped due to setting in register SCTP Packet Decoder Options.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34056

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

353 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.19.33 Source Port Default ACL Action Drop

Number of packets dropped due to the table Source Port Default ACL Action says drop.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34068

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.34 Unknown Ingress Drop

Number of packets dropped during ingress packet processing due to unknown reasons. Internal error caused
by packet drop with an invalid Drop ID.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34034

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.19.35 VLAN Member Drop

Number of packets dropped due to the packets source port notbeing part of the packets VLAN membership.
In Figure 27.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34043

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

354 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.20 Statistics: Misc

32.20.1 Buffer Overflow Drop

Counter for the number of packets dropped due to the shared buffer memory being full.
In Figure 27.1, bmOverflow with process sequence 16 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 272061

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.20.2 Drain Port Drop

Number of packets dropped due to the port is drained.
In Figure 27.1, drain with process sequence 21 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress port
Address Space : 276340 to 276392

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.20.3 Egress Resource Manager Drop

Number of packets dropped by the egress resource manager.
In Figure 27.1, erm with process sequence 15 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read/Write
Addressing : Egress Port
Address Space : 272006 to 272058

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

355 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.20.4 Flow Classification And Metering Drop

Number of packets dropped due to flow classification and metering.
In Figure 27.1, mmp with process sequence 14 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 270773

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.20.5 IPP Empty Destination Drop

Number of drops due to the determined destination is cleared during post-ingress packet processing and
causing no cell to be enqueued in the buffer memory. This happens on single cell packet with end-of-packet
drop actions.
In Figure 27.1, eopDrop with process sequence 14 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34033

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

32.20.6 Ingress Resource Manager Drop

Counter for the number of packets dropped due to exeeding thresholds set up in the ingress resource
manager.
In Figure 27.1, irm with process sequence 16 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 272062

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets. 0x0

356 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.20.7 MAC RX Broken Packets

Number of broken packets dropped.
In Figure 27.1,macBrokenPkt with process sequence 3 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read Only (unreliable)
Addressing : Ingress Port
Address Space : 101 to 153

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.20.8 MAC RX Long Packet Drop

Number of packets dropped due to length above MAC RX Maximum Packet Length.
In Figure 27.1, macRxMax with process sequence 4 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read Only (unreliable)
Addressing : Ingress Port
Address Space : 207 to 259

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.20.9 MAC RX Short Packet Drop

Number of packets dropped due to length below 60 bytes.
In Figure 27.1, macRxMin with process sequence 4 represents the internal location of this counter.

Number of Entries : 53
Type of Operation : Read Only (unreliable)
Addressing : Ingress Port
Address Space : 154 to 206

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

357 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.20.10 Re-queue Overflow Drop

Counter for the number of packets dropped due to a FIFO overflow in re-queue.
In Figure 27.1, rqOverflow with process sequence 24 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 272116

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of dropped packets 0x0

32.21 Statistics: Packet Datapath

32.21.1 EPP Packet Head Counter

Number of packet first cells through the Egress Packet Process module.
In Figure 27.1, eppTxPkt with process sequence 24 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 276553

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packet headers. 0x0

32.21.2 EPP Packet Tail Counter

Number of packet last cells through the Egress Packet Process module.
In Figure 27.1, eppTxPkt with process sequence 24 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 276554

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packet tails. 0x0

358 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.21.3 IPP Packet Head Counter

Number of packet first cells through the Ingress Packet Process module.
In Figure 27.1, ippTxPkt with process sequence 13 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34069

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packet headers. 0x0

32.21.4 IPP Packet Tail Counter

Number of packet last cells through the Ingress Packet Process module.
In Figure 27.1, ippTxPkt with process sequence 13 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 34070

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packet tails. 0x0

32.21.5 PB Packet Head Counter

Number of packet first cells through the Shared Buffer Memory module.
In Figure 27.1, pbTxPkt with process sequence 18 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 276336

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packet headers. 0x0

359 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.21.6 PB Packet Tail Counter

Number of packet last cells through the Shared Buffer Memory module.
In Figure 27.1, pbTxPkt with process sequence 18 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 276337

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packet tails. 0x0

32.21.7 PS Packet Head Counter

Number of packet first cells through the Parallel to Serial module.
In Figure 27.1, psTxPkt with process sequence 25 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 280592

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packet headers. 0x0

32.21.8 PS Packet Tail Counter

Number of packet last cells through the Parallel to Serial module.
In Figure 27.1, psTxPkt with process sequence 25 represents the internal location of this counter.

Number of Entries : 1
Type of Operation : Read/Write
Address Space : 280593

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packet tails. 0x0

360 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22 Statistics: SMON

32.22.1 SMON Set 0 Byte Counter

Number of bytes counted in SMON Set 0.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270124 to 270131

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.2 SMON Set 0 Packet Counter

Number of packets counted in SMON Set 0.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 269996 to 270003

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.3 SMON Set 1 Byte Counter

Number of bytes counted in SMON Set 1.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270132 to 270139

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

361 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.4 SMON Set 1 Packet Counter

Number of packets counted in SMON Set 1.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270004 to 270011

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.5 SMON Set 10 Byte Counter

Number of bytes counted in SMON Set 10.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270204 to 270211

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.6 SMON Set 10 Packet Counter

Number of packets counted in SMON Set 10.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270076 to 270083

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

362 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.7 SMON Set 11 Byte Counter

Number of bytes counted in SMON Set 11.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270212 to 270219

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.8 SMON Set 11 Packet Counter

Number of packets counted in SMON Set 11.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270084 to 270091

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.9 SMON Set 12 Byte Counter

Number of bytes counted in SMON Set 12.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270220 to 270227

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

363 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.10 SMON Set 12 Packet Counter

Number of packets counted in SMON Set 12.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270092 to 270099

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.11 SMON Set 13 Byte Counter

Number of bytes counted in SMON Set 13.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270228 to 270235

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.12 SMON Set 13 Packet Counter

Number of packets counted in SMON Set 13.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270100 to 270107

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

364 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.13 SMON Set 14 Byte Counter

Number of bytes counted in SMON Set 14.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270236 to 270243

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.14 SMON Set 14 Packet Counter

Number of packets counted in SMON Set 14.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270108 to 270115

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.15 SMON Set 15 Byte Counter

Number of bytes counted in SMON Set 15.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270244 to 270251

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

365 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.16 SMON Set 15 Packet Counter

Number of packets counted in SMON Set 15.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270116 to 270123

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.17 SMON Set 2 Byte Counter

Number of bytes counted in SMON Set 2.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270140 to 270147

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.18 SMON Set 2 Packet Counter

Number of packets counted in SMON Set 2.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270012 to 270019

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

366 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.19 SMON Set 3 Byte Counter

Number of bytes counted in SMON Set 3.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270148 to 270155

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.20 SMON Set 3 Packet Counter

Number of packets counted in SMON Set 3.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270020 to 270027

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.21 SMON Set 4 Byte Counter

Number of bytes counted in SMON Set 4.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270156 to 270163

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

367 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.22 SMON Set 4 Packet Counter

Number of packets counted in SMON Set 4.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270028 to 270035

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.23 SMON Set 5 Byte Counter

Number of bytes counted in SMON Set 5.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270164 to 270171

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.24 SMON Set 5 Packet Counter

Number of packets counted in SMON Set 5.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270036 to 270043

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

368 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.25 SMON Set 6 Byte Counter

Number of bytes counted in SMON Set 6.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270172 to 270179

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.26 SMON Set 6 Packet Counter

Number of packets counted in SMON Set 6.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270044 to 270051

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.27 SMON Set 7 Byte Counter

Number of bytes counted in SMON Set 7.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270180 to 270187

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

369 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.28 SMON Set 7 Packet Counter

Number of packets counted in SMON Set 7.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270052 to 270059

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

32.22.29 SMON Set 8 Byte Counter

Number of bytes counted in SMON Set 8.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270188 to 270195

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.30 SMON Set 8 Packet Counter

Number of packets counted in SMON Set 8.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270060 to 270067

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

370 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

32.22.31 SMON Set 9 Byte Counter

Number of bytes counted in SMON Set 9.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270196 to 270203

Field Description

Bits
Field
Name

Description
Default
Value

23:0 bytes Number of bytes. 0x0

32.22.32 SMON Set 9 Packet Counter

Number of packets counted in SMON Set 9.
In Figure 27.1, smon with process sequence 11 represents the internal location of this counter.

Number of Entries : 8
Type of Operation : Read/Write
Addressing : VLAN PCP
Address Space : 270068 to 270075

Field Description

Bits
Field
Name

Description
Default
Value

23:0 packets Number of packets. 0x0

371 Packet Architects AB

CHAPTER 32. REGISTERS AND TABLES

372 Packet Architects AB

	1 Overview
	1.1 Feature Overview
	1.2 Port Numbering Table

	2 Packet Decoder
	2.1 Decoding Sequence

	3 Packet Processing
	3.1 Ingress Packet Processing
	3.2 Egress Packet Processing

	4 Latency and Jitter
	4.1 Latency
	4.2 Jitter

	5 VLAN Processing
	5.1 Assignment of Ingress VID
	5.1.1 VID Assignment from Packet Fields
	5.1.2 Force Ingress VID from Ingress Configurable ACL

	5.2 VLAN membership
	5.3 VLAN operations
	5.3.1 Default VLAN Header
	5.3.2 Source Port VLAN Operation
	5.3.3 Configurable ACL VLAN Swap Operation
	5.3.4 VLAN Table Operation
	5.3.5 Egress Port VLAN Operation
	5.3.6 Egress Vlan Translation
	5.3.7 Priority Tagged Packets
	5.3.8 VLAN Operation Order
	5.3.9 VLAN Operation Examples
	5.3.10 VLAN Reassembly

	6 Switching
	6.1 L2 Destination Lookup
	6.2 Software Interaction
	6.3 L2 Action Table
	6.3.1 Learning Unicast and Learning Multicast
	6.3.2 Drop and Learning
	6.3.3 Priorities Between Actions
	6.3.4 Using L2 Action Table for 802.1X

	7 Mirroring
	7.1 Input Mirroring
	7.2 Output Mirroring
	7.2.1 Requeueing FIFO

	8 RSPAN - Remote Switch Port Analyzer
	8.1 Source Device
	8.2 Intermediate Device
	8.3 Destination Device

	9 Link Aggregation
	9.0.1 One-to-one Port Mapping
	9.1 Example
	9.2 Hash Calculation

	10 IEEE 1588/PTP Support
	10.1 Timestamp from RX MAC
	10.1.1 Timestamp to the CPU

	10.2 PTP Frame Decoding
	10.2.1 PTP over 802.3 Ethernet
	10.2.2 PTP over UDP

	10.3 Software Control of TX MAC PTP Actions
	10.3.1 Packet Updates by the Transmit MAC

	10.4 Support for Ordinary Clock
	10.4.1 Master sending Sync
	10.4.2 Slave receiving Sync
	10.4.3 Slave sending DelayReq
	10.4.4 Master receiving DelayReq
	10.4.5 Master sending DelayReply
	10.4.6 Slave receiving DelayReply

	10.5 Support for 1-step Peer to Peer
	10.5.1 Initiator sending PDelayReq
	10.5.2 Peer receiving PDelayReq
	10.5.3 Peer sending PDelayResp
	10.5.4 Initiator receiving PDelayResp

	11 Classification
	11.1 L2 Classification
	11.2 Configurable Ingress ACL Engine
	11.2.1 Field Selection
	11.2.2 Example Of Selecting Fields For Configurable Ingress ACL Table 0
	11.2.3 Example Of Selecting Fields For Configurable Ingress ACL Table 1
	11.2.4 Example Of Selecting Fields For Configurable Ingress ACL Table 2
	11.2.5 Example Of Selecting Fields For Configurable Ingress ACL Table 3
	11.2.6 ACL Search
	11.2.7 ACL Actions

	11.3 Multiple ACL Lookups
	11.3.1 Multiple Actions
	11.3.2 ACL Routing
	11.3.3 Default Port ACL action

	12 VLAN and Packet Type Filtering
	13 Attack Prevention
	14 Hashing
	14.1 Hashing Functions
	14.1.1 MAC Table Hashing
	14.1.2 Hash function for Ingress Configurable ACL 0
	14.1.3 Hash function for Ingress Configurable ACL 1
	14.1.4 Hash function for Ingress Configurable ACL 2
	14.1.5 Hash function for Ingress Configurable ACL 3
	14.1.6 Hash function for Egress Vlan Translation

	15 D-left Lookup
	15.1 Functions using D-left
	15.1.1 Egress VLAN Translation
	15.1.2 Ingress Configurable ACL

	16 Learning and Aging
	16.1 L2 Forwarding Information Base (FIB)
	16.1.1 Tables for MAC DA lookup
	16.1.2 Status Tables
	16.1.3 Hash Collision Accommodation

	16.2 Hardware Learning and Aging
	16.2.1 Learning Unit
	16.2.2 Hardware Learning Exceptions
	16.2.3 Aging Unit
	16.2.4 MAC DA Hit Update Unit

	16.3 Software Learning and Aging
	16.3.1 Direct Access to FIB
	16.3.2 Software Reserved Entry

	17 Spanning Tree
	17.1 Spanning Tree
	17.2 Multiple Spanning Tree
	17.3 Spanning Tree Drop Counters

	18 Token Bucket
	19 Egress Queues and Scheduling
	19.1 Determine Egress Queue
	19.2 Determine a packets outgoing QoS headers PCP, DEI and TOS fields
	19.2.1 Remap Egress Queue to Packet Headers

	19.3 Priority Mapping
	19.4 Shapers
	19.4.1 Queue Shaper
	19.4.2 Prio Shaper

	19.5 Scheduling
	19.6 DWRR Scheduler
	19.7 Queue Management
	19.8 How To Make Sure A Port Is Empty

	20 Packet Coloring
	20.1 Ingress Packet Initial Coloring
	20.2 Remap Packet Color to Packet Headers

	21 Admission Control
	21.1 Ingress Admission Control
	21.1.1 Traffic Groups

	21.2 Meter-Marker-Policer

	22 Tick
	23 Multicast Broadcast Storm Control
	23.1 Inspected Traffic
	23.2 Rate Configuration

	24 Egress Resource Manager
	24.1 Yellow Zone
	24.2 Red Zone
	24.3 Green Zone
	24.4 Configuration Example
	24.5 Restrictions

	25 Flow Control
	25.1 Pausing
	25.2 Tail-Drop
	25.2.1 Tail-drop as police for Pausing

	25.3 Buffer partitioning
	25.3.1 Reserves
	25.3.2 Pausing Thresholds
	25.3.3 Tail-drop Thresholds
	25.3.4 Counters

	25.4 Enabling Tail-Drop
	25.5 Enabling Pausing
	25.6 Dropped packets
	25.7 Reconfiguration
	25.8 Debug Features

	26 Egress Port Shaper
	27 Statistics
	27.1 Packet Processing Pipeline Drops
	27.2 ACL Statistics
	27.3 SMON Statistics
	27.4 Packet Datapath Statistics
	27.5 Miscellaneous Statistics
	27.6 Debug Statistics
	27.6.1 Debug Statistics Accuracy

	28 Packets To And From The CPU
	28.1 Packets From the CPU
	28.1.1 From CPU Header and Packet Modification and Operations

	28.2 Packets To the CPU
	28.2.1 Reason Table

	29 Core Interface Description
	29.1 Clock, Reset and Initialization interface
	29.1.1 Assert Reset

	29.2 Packet Interface
	29.3 Configuration Interface
	29.4 Pause Interfaces
	29.4.1 PFC Status
	29.4.2 External Pause

	29.5 Debug Read Interface
	29.6 Debug Write Interface

	30 Configuration Interface
	30.1 Response time
	30.2 Out of range accesses
	30.3 Atomic Wide Access
	30.4 Accumulator Accesses

	31 Implementation
	31.1 Floorplanning
	31.1.1 Pipelining
	31.1.2 Configuration and debug

	31.2 Clock crossings
	31.2.1 IPP and EPP Structure

	31.3 Memory wrappers
	31.4 Dual ported memories
	31.5 Memory timing
	31.6 Lint set up
	31.6.1 Waivers

	32 Registers and Tables
	32.1 Address Space For Tables and Registers
	32.2 Byte Order
	32.3 Register Banks
	32.4 Registers and Tables in Alphabetical Order
	32.5 Active Queue Manager
	32.5.1 ERM Red Configuration
	32.5.2 ERM Yellow Configuration
	32.5.3 Egress Resource Manager Pointer
	32.5.4 Resource Limiter Set

	32.6 Core Information
	32.6.1 Core Version

	32.7 Egress Packet Processing
	32.7.1 Color Remap From Egress Port
	32.7.2 Color Remap From Ingress Admission Control
	32.7.3 Disable CPU tag on CPU Port
	32.7.4 Drain Port
	32.7.5 Egress Ethernet Type for VLAN tag
	32.7.6 Egress MAC Operations
	32.7.7 Egress Multiple Spanning Tree State
	32.7.8 Egress Port Configuration
	32.7.9 Egress Queue To PCP And CFI/DEI Mapping Table
	32.7.10 Egress RSPAN Configuration
	32.7.11 Egress VLAN Translation Large Table
	32.7.12 Egress VLAN Translation Search Mask
	32.7.13 Egress VLAN Translation Selection
	32.7.14 Egress VLAN Translation Small Table
	32.7.15 Egress VLAN Translation TCAM
	32.7.16 Egress VLAN Translation TCAM Answer
	32.7.17 Output Mirroring Table

	32.8 Flow Control
	32.8.1 FFA Used
	32.8.2 Port Pause Settings
	32.8.3 Port Reserved
	32.8.4 Port Tail-Drop FFA Threshold
	32.8.5 Port Tail-Drop Settings
	32.8.6 Port Used
	32.8.7 Port Xoff FFA Threshold
	32.8.8 Port Xon FFA Threshold
	32.8.9 Tail-Drop FFA Threshold
	32.8.10 Xoff FFA Threshold
	32.8.11 Xon FFA Threshold

	32.9 Global Configuration
	32.9.1 CPU Port
	32.9.2 Core Tick Configuration
	32.9.3 Core Tick Select
	32.9.4 MAC RX Maximum Packet Length
	32.9.5 Scratch

	32.10 Ingress Packet Processing
	32.10.1 AH Header Packet Decoder Options
	32.10.2 ARP Packet Decoder Options
	32.10.3 Allow Special Frame Check For L2 Action Table
	32.10.4 BOOTP and DHCP Packet Decoder Options
	32.10.5 CAPWAP Packet Decoder Options
	32.10.6 Check IPv4 Header Checksum
	32.10.7 DNS Packet Decoder Options
	32.10.8 Debug dstPortmask
	32.10.9 Debug srcPort
	32.10.10 ESP Header Packet Decoder Options
	32.10.11 Egress Spanning Tree State
	32.10.12 Enable Enqueue To Ports And Queues
	32.10.13 Expired TTL to CPU
	32.10.14 Flooding Action Send to Port
	32.10.15 Force Non VLAN Packet To Specific Color
	32.10.16 Force Non VLAN Packet To Specific Queue
	32.10.17 Force Unknown L3 Packet To Specific Color
	32.10.18 Force Unknown L3 Packet To Specific Egress Queue
	32.10.19 Forward From CPU
	32.10.20 GRE Packet Decoder Options
	32.10.21 Hairpin Enable
	32.10.22 Hardware Learning Configuration
	32.10.23 Hardware Learning Counter
	32.10.24 ICMP Length Check
	32.10.25 IEEE 1588 L2 Packet Decoder Options
	32.10.26 IEEE 1588 L4 Packet Decoder Options
	32.10.27 IEEE 802.1X and EAPOL Packet Decoder Options
	32.10.28 IPv4 TOS Field To Egress Queue Mapping Table
	32.10.29 IPv4 TOS Field To Packet Color Mapping Table
	32.10.30 IPv6 Class of Service Field To Egress Queue Mapping Table
	32.10.31 IPv6 Class of Service Field To Packet Color Mapping Table
	32.10.32 Ingress Admission Control Current Status
	32.10.33 Ingress Admission Control Initial Pointer
	32.10.34 Ingress Admission Control Mark All Red
	32.10.35 Ingress Admission Control Mark All Red Enable
	32.10.36 Ingress Admission Control Reset
	32.10.37 Ingress Admission Control Token Bucket Configuration
	32.10.38 Ingress Configurable ACL 0 Large Table
	32.10.39 Ingress Configurable ACL 0 Pre Lookup
	32.10.40 Ingress Configurable ACL 0 Rules Setup
	32.10.41 Ingress Configurable ACL 0 Search Mask
	32.10.42 Ingress Configurable ACL 0 Selection
	32.10.43 Ingress Configurable ACL 0 Small Table
	32.10.44 Ingress Configurable ACL 0 TCAM
	32.10.45 Ingress Configurable ACL 0 TCAM Answer
	32.10.46 Ingress Configurable ACL 1 Large Table
	32.10.47 Ingress Configurable ACL 1 Pre Lookup
	32.10.48 Ingress Configurable ACL 1 Rules Setup
	32.10.49 Ingress Configurable ACL 1 Search Mask
	32.10.50 Ingress Configurable ACL 1 Selection
	32.10.51 Ingress Configurable ACL 1 Small Table
	32.10.52 Ingress Configurable ACL 1 TCAM
	32.10.53 Ingress Configurable ACL 1 TCAM Answer
	32.10.54 Ingress Configurable ACL 2 Large Table
	32.10.55 Ingress Configurable ACL 2 Pre Lookup
	32.10.56 Ingress Configurable ACL 2 Rules Setup
	32.10.57 Ingress Configurable ACL 2 Search Mask
	32.10.58 Ingress Configurable ACL 2 Selection
	32.10.59 Ingress Configurable ACL 2 Small Table
	32.10.60 Ingress Configurable ACL 2 TCAM
	32.10.61 Ingress Configurable ACL 2 TCAM Answer
	32.10.62 Ingress Configurable ACL 3 Large Table
	32.10.63 Ingress Configurable ACL 3 Pre Lookup
	32.10.64 Ingress Configurable ACL 3 Rules Setup
	32.10.65 Ingress Configurable ACL 3 Search Mask
	32.10.66 Ingress Configurable ACL 3 Selection
	32.10.67 Ingress Configurable ACL 3 Small Table
	32.10.68 Ingress Configurable ACL 3 TCAM
	32.10.69 Ingress Configurable ACL 3 TCAM Answer
	32.10.70 Ingress Drop Options
	32.10.71 Ingress Egress Port Packet Type Filter
	32.10.72 Ingress Ethernet Type for VLAN tag
	32.10.73 Ingress MMP Drop Mask
	32.10.74 Ingress Multiple Spanning Tree State
	32.10.75 Ingress Port Packet Type Filter
	32.10.76 Ingress Ports With Timestamp
	32.10.77 Ingress VID Ethernet Type Range Assignment Answer
	32.10.78 Ingress VID Ethernet Type Range Search Data
	32.10.79 Ingress VID Inner VID Range Assignment Answer
	32.10.80 Ingress VID Inner VID Range Search Data
	32.10.81 Ingress VID MAC Range Assignment Answer
	32.10.82 Ingress VID MAC Range Search Data
	32.10.83 Ingress VID Outer VID Range Assignment Answer
	32.10.84 Ingress VID Outer VID Range Search Data
	32.10.85 L2 Action Table
	32.10.86 L2 Action Table Egress Port State
	32.10.87 L2 Action Table Source Port
	32.10.88 L2 Aging Collision Shadow Table
	32.10.89 L2 Aging Collision Table
	32.10.90 L2 Aging Status Shadow Table
	32.10.91 L2 Aging Table
	32.10.92 L2 DA Hash Lookup Table
	32.10.93 L2 Destination Table
	32.10.94 L2 Lookup Collision Table
	32.10.95 L2 Lookup Collision Table Masks
	32.10.96 L2 Multicast Handling
	32.10.97 L2 Multicast Table
	32.10.98 L2 Reserved Multicast Address Action
	32.10.99 L2 Reserved Multicast Address Base
	32.10.100 LACP Packet Decoder Options
	32.10.101 LLDP Configuration
	32.10.102 Learning And Aging Enable
	32.10.103 Learning Conflict
	32.10.104 Learning Overflow
	32.10.105 Link Aggregate Weight
	32.10.106 Link Aggregation Ctrl
	32.10.107 Link Aggregation Membership
	32.10.108 Link Aggregation To Physical Ports Members
	32.10.109 MPLS EXP Field To Egress Queue Mapping Table
	32.10.110 MPLS EXP Field To Packet Color Mapping Table
	32.10.111 Mask MAC Table Lookup
	32.10.112 Port Move Options
	32.10.113 RARP Packet Decoder Options
	32.10.114 Reserved Destination MAC Address Range
	32.10.115 Reserved Source MAC Address Range
	32.10.116 SCTP Packet Decoder Options
	32.10.117 SMON Set Search
	32.10.118 Send to CPU
	32.10.119 Source Port Default ACL Action
	32.10.120 Source Port Table
	32.10.121 TCP/UDP Flag Rules
	32.10.122 Time to Age
	32.10.123 VLAN PCP And DEI To Color Mapping Table
	32.10.124 VLAN PCP To Queue Mapping Table
	32.10.125 VLAN Table

	32.11 MBSC
	32.11.1 L2 Broadcast Storm Control Bucket Capacity Configuration
	32.11.2 L2 Broadcast Storm Control Bucket Threshold Configuration
	32.11.3 L2 Broadcast Storm Control Enable
	32.11.4 L2 Broadcast Storm Control Rate Configuration
	32.11.5 L2 Multicast Storm Control Bucket Capacity Configuration
	32.11.6 L2 Multicast Storm Control Bucket Threshold Configuration
	32.11.7 L2 Multicast Storm Control Enable
	32.11.8 L2 Multicast Storm Control Rate Configuration
	32.11.9 L2 Unknown Multicast Storm Control Bucket Capacity Configuration
	32.11.10 L2 Unknown Multicast Storm Control Bucket Threshold Configuration
	32.11.11 L2 Unknown Multicast Storm Control Enable
	32.11.12 L2 Unknown Multicast Storm Control Rate Configuration
	32.11.13 L2 Unknown Unicast Storm Control Bucket Capacity Configuration
	32.11.14 L2 Unknown Unicast Storm Control Bucket Threshold Configuration
	32.11.15 L2 Unknown Unicast Storm Control Enable
	32.11.16 L2 Unknown Unicast Storm Control Rate Configuration

	32.12 Scheduling
	32.12.1 DWRR Bucket Capacity Configuration
	32.12.2 DWRR Bucket Misc Configuration
	32.12.3 DWRR Weight Configuration
	32.12.4 Map Queue to Priority
	32.12.5 Output Disable

	32.13 Shapers
	32.13.1 Port Shaper Bucket Capacity Configuration
	32.13.2 Port Shaper Bucket Threshold Configuration
	32.13.3 Port Shaper Enable
	32.13.4 Port Shaper Rate Configuration
	32.13.5 Prio Shaper Bucket Capacity Configuration
	32.13.6 Prio Shaper Bucket Threshold Configuration
	32.13.7 Prio Shaper Enable
	32.13.8 Prio Shaper Rate Configuration
	32.13.9 Queue Shaper Bucket Capacity Configuration
	32.13.10 Queue Shaper Bucket Threshold Configuration
	32.13.11 Queue Shaper Enable
	32.13.12 Queue Shaper Rate Configuration

	32.14 Shared Buffer Memory
	32.14.1 Buffer Free
	32.14.2 Egress Port Depth
	32.14.3 Egress Queue Depth
	32.14.4 Minimum Buffer Free
	32.14.5 Packet Buffer Status

	32.15 Statistics: ACL
	32.15.1 Ingress Configurable ACL Match Counter

	32.16 Statistics: Debug
	32.16.1 EPP PM Drop
	32.16.2 IPP PM Drop
	32.16.3 PS Error Counter
	32.16.4 SP Overflow Drop

	32.17 Statistics: EPP Egress Port Drop
	32.17.1 Egress Port Disabled Drop
	32.17.2 Egress Port Filtering Drop
	32.17.3 Unknown Egress Drop

	32.18 Statistics: IPP Egress Port Drop
	32.18.1 Egress Spanning Tree Drop
	32.18.2 Ingress-Egress Packet Filtering Drop
	32.18.3 L2 Action Table Per Port Drop
	32.18.4 MBSC Drop
	32.18.5 Queue Off Drop

	32.19 Statistics: IPP Ingress Port Drop
	32.19.1 AH Decoder Drop
	32.19.2 ARP Decoder Drop
	32.19.3 Attack Prevention Drop
	32.19.4 BOOTP and DHCP Decoder Drop
	32.19.5 CAPWAP Decoder Drop
	32.19.6 DNS Decoder Drop
	32.19.7 ESP Decoder Drop
	32.19.8 Empty Mask Drop
	32.19.9 Expired TTL Drop
	32.19.10 GRE Decoder Drop
	32.19.11 IEEE 802.1X and EAPOL Decoder Drop
	32.19.12 IP Checksum Drop
	32.19.13 Ingress Configurable ACL Drop
	32.19.14 Ingress Packet Filtering Drop
	32.19.15 Ingress Spanning Tree Drop: Blocking
	32.19.16 Ingress Spanning Tree Drop: Learning
	32.19.17 Ingress Spanning Tree Drop: Listen
	32.19.18 L2 Action Table Drop
	32.19.19 L2 Action Table Port Move Drop
	32.19.20 L2 Action Table Special Packet Type Drop
	32.19.21 L2 Destination Table SA Lookup Drop
	32.19.22 L2 IEEE 1588 Decoder Drop
	32.19.23 L2 Lookup Drop
	32.19.24 L2 Reserved Multicast Address Drop
	32.19.25 L4 IEEE 1588 Decoder Drop
	32.19.26 LACP Decoder Drop
	32.19.27 Maximum Allowed VLAN Drop
	32.19.28 Minimum Allowed VLAN Drop
	32.19.29 RARP Decoder Drop
	32.19.30 Reserved MAC DA Drop
	32.19.31 Reserved MAC SA Drop
	32.19.32 SCTP Decoder Drop
	32.19.33 Source Port Default ACL Action Drop
	32.19.34 Unknown Ingress Drop
	32.19.35 VLAN Member Drop

	32.20 Statistics: Misc
	32.20.1 Buffer Overflow Drop
	32.20.2 Drain Port Drop
	32.20.3 Egress Resource Manager Drop
	32.20.4 Flow Classification And Metering Drop
	32.20.5 IPP Empty Destination Drop
	32.20.6 Ingress Resource Manager Drop
	32.20.7 MAC RX Broken Packets
	32.20.8 MAC RX Long Packet Drop
	32.20.9 MAC RX Short Packet Drop
	32.20.10 Re-queue Overflow Drop

	32.21 Statistics: Packet Datapath
	32.21.1 EPP Packet Head Counter
	32.21.2 EPP Packet Tail Counter
	32.21.3 IPP Packet Head Counter
	32.21.4 IPP Packet Tail Counter
	32.21.5 PB Packet Head Counter
	32.21.6 PB Packet Tail Counter
	32.21.7 PS Packet Head Counter
	32.21.8 PS Packet Tail Counter

	32.22 Statistics: SMON
	32.22.1 SMON Set 0 Byte Counter
	32.22.2 SMON Set 0 Packet Counter
	32.22.3 SMON Set 1 Byte Counter
	32.22.4 SMON Set 1 Packet Counter
	32.22.5 SMON Set 10 Byte Counter
	32.22.6 SMON Set 10 Packet Counter
	32.22.7 SMON Set 11 Byte Counter
	32.22.8 SMON Set 11 Packet Counter
	32.22.9 SMON Set 12 Byte Counter
	32.22.10 SMON Set 12 Packet Counter
	32.22.11 SMON Set 13 Byte Counter
	32.22.12 SMON Set 13 Packet Counter
	32.22.13 SMON Set 14 Byte Counter
	32.22.14 SMON Set 14 Packet Counter
	32.22.15 SMON Set 15 Byte Counter
	32.22.16 SMON Set 15 Packet Counter
	32.22.17 SMON Set 2 Byte Counter
	32.22.18 SMON Set 2 Packet Counter
	32.22.19 SMON Set 3 Byte Counter
	32.22.20 SMON Set 3 Packet Counter
	32.22.21 SMON Set 4 Byte Counter
	32.22.22 SMON Set 4 Packet Counter
	32.22.23 SMON Set 5 Byte Counter
	32.22.24 SMON Set 5 Packet Counter
	32.22.25 SMON Set 6 Byte Counter
	32.22.26 SMON Set 6 Packet Counter
	32.22.27 SMON Set 7 Byte Counter
	32.22.28 SMON Set 7 Packet Counter
	32.22.29 SMON Set 8 Byte Counter
	32.22.30 SMON Set 8 Packet Counter
	32.22.31 SMON Set 9 Byte Counter
	32.22.32 SMON Set 9 Packet Counter

	Index

